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Abstract 

TOPSIS is a multicriteria decision making technique based on the minimization of geometric distances that allows the 
ordering of compared alternatives in accordance with their distances from the ideal and anti-ideal solutions. The technique, 
that usually measures distances in the Euclidean norm, implicitly supposes that the contemplated attributes are independent. 
However, as this rarely occurs in practice, it is necessary to adapt the technique to the new situation. Using the Mahalanobis 
distance to incorporate the correlations among the attributes, this paper proposes a TOPSIS extension that captures the 
dependencies among them, but, in contrast to the Euclidean distance, does not require the normalization of the data. Results 
obtained by the new proposal have been compared by means of the three Minkowski norms most commonly employed for 
the calculation of distance: (i) the Manhattan distance (p=1); (ii) the Euclidean distance (p=2); and (iii) the Tchebycheff  
distance (p= ). Furthermore, simulation techniques are used to analyse the connection between the TOPSIS results 
traditionally obtained with the Euclidean distance and those obtained with the Mahalanobis distance.  
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1. Introduction 

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) is one of the most commonly 
utilized multicriteria techniques for ordering a discreet group of alternatives and selecting the best of them1. 
Implicit in the initial TOPSIS proposal is the consideration that the attributes contemplated for ordering 
alternatives are independent. Unfortunately, this rarely occurs in the real-life cases to which the technique is 
applied. The majority of published scientific works concerning TOPSIS do not explicitly deal with problems 
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derived from dependence among the attributes2. As can be seen in Section 4 of this work, failure to take the 
question of dependence into account has a decisive influence on results obtained.  

After analysing the relevant problems, TOPSIS is adapted to the consideration of dependent attributes by 
means of the reformulation of a proposal put forward by Hwang and Yoon3. Two original modifications are 
advanced: (i) a new measurement of ideal and anti-ideal distances, based on the Mahalanobis distance4, that 
captures the correlation between the attributes and eliminates the common problem of data normalization; (ii) a 
new method for synthesizing the contribution of the two distances in the final ordering that allows the 
consideration of both aspects without the problems associated with a quotient (this latter issue will be dealt 
with in a future work).  

The proposal for the incorporation of the dependent attributes has been denominated as TOPSIS-M 
(Mahalanobis distance). It has been applied to a case taken from the published literature and the results are 
compared with results obtained with traditional TOPSIS, which uses the Euclidean distance.  

The structure of the remainder of this paper is as follows: Section 2 outlines the theoretical foundation of the 
new proposal, that is to say, multicriteria decision making techniques, and a synthesis of the techniques used 
for the minimization of distances as a methodological support; Section 3 describes the new proposal, based on 
the Mahalanobis distance; Section 4 applies the proposal to a numerical example taken from the published 
literature and compares the results with the traditional approach; Section 5 briefly details the most important 
conclusions of the work and indicates future lines of research.  

2. Background 

2.1. Multicriteria decision making techniques 

Multicriteria Decision Making can be understood as a series of models, methods and techniques that allow a 
more effective and realistic solution to complex problems that contemplate multiple scenarios, actors and 
(tangible and intangible) criteria5. A variety of multicriteria decision approaches are mentioned in the scientific 
literature:   

(a) Techniques based on the flow of information between the two most important actors in the decision 
making process6: the decision maker and the analyst. These are further classified as: (i) techniques without a
priori information on the preferences of the decision maker; (ii) techniques with a priori information; (iii) 
Interactive techniques.  

(b) Techniques based on whether the set of alternatives is continuous or discreet, often known as Multi-
objective (continuous) Programming and Multi-attribute (discrete) Programming.  

(c) Techniques based on the different approaches or schools considered for solving multicriteria problems, 
the most common are: (i) the generation of efficient solutions (without a priori information); (ii) the 
minimization of the distance to a point of reference – the ideal, in the case of Compromise Programming, and 
the goal, in the case of Goal Programming (with a priori information); (iii) the construction of a value function 
(the American school), either using direct aggregation procedures (Multi-attribute Utility Theory - MAUT) or 
hierarchical aggregation (Analytical Hierarchy Process - AHP); (iv) methods using binary order relationships 
(the European school), for example, ELECTRE and PROMETHEE. 

Despite the diversity of the techniques and the many arguments and discussions that have taken place 
regarding the different schools and approaches, there is no general agreement that a particular technique is 
superior to the others7. Moreover, in the last decade, debates between the different schools have been replaced 
by attempts to take advantage of the best elements of each approach with the aim of developing the most 
effective technique. 
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2.2. Multicriteria techniques based on distance minimization  

The original and most utilized multicriteria technique based on distance minimization is Compromise 
Programming8. This technique, with a priori information about the decision maker’s preferences (norms and 
weights), works simultaneously with all the criteria and seeks solution  that minimizes the distance to the 
ideal point.  

Let (1) be a multi-objective optimization problem where, without losing generality, it is supposed that all the 
q contemplated criteria are maximized:  

  (1)

The compromise solution  is obtained by resolving the optimization problem that minimizes the 
distance to the ideal point or vector , where that distance is usually given by a 
Minkowski distance expression:  

 (2)

Given that  and  is the norm considered for distance
,  > 0 is the weight of  criterion and  is the ideal vector ideal where each component  of 

the vector is the individualized optimum of the  criteria ,  we have: 

  (3)

When p , the expression of the Minkowski distance is known as the Tchebycheff distance; in this case 
(2) it is:  

 (4)

For reasons of operational functionality, the most commonly used Minkowski norms are: p=1 (Manhattan 
distance), p=2 (Euclidean distance) and p=  (Tchebycheff distance). In the first case, the optimