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SUMMARY

Translational control plays a pivotal role in the regu-
lation of the pluripotency network in embryonic stem
cells, but its effect on reprogramming somatic cells
to pluripotency has not been explored. Here, we
show that eukaryotic translation initiation factor 4E
(eIF4E) binding proteins (4E-BPs), which are transla-
tional repressors, have a multifaceted effect on the
reprogramming of mouse embryonic fibroblasts
(MEFs) into induced pluripotent stem cells (iPSCs).
Loss of 4E-BP expression attenuates the induction
of iPSCs at least in part through increased translation
of p21, a known inhibitor of somatic cell reprogram-
ming. However, MEFs lacking both p53 and 4E-BPs
show greatly enhanced reprogramming resulting
from a combination of reduced p21 transcription
and enhanced translation of endogenous mRNAs
such as Sox2 and Myc and can be reprogrammed
through the expression of only exogenous Oct4.
Thus, 4E-BPs exert both positive and negative
effects on reprogramming, highlighting the key role
that translational control plays in regulating this
process.

INTRODUCTION

Transcription is suppressed during oocyte maturation and the

initial divisions of the zygote, when the egg and sperm genomes

undergo reprogramming (de Vries et al., 2008). Within this win-

dow of time, gene expression is largely controlled at the level

of mRNA translation (Latham et al., 1991). Factor-induced re-

programming has primarily been linked to transcriptional and
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epigenetic events (Buganim et al., 2012; Gifford and Meissner,

2012). However, genome-wide analyses have indicated that

the cellular proteome is mainly controlled at the translation level,

and there is a limited correlation between mRNA and protein

levels (Courtes et al., 2013; Lu et al., 2009; Schwanhäusser

et al., 2011). The role of translational control in the reprogram-

ming of somatic cells into induced pluripotent stem cells (iPSCs)

has not been investigated.

Initiation is the rate-limiting step of translation and is subject to

extensive control (Sonenberg and Hinnebusch, 2009). At this

step, mRNA is recruited to the ribosome by the eukaryotic trans-

lation initiation factor 4F (eIF4F) complex, which consists of the

cap binding protein eIF4E, the scaffolding protein eIF4G, and

the RNA helicase eIF4A (Jackson et al., 2010). Although eIF4E

is required for cap-dependent translation of all nuclear tran-

scribed cellular mRNAs, it preferentially stimulates the transla-

tion of a subset of ‘‘eIF4E-sensitive’’ mRNAs, which includes

mRNAs encoding proliferation- and survival-promoting proteins

(Graff et al., 2008). The sensitivity of mRNA to eIF4E can be

dictated by the structure and sequence of its 50 untranslated re-

gion (50 UTR) (Hsieh et al., 2012; Koromilas et al., 1992; Thoreen

et al., 2012). The translation of mRNAs with long and structured

50 UTRs is more dependent on eIF4E activity, and this can be ex-

plained by the stimulation of the eIF4A helicase activity by eIF4E

(Feoktistova et al., 2013). The eIF4E binding proteins (4E-BP1,

4E-BP2, and 4E-BP3 in mammals) are translational inhibitors

that, when dephosphorylated (activated), avidly bind eIF4E.

The interactions of 4E-BPs with eIF4E prevent the association

of eIF4E with eIF4G, which impair the assembly of the eIF4F

complex (Pause et al., 1994; Poulin et al., 1998). The mammalian

target of rapamycin complex 1 (mTORC1) phosphorylates (inac-

tivates) the 4E-BPs, leading to their dissociation from eIF4E

(Gingras et al., 1999; Gingras et al., 1998).

Notably, mTORC1-dependent phosphorylation of 4E-BPs is

increased during embryonic stem cell (ESC) differentiation (Sam-

path et al., 2008), suggesting that 4E-BPs may also affect
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Figure 1. 4E-BPs Are Required for Somatic

Cell Reprogramming

(A and B) Levels and phosphorylation status of the

indicated proteins in ESCs (R1 clone), iPSCs

(clone 9), and MEFs (A) or in WT and DKO MEFs

infected with GFP or Oct4, Sox2, Klf4, and

Myc (OSKM)-expressing lentiviral vectors and

analyzed 7 days after the above transduction (B)

were monitored by western blot. S, short expo-

sure; L, long exposure.

(C) WT and DKOMEFs were infected with GFP- or

OSKM-expressing viral vectors, and, on day 7

after infection, the cell extracts were subjected to

m7GDP pull-down. Levels of the indicated pro-

teins in the input (10%) or pull-down (25%) were

determined by western blotting. b-actin served as

a loading control (input) and to exclude nonspe-

cific retention (m7GDP pull-down).

(D–F) WT and DKO MEFs (D), WT MEFs infected

with scrambled shRNA (Scr) or shRNAs against

4E-BP1/4E-BP2 (sh4E-BP1/2; E), or DKO MEFs

infected with a vector (control) or 4E-BP1 (F)

were coinfected with OSKM. Reprogramming

was monitored by AP staining on day 7 after

OSKM infection. Data are presented as mean

numbers of AP positive (AP+) colonies in bar charts

SD (n = 3). *p < 0.05, ***p < 0.001; paired Student’s

t test.

(G–I) Reprogramming of MEFs described in (D–F)

was monitored by NANOG immunofluorescence

staining on day 14 after transduction. The NANOG

immunofluorescence staining of a colony for each

experimental condition are presented in the

insets ± SD (n = 3). *p < 0.05, **p < 0.01; paired

Student’s t test.

See also Figure S1.
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somatic cell reprogramming. Here, we demonstrate that eIF4E-

dependent translational control via 4E-BPs plays an important

role in regulating the factor-induced reprogramming. We also

describe a crosstalk between the activity of 4E-BPs and the

p53-p21 pathway in this process.

RESULTS

Activation of 4E-BP1 in Induced Pluripotent Stem Cells
To study the role of 4E-BPs in reprogramming, we first examined

the phosphorylation status of 4E-BP1 in mouse embryonic fibro-

blasts (MEFs), mouse ESCs, and mouse iPSCs. iPSCs were

generated by infecting wild-type (WT) MEFs with lentiviruses ex-

pressing the reprogramming factors Oct4, Sox2, Klf4, and Myc
Cell Stem Cell 14, 606
(OSKM) (Takahashi and Yamanaka,

2006). As expected, the phosphorylation

of 4E-BP1 was markedly lower in iPSCs

and ESCs in comparison to MEFs (He

et al., 2012; Sampath et al., 2008) (Fig-

ure 1A). To ensure that the observed

decrease in 4E-BP1 phosphorylation

was not restricted to a subset of pluripo-

tent cell lines, we monitored the phos-

phorylation levels of 4E-BP1 in various

pluripotent cells whose pluripotency had
been previously verified by chimeric contribution (Figure S1A

available online). The cell lines include one ESC clone from

B6CBAF1 mice (f-ESC), two ESC clones generated via somatic

cell nuclear transfer (FNTESC and F-NtESC from B6;CBA

and B6;129 genetic backgrounds, respectively), one ESC clone

generated by parthenogenesis ([MII] ESC), and three iPSC

clones derived from neural progenitor cells (NP-iPSCs), early he-

matopoietic progenitor cells (B-iPSC), and B-lymphocytes (BL-

iPSC) (Hanna et al., 2008; Kim et al., 2011; Kim et al., 2010;

Kim et al., 2007a; Kim et al., 2007b). 4E-BP1 phosphorylation

was dramatically lower in all pluripotent cell lines in comparison

to the MEFs (Figure S1A). Thus, low 4E-BP1 phosphorylation

(high activity) is a salient feature of pluripotent cells, irrespective

of their origin.
–616, May 1, 2014 ª2014 Elsevier Inc. 607



Figure 2. Combined Loss of 4E-BPs and p53 Enhances Efficiency of Somatic Cell Reprogramming

(A) WT and DKOMEFs were infected with OSKM. At day 12 after infection, levels of the indicatedmRNAs were determined by qRT-PCR. Data were normalized to

b-actin mRNA, and the values for WT MEFs were set to 1. Results are presented as a mean ± SD (n = 3).

(B) Absorption profiles of ribosomes from cells described in (A). 40S and 60S denote the corresponding ribosomal subunits. 80S, monosome.

(C) Polysomal distribution of the indicated mRNAs in cells described in (A) were determined by semiquantitative RT-PCR (sqRT-PCR).

(D) Expression of the indicated proteins in GFP- or OSKM-infected p53KO and TKO MEFs was monitored by western blotting 7 days after infection. WT MEF

lysates (control) served as a positive control for antibody specificity and a-tubulin as loading control.

(E) MEFswere infectedwith OSKM,OSK, or OS and reprogrammingwasmonitored by AP staining at the indicated days after infection. Results are presented as a

mean number of AP+ colonies ± SD (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001; paired Student’s t test.

(F) MEFs were infected with OSK. At day 12 after infection immunofluorescence staining was used to detect NANOG+ colonies. Results are presented as the

mean number of NANOG+ colonies in bar charts ± SD (n = 3). *p < 0.05; paired Student’s t test. Representative micrographs of Nanog-negative (i) and -positive (ii)

colonies are presented in the inset.

(legend continued on next page)
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In addition to 4E-BPs, ribosomal protein S6 kinase 1 (S6K1)

and S6K2 are major downstream targets of mTORC1 (Zoncu

et al., 2011). Phosphorylation of ribosomal protein S6 (S6), which

is a substrate of S6K1 and S6K2, was decreased in the pluripo-

tent cells relative to MEFs, demonstrating that the activity of

mTORC1 was lower in the pluripotent cells in comparison to

MEFs (Figures 1A and S1A).

Essential Requirement of 4E-BPs in the Reprogramming
of MEFs
Next, we focused on the role of 4E-BPs in the induction of plurip-

otency. First, we examined the phosphorylation of 4E-BP1 in

MEFs transduced with OSKM. Phosphorylation of 4E-BP1 and

S6 was markedly reduced early in reprogramming (Figure S1B).

This result is consistent with a previous report that showed that

intermediate stage reprogramming cells had lower mTORC1 ac-

tivity than nonreprogramming cells (He et al., 2012). We also

examined the role of 4E-BPs in reprogramming by expressing

OSKM in WT and 4E-BP1/2�/� (double knockout [DKO]) MEFs.

The DKO MEFs are devoid of all 4E-BPs, given that 4E-BP3 is

not expressed in MEFs (Dowling et al., 2010). Phosphorylation

of S6was not significantly different between the GFP-expressing

WT and DKOMEFs (Figure 1B, lanes 1 and 2). Despite similar in-

hibition of mTORC1 signaling in the OSKM-expressing WT and

DKOMEFs, as measured by the decrease in S6 phosphorylation

(Figure 1B, lanes 3 and 4), the DKO MEFs formed significantly

fewer primary iPSC colonies than the WT MEFs, as monitored

by alkaline phosphatase (AP) and NANOG immunofluorescence

staining (Figures 1D and 1G). Importantly, lentivirus infection

efficiency and translation of AP and Nanog mRNAs were not

affected by the 4E-BP status (Figures S1C–S1E and S2D).

Although the DKO MEFs displayed a prolonged doubling time

at later passages (passage R 6), the defects in reprogramming

cannot be explained by changes in the proliferation capacity of

the DKO MEFs, given that early-passage MEFs (passage % 3)

were used for reprogramming and that doubling time of the

DKO MEFs at early passages is similar to that of the WT MEFs

(Petroulakis et al., 2009). To exclude the possibility that the atten-

uation of reprogramming in the DKO MEFs was caused by inad-

vertent changes thatmayhaveoccurredduringMEF isolation,we

depleted 4E-BP1 and 4E-BP2 in WT MEFs (Figures 1E, 1H, and

S1F) and re-expressed 4E-BP1 in the DKO MEFs (Figures 1F

and 1I). Whereas depletion of the 4E-BPs attenuated reprogram-

ming (Figures 1E and 1H), ectopic expression of 4E-BP1 rescued

the reprogramming deficiency of the DKO MEFs, as determined

by the increase in AP+ and NANOG+ colonies (Figures 1F and

1I). Notably, overexpression of WT 4E-BP1 in WT MEFs failed

to promote reprogramming (Figures S1I–S1K). Altogether, these

data demonstrate that 4E-BPs are necessary and required for the

reprogramming of MEFs in a dose-dependent manner.
(G) Western blot analysis of 4E-BP1 in p53KO MEFs and TKO MEFs infected with

served as the loading control.

(H and I) Cells described in (G) infected with OSKM and seeded on feeder layer. A

(H) or NANOG immunofluorescence staining (I). Results are presented as a me

Student’s t test.

(J) Western blot analysis of NANOG, 4E-BP1, and p-4E-BP1(S65) in TKO MEFs e

asterisk represents nonspecific band.

See also Figure S2.
4E-BPs impede translation initiation by binding and seques-

tering eIF4E (Pause et al., 1994). To determine whether the

binding of 4E-BPs to eIF4E is required for reprogramming, we

expressed OSKM in DKO MEFs that harbor WT 4E-BP1 or a

mutant lacking the eIF4E binding site (D4E-BS) (Rong et al.,

2008). The number of AP+ colonies formed by cells expressing

the D4E-BS mutant was similar to that observed in control cells

(DKOMEFs expressing vector) but was lower than that detected

in cells expressing WT 4E-BP1 (Figure S1G). To investigate

whether the ability of the 4E-BPs to inhibit eIF4F complex

assembly correlates with the induction of reprogramming, we

performed an m7GDP-agarose pull-down assay (Figure 1C).

Infection of WT MEFs with OSKM led to a reduction in eIF4F

complex levels, as illustrated by the increase in the amount

of 4E-BP1 and the decrease in the amount of eIF4GI pulled

down by m7GDP-agarose in comparison to GFP-infected cells

7 days after infection (Figure 1C, lanes 1 and 2). As expected,

such a change did not occur in the OSKM-expressing DKO

MEFs (Figure 1C, lanes 3 and 4). Collectively, these data identify

an important function of 4E-BPs in promoting reprogramming by

binding to eIF4E and disrupting eIF4F complex assembly on

mRNAs encoding inhibitors of reprogramming.

Augmented Translation of p21 mRNA in MEFs Lacking
4E-BP1 and 4E-BP2
In response to overexpression of reprogramming factors, cells

activate the p53/p21 pathway to maintain genomic integrity dur-

ing iPSC induction (Hong et al., 2009; Kawamura et al., 2009;

Marión et al., 2009; Utikal et al., 2009). p21 acts as a major sup-

pressor of somatic cell reprogramming (Hong et al., 2009), and

cell types with higher reprogramming efficiency, such as kerati-

nocytes, express relatively low levels of p21 protein (Kawamura

et al., 2009). DKO MEFs express higher amounts of p21 protein

in comparison to WT MEFs, and this disparity in p21 amounts

was sustained 7 and 12 days after OSKM infection (Figures 1B

and S2H). In contrast, no differences were found in p21 mRNA

levels between WT and DKO MEFs (Figure 2A). Similar to the

DKO MEFs, downregulation of 4E-BP1 and 2 promotes the

expression of p21 protein in MEFs (Figure S1H) (Kannan-

Thulasiraman et al., 2008). Altogether, these findings indicate

that 4E-BP-dependent regulation of p21mRNA translation plays

an important role in reprogramming.

To further investigate the p21 mRNA translation control, we

performed a polysome profiling assay to directly examine

whether the 4E-BPs suppress the translation initiation of p21

mRNA during reprogramming (Figure 2B). Polysomes from

OSKM-infected WT and DKO MEFs (12 days after infection)

were fractionated with sucrose density gradients. In this assay,

mRNAs whose translation initiation is efficient are associated

with heavy polysomes, and they sediment faster than poorly
HA-4E-BP1 or vector and treated with puromycin (5 mg/ml) for 7 days. b-actin

t day 12 after infection, reprogramming of MEFs was monitored by AP staining

an number of NANOG+ colonies ± SD (n = 3). *p < 0.05, ***p < 0.001; paired

xpressing vector or HA-4E-BP1 12 days after infection with GFP or OSKM. The

Cell Stem Cell 14, 606–616, May 1, 2014 ª2014 Elsevier Inc. 609
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translated mRNAs, which are associated with light polysomes

(Warner et al., 1963). The absorbance profiles of the gradient

fractions indicated a modest increase in global translation in

the OSKM-infected DKO MEFs relative to the WT MEFs, as

judged by an increase in polysome content with a concomitant

decrease in the 80S peak (Figure 2B). Significantly, p21 mRNA

was preferentially associated with heavier polysomes in the

DKO MEFs (fractions 6–8) in comparison to the WT MEFs, in

which p21 mRNA was associated with lighter polysomes (frac-

tions 5–6; Figure 2C; Figure S2A). In sharp contrast, the positions

of the p53,Gapdh, b-actin, andNanogmRNAs were not affected

by the 4E-BP status (Figures 2C and S2B–S2D). Altogether,

these results demonstrate that 4E-BPs selectively suppress

the translation of p21 mRNA and that the reduced reprogram-

ming efficiency of the DKO MEFs stems from their inability to

suppress p21 mRNA translation. This conclusion is supported

by the finding that p21 depletion partially alleviated the inhibition

of reprogramming in DKO MEFs (Figures S2E–S2G). However, it

is highly likely that other eIF4E-sensitive genes are also involved,

given that the depletion of p21 could not fully rescue the reprog-

ramming deficiency of the DKO MEFs.

p53 Loss Reverses the Effects of 4E-BPs on Somatic
Cell Reprogramming
p53 inhibits reprogramming largely by activating p21 transcrip-

tion (Hong et al., 2009; Kawamura et al., 2009; Marión et al.,

2009; Utikal et al., 2009). As expected, due to the loss of p53

expression, p21 mRNA and protein were barely detectable in

p53�/� (p53KO) and p53�/�;4E-BP1/2�/� (TKO)MEFs (Figure 2D

and S2H–S2J). Therefore, we reasoned that the loss of p53

expression should rescue the feeble reprogramming caused by

the loss of 4E-BP expression. To investigate this hypothesis,

we expressed reprogramming factors in the WT, DKO, p53KO,

and TKO MEFs and monitored reprogramming efficiency.

Consistent with previous reports (Hong et al., 2009; Kawamura

et al., 2009; Marión et al., 2009; Utikal et al., 2009), reprogram-

ming efficiency, as determined by the number of AP+ and

NANOG+ colonies, was higher in the p53KO MEFs than it was

in the WT MEFs (Figures 2E and 2F). Surprisingly, the number

of iPSC colonies formed by the TKO MEFs was significantly

higher than that formed by the p53KO MEFs (mean = 1,107

AP+ colonies in the OSKM-expressing p53KO MEFs versus

2,915 AP+ colonies in the OSKM-expressing TKO MEFs; p =

0.003) (Figures 2E and 2F). These effects were not a conse-

quence of differences in the infection efficiency between the

p53KO and TKOMEFs (Figures S2K and S2L). Importantly, these

effects were p53 dependent, given that p53 re-expression in the

TKO MEFs led to increased p21 protein amounts and sup-

pressed reprogramming (Figures S2M and S2N). As expected,

overexpression of 4E-BP1 in the p53KO and TKOMEFs inhibited

reprogramming with a more significant effect on the TKO MEFs

(Figures 2G–2J). An increase in the number of primary iPSC

colonies in the TKO MEFs, relative to the p53KO MEFs, was

also detected in cells infected with OSK or OS (Figures 2E and

2F). Remarkably, the expression of Oct4 alone was sufficient

to generate iPSCs from the TKO MEFs (Figures S3A and S3B),

albeit at a very small number (two to ten expandable iPSC

colonies per 40,000 Oct4-infected TKO MEFs in three experi-

ments) but not from the p53KOMEFs.Oct4-induced TKO iPSCs
610 Cell Stem Cell 14, 606–616, May 1, 2014 ª2014 Elsevier Inc.
(Oct4-TKO-iPSCs) maintained the expression of ESC specific

markers, such as Nanog, Rex1, and stage-specific embryonic

antigen 1 (Figures 3A–3C and S3C), and differentiated into cells

originating from all three germ layers, including functional neu-

rons, blood vessels, muscle, bone, adipose, and gut-like tissues

in teratoma and embryoid body formation assays (Figures 3D–

3H and 4A–4C).

Next, we determined the ability of the Oct4-TKO-iPSCs to pro-

duce chimeric offspring. The loss of p53 leads to aneuploidy and

therefore dramatically decreases the efficacy of chimera gener-

ation (Menendez et al., 2010). To circumvent this problem, we

selected a clone of the Oct4-TKO-iPSCs that was devoid of

alterations in chromosome number (Oct4-TKO-iPSC-11; Fig-

ure S4A) and expressed enhanced GFP (eGFP+). This clone

was injected into mouse blastocysts. Oct4-TKO-iPSC-11 con-

tributed to the generation of chimeras, as evident in the prenatal

embryos, live-born neonates, and young pups (Figures 4D and

S4B–S4D and Table S1). Chimeras were scored with eGFP fluo-

rescence at the whole-body surface level of the embryonic day

14.5 (E14.5) embryos (Figure 4Di), and the 24 hr old neonates

(Figure 4Dii) or as the mosaic colored chimeras in young pups

(Figure 4Diii). Chimera contribution was also quantified as

eGFP fluorescence in the whole body of ten independent

E14.5–E16.5 prenatal chimeric embryos (Figure S4B and Table

S1) and organs such as heart, liver, and gonads (testis) of

E16.5 chimeric embryos (Figure S4C). Germline competency

was also confirmed by the presence of both eGFP+ and

THY-1+ gonadal cells (Figure S4D) and the chimera-derived

offspring. Collectively, these data demonstrate that Oct4-TKO-

iPSCs are fully reprogrammed and pluripotent.

Translation of Sox2 and Myc mRNAs Is Induced in the
Oct4-Expressing TKO MEFs
At the molecular level, mTORC1 signaling was suppressed to a

comparable extent in the OSKM-expressing p53KO and TKO

MEFs, as illustrated by a comparable reduction in the phosphor-

ylation of S6 (Figure 2D). Consistent with the findings observed in

the WT and DKO MEFs (Figure 1C), eIF4F complex assembly

was attenuated in the OSKM-infected p53KO MEFs but not in

GFP-infected p53KO or TKO MEFs (Figure 5A). Also, global

translation was modestly increased in Oct4-infected TKO

MEFs in comparison to p53KO MEFs, as implied by the poly-

some profiling results (Figure 5B). These data indicate that the

loss of 4E-BP expression in a p53-null background stimulates

iPSC generation via a selective increase in the translation of

mRNAs encoding factors that stimulate reprogramming. Indeed,

Myc and Sox2mRNAs sedimented with heavy polysomes in the

Oct4-infected TKO MEFs in comparison to the Oct4-infected

p53KO MEFs, whereas there was no difference in the sedimen-

tation of Klf4, Gapdh, and b-actin mRNAs (Figures 5C and S5A–

S5D). These findings are consistent with previous reports

demonstrating that the translation of Myc and Sox2 mRNAs is

eIF4E dependent (De Benedetti and Graff, 2004; Ge et al.,

2010; Stoyanova et al., 2013). Accordingly, the levels of MYC

and SOX2 proteins were upregulated in the Oct4-infected TKO

MEFs and coincided with the induction of NANOG expression

(Figure 5D). In stark contrast, NANOG was not expressed in

Oct4-infected p53KO MEFs (Figure 5D). The absence of 4E-BP

expression failed to cause a shift of Nanog mRNA to heavy



Figure 3. Characterization and Differentiation of Oct4-Induced TKO iPSCs

(A) Micrographs representing phase contrast, NANOG (green), and SSEA-1 (red) immunofluorescence staining images of Oct4-induced TKO iPSC clone 11

(Oct4-TKO-iPSC-11). Nuclei were counterstained with DAPI (blue).

(B) NANOG and SSEA-1 immunofluorescence staining of individual Oct4-induced TKO iPSC clone 1 (Oct4-TKO-iPSC-1). Nuclei were counterstained with

DAPI (blue).

(C) Exogenous and endogenous levels of the indicated ESC marker mRNAs were monitored in four independent Oct4-TKO-iPSC clones by sqRT-PCR.

(D–H) Differentiation of Oct4-TKO-iPSC-1- and Oct4-TKO-iPSC-3-derived embryoid bodies into adipocytes (D), blood vessels (E), and functional neurons (F–H).

Oil-Red O staining of adipocytes (Di). Phase-contrast image of blood vessels (Ei). Regionsmarked with white squares in (Di) and (Ei) are magnified 103 in (Dii) and

(Eii). Immunofluorescence staining of platelet endothelial cell adhesion molecule (PECAM-1, green), and DAPI staining of nuclei (blue) of blood vessels (Eii).

(F) Micrographs represent phase-contrast image (i), microtubule-associated protein 2 (MAP2) immunofluorescence staining (green, ii), nuclear staining with DAPI

(blue; iii), and overlay of MAP2 and DAPI staining (iv).

(G) Neuron-specific class III b-tubulin immunofluorescence staining with anti-TUJ1.

(H) Whole-cell current clamp recordings from neurons derived from Oct4-TKO-iPSC-3. Traces show representative recordings from cells generating action

potentials in response to step depolarization elicited by current injection (n = 10). Membrane potential was current clamped at around �65 mV. The scale bar

applies to all traces. Phase contrast image of Oct4-TKO-iPSC-derived neurons with patch electrode is displayed on right top corner.

See also Figure S3.
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polysomes (Figure S2D), thereby indicating that the observed in-

crease in NANOG protein in Oct4-expressing TKO MEFs was

mediated through the induction of Nanog transcription (Fig-

ure S5F) rather than by the stimulation of Nanog mRNA transla-

tion. Intriguingly, although forced expression of Oct4 failed to

stimulate the translation of Klf4 mRNA in a 4E-BP-dependent
manner (Figures 5C and S5B), it resulted in a strong induction

of Klf4 mRNA and protein expression in both the p53KO and

TKO cells (Figures 5D and 5E). However, the upregulation of

Klf4 expression was not sufficient to reprogram Oct4-infected

p53KO MEFs, indicating that increased translation of Sox2 and

Myc mRNAs plays a crucial role in the induction of pluripotency
Cell Stem Cell 14, 606–616, May 1, 2014 ª2014 Elsevier Inc. 611



Figure 4. Oct4-Induced TKO iPSC Clones

Are Pluripotent and Contribute to Chimeric

Mouse Offspring

(A) Teratoma formation assay with two indepen-

dent Oct4-induced TKO-iPSC clones (Oct4-TKO-

iPSC clones 1 and 3). TKO MEFs were used as

negative control in the teratoma formation assay.

(B) Hematoxylin and eosin staining of a teratoma (i)

derived from Oct4-TKO-iPSC-1. Sections from

a Oct4-TKO-iPSC-1-derived teratoma represent

all three embryonic germ-layer tissues namely

ectoderm (epidermis, ii), mesoderm (bone, iii;

adipose tissue, iv; and muscle, v), and endoderm

(gut-like tissue, vi).

(C) sqRT-PCR analysis ofMap2 (neuroectodermal

lineage marker), Brachyury (mesodermal lineage

marker), or Gata6 (endodermal lineage marker)

mRNA levels in MEFs, ESCs, Oct4-TKO-iPSC

clones 1 and 3, and teratomas and EBs derived

from Oct4-TKO-iPSC clones 1 and 3 or ESCs.

b-actin mRNA served as a loading control.

(D) Fluorescence imaging of eGFP in chimeras of

prenatal embryos (E14.5, i) and neonates (24 hr

old, ii) and the bright-field images of coat color

appearance (iii) in the adult chimeras, where all were generated by injection of Oct4-TKO-iPSC-11 into mouse blastocysts. The level of chimeric contribution in

(ii, from left to right) ranges from a sparsely mosaic chimera to an extensively mosaic chimera and a nonchimeric control.

See also Figure S4 and Table S1.
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in the TKOMEFs. Notably, similar to the TKOMEFs, overexpres-

sion of Oct4 alone is sufficient to reprogram neural stem cells,

which exhibit high endogenous expression of SOX2 and MYC

proteins (Kim et al., 2009b, 2009c). Altogether, these results sup-

port a model whereby Oct4-induced reprogramming of TKO

MEFs requires optimal orchestration of reprogramming factor

expression via 4E-BP-dependent (Myc and Sox2) and indepen-

dent (Klf4) mechanisms to engender a favorable stoichiometry

of the reprogramming factors (Carey et al., 2011).

DISCUSSION

A large body of evidence shows that transcriptional and epige-

netic mechanisms govern the generation of iPSCs (Gifford and

Meissner, 2012; Jaenisch and Young, 2008). The incorporation

of a 50 guanine cap analog (an antireverse diguanosine cap

analog) and a strong translational initiation signal into synthetic

mRNAs encoding reprogramming factors significantly enhanced

mRNA stability and translation efficiency (Warren et al., 2010).

Repeated transfection of the modified mRNAs dramatically

increased iPSC generation, suggesting that translational control

plays an important role in somatic cell reprogramming (Warren

et al., 2010). In addition, several studies demonstrated that the

administration of ESC-specific microRNAs could substitute for

some of the reprogramming factors and enhance iPSC genera-

tion (Judson et al., 2009; Subramanyam et al., 2011). microRNAs

are small noncoding RNAs that posttranscriptionally repress

their target genes through mRNA degradation or translational

repression (Fabian et al., 2010). These studies suggest that the

balance between the translation of the reprogramming-stimula-

tory and -inhibitory factors plays an important role in effecting the

outcome of reprogramming.

Herein, we documented a layer of regulation via 4E-BP-medi-

ated translational control of the mRNAs encoding p21, SOX2,
612 Cell Stem Cell 14, 606–616, May 1, 2014 ª2014 Elsevier Inc.
andMYC.We have not examined the contribution of other trans-

lational control mechanisms, such as S6Ks or eIF2a, in the regu-

lation of somatic cell reprogramming. Our data demonstrate that

forced expression of reprogramming factors represses eIF4E-

dependent translation through the dephosphorylation of 4E-

BPs. Consistent with this finding, a previous study showed that

4E-BP1 acts as a molecular switch during ESC differentiation

(Sampath et al., 2008). Whereas undifferentiated ESCs maintain

4E-BP1 in a hypophosphorylated and active state, differentiation

induces 4E-BP1 phosphorylation and promotes the translation

of differentiation-inducing mRNAs. This finding is reminiscent

of a transcriptionally poised state of the developmental genes

in ESCs, which repress the transcription of differentiation-

inducing genes (Bernstein et al., 2006). The genome-wide cross-

talk between transcription and translation during reprogramming

and differentiation remains to be examined (Lu et al., 2009).

Our results also reveal a functional interplay between 4E-BPs

and the p53-p21 pathway, which affects the synchronization of

the transcriptional and translational programs and is essential

for reprogramming (Figure 5F). Accordingly, cells divide more

rapidly at a smaller size than that of fibroblasts during early

stages of reprogramming (Smith et al., 2010). This apparent

loss of the cell-size checkpoint control in reprogramming cells

parallels the ability of the TKO MEFs to attain constant prolifera-

tion rates independent of their size (Dowling et al., 2010). It is

noteworthy that the better reprogramming of the TKO MEFs is

not due to higher proliferation rates, given that p53KOMEFs pro-

liferate at the same rate as the TKO MEFs (Dowling et al., 2010).

These findings demonstrate that a combined loss of 4E-BPs and

p53 expression may alleviate the restraining effects of cell-sizing

mechanisms during reprogramming.

4E-BPs play a bimodal role during reprogramming. In WT

MEFs, forced expression of reprogramming factors overcomes

the inhibitory effect of 4E-BPs on Sox2 and Myc mRNA



Figure 5. Increased Translation of Sox2

and Myc mRNAs and Downregulated p21

Expression Correlate with High Reprog-

rammability of TKO MEFs

(A) p53KO and TKO MEFs were infected with GFP

or OSKM expression lentivectors. At day 7 after

infection, cell extracts were subjected to m7GDP

pull-down. Levels of the indicated proteins in the

input (10%) or pull-down (25%) samples were

determined by western blotting. b-actin served as

a loading control (input) and to exclude nonspe-

cific binding (m7GDP pull-down).

(B) Absorption profiles of ribosomes from p53KO

and TKO MEFs 12 days after infection with

Oct4 expressing lentivector. 40S and 60S denote

the corresponding ribosomal subunits. 80S,

monosome.

(C) Polysomal distributions of Sox2, Myc, Klf4,

Gapdh, and b-actin mRNAs in cells described in

(B) were determined by sqRT-PCR.

(D) Expression of the indicated proteins in cells

described in (B) was monitored by western blot-

ting. WT MEF lysates (control) and b-actin served

as a positive and loading control, respectively.

(E) Levels of the indicated mRNAs from cells

described in (B) were monitored by qRT-PCR.

Values were normalized to b-actin mRNA and

presented in arbitrary units. Results are presented

as mean ± SD (n = 3).

(F) Model showing the link between p53/p21

pathway and 4E-BP-dependent translational

control in factor-induced reprogramming.

See also Figure S5.
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translation, whereas endogenous p21 mRNA translation is sup-

pressed. The 4E-BP DKO cells, in which the translation of p21

mRNA is not repressed, are resistant to reprogramming. In

TKOMEFs, a combination of downregulated p21mRNA expres-

sion and increased translation of the Sox2 and Myc mRNAs

caused by the loss of p53 and 4E-BPs, respectively, results in

increased reprogramming efficiency. In this regard, overexpres-

sion of Cyclin D1, a well-established target of eIF4E (Rosenwald

et al., 1993), enhances somatic cell reprogramming (Tanabe

et al., 2013). Interestingly, Cyclin D1 overexpression synergizes

with p53 suppression to promote human iPSC generation (Edel

et al., 2010; Tanabe et al., 2013). This finding suggests that, in

addition to Myc and Sox2, other eIF4E-sensitive mRNAs

contribute to the enhanced reprogramming efficiency of TKO

MEFs. Genome-wide translatome analysis is required to identify

these additional targets.

The current methods for iPSC generation are based on the

forced expression of exogenous reprogramming factors via

various methods, including viral infection, plasmid transfection,

transposition systems, and the delivery of mRNAs, recombinant

proteins, or small molecules (Anokye-Danso et al., 2011; Han

et al., 2012; Hou et al., 2013; Kim et al., 2009a; Okita et al.,

2008; Stadtfeld et al., 2008; Warren et al., 2010; Zhou et al.,

2009). Our findings raise the possibility that targeted manipula-

tion of translation of mRNAs encoding factors that govern plurip-

otency could be considered in devising more efficient protocols
for the production of iPSCs. Follow-up studies are required in

order to examine the effects of eIF4E-dependent translation

on human somatic cell reprogramming and develop clinically

compatible iPSCs for prospective therapeutic applications.

EXPERIMENTAL PROCEDURES

The Animal Ethics Committee of the McGill University approved all the animal

procedures.

Polysome Fractionation Analysis, RNA Isolation, and RT-PCR

For polysome analysis, MEFs were infected with lentiviruses expressing

OSKM (only Oct4 in Figures 5B and 5C) or GFP and cultured in two 15 cm

dishes for 12 days. Then, 100 mg/ml cycloheximide was added to the media,

and MEFs were washed twice with ice-cold PBS containing 100 mg/ml cyclo-

heximide, collected by scrapping, and lysed in a hypotonic lysis buffer (5 mM

Tris-HCl [pH 7.5], 2.5 mMMgCl2, 1.5 mMKCl, 100 mg/ml cycloheximide, 2 mM

dithiothreitol [DTT], 0.5% Triton X-100, and 0.5% sodium deoxycholate).

Lysates were loaded onto buffered 10%–50% sucrose density gradients

(20 mMHEPES-KOH [pH 7.6], 100 mM KCl, and 5 mMMgCl2) and centrifuged

at 36,000 rpm for 2 hr at 4�C in an SW41 rotor (Beckman Coulter). Gradients

were fractionated, and optical density at 254 nm was continuously recorded

with a FOXO JR Fractionator (Teledyne Isco). RNA from each fraction was iso-

lated with Trizol reagent (Invitrogen) according to the manufacturer’s instruc-

tions. RT-PCR reactions were carried out with Expand Reverse Transcriptase

(Roche) for complementary DNA synthesis and TaqDNAPolymerase (Fermen-

tas) according to the manufacturer’s instructions. The primers used for each

transcript are listed in the Supplemental Experimental Procedures. To ensure

that the reactions were in the linear (quantifiable) range, RT-PCR assays were
Cell Stem Cell 14, 606–616, May 1, 2014 ª2014 Elsevier Inc. 613
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performed under the same conditions with a serial dilution of RNA isolated

from WT MEFs (Figure S5E). Quantitative RT-PCR was performed with

23 SYBR Green Master Mix (Applied Biosystems) and PCR Mastercycler

(Eppendorf).

Cap Pull-Down Assay

MEFs were seeded in two 10 cm plates and infected with OSKM or GFP. Cells

were washed with ice-cold PBS, collected by scrapping, and lysed in buffer A

(50 mMMOPS/KOH [pH 7.4], 100mMNaCl, 50 mMNaF, 1 mMNa3VO4, 2 mM

EDTA, 2 mM EGTA, 1% NP40, 1% Na-deoxycholate, 7 mM b-mercaptoetha-

nol, and EDTA-free protease inhibitor cocktail from Roche) 7 days postinfec-

tion. Lysates were precleared by centrifugation (12,0003 g for 10 min), diluted

to 0.5 mg/ml with buffer B (50 mMMOPS/KOH [pH 7.4], 100 mMNaCl, 50 mM

NaF, 1 mM Na3VO4, 0.5 mM EDTA, 0.5 mM EGTA, 7 mM b-mercaptoethanol,

0.1 mMGDP, and EDTA-free protease inhibitor cocktail from Roche) and incu-

batedwithm7GDP-agarosebeads (homemade) for 20min at 4�C. After incuba-
tion, beadswere washed three timeswith buffer B, elutedwith 0.2mMm7GDP,

resuspended in SDS-PAGE loading buffer, and analyzed by western blotting.

Virus Generation and Infections

Lentiviruses expressing reprogramming factors were produced in human

embryonic kidney (HEK) 293FT cells by cotransfection of the helper constructs

(psPAX2 and pMD2.G) with pLOVE-Klf4, pLOVE-N-myc, pSin-EF2-Sox2-Pur,

or pSin-EF2-Oct4-Pur (Blelloch et al., 2007; Yu et al., 2007). pLOVE-GFP was

used as a control (plasmid 15949, Addgene). Retroviral infections with pBABE-

HA-(WT) 4E-BP1 or D4E-BP mutant were carried out as described previously

(Rong et al., 2008). pLKO-4E-BP1 and 4E-BP2 small hairpin RNAs (shRNAs)

were purchased from Sigma-Aldrich (TRCN0000075612 [shBP1] and

TRCN0000075614 [shBP2]). Lentivirus generation and infection were carried

out as described previously (Dowling et al., 2010). The generation of adenovi-

ruses expressing GFP and p53 and infection conditions has been described

previously (Petroulakis et al., 2009). Addgene plasmid 24129 (pUltra) was

used for eGFP labeling of Oct4-TKO-iPSCs. The lentiviral supernatant was

prepared by cotransfection of pUltra, pCMV-d8.91, and pMD2.G into

HEK293T cells (Dogan et al., 2010) and transduced into the Oct4-TKO-iPSCs

(passage 3).

MEF-to-iPSC Reprogramming

Mouse iPSCs were generated as described previously (Blelloch et al., 2007).

MEFs were seeded into 12-well tissue culture dishes at 4 3 104 cells per well

and incubated with a virus mixture in presence of 8 mg/ml of polybrene for

48 hr. Mouse ESC medium (Dulbecco’s modified Eagle’s medium [Invitrogen],

1%nonessential aminoacids [Invitrogen, 1003 stock], 1%GlutaMAX-1 [Invitro-

gen, 1003 stock], 1% sodium pyruvate [1003 stock from Invitrogen], 0.1 mM

b-mercaptoethanol, 15% fetal bovine serum, 1,000 U mouse LIF/ml [ESGRO,

Millipore], penicillin [50 mg/ml], and streptomycin [50 mg/ml]) was used to main-

tain the cells after infection. Medium was changed every second day. For

alkaline phosphatase staining, an alkaline phosphatase detection kit (Millipore)

was used according to the manufacturer’s instruction. Data are presented as

mean ± SD. Paired Student’s t tests were performed to calculate p value.

Electrophysiology Studies

iPSC-derived neurons were flooded with HEPES-buffered saline containing

140 mM NaCl, 3 mM KCl, 1 mM MgCl2, 10 mM HEPES, 1 mM CaCl2, and

10 mM glucose. Neurons were patch clamped with glass pipettes (1.2 mM

outer diameter glass, A-M Systems) containing a solution comprising

120 mM K-gluconate, 10 mM HEPES, 1 mM MgCl2, 4 mM Na-ATP, and

10 mM EGTA (pH 7.1) adjusted with KOH. Whole-cell recordings were per-

formed with an Axopatch-1D Patch Clamp Amplifier (Molecular Devices) and

digitized (10 kHz) via a Digidata 1200B interface coupled to a computer running

Clampex 8 (Molecular Devices). Membrane potentials were kept around �60

to �70 mV, and step currents were injected to elicit action potential.

SUPPLEMENTAL INFORMATION

Supplemental Information contains Supplemental Experimental Procedures,

five figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.stem.2014.02.005.
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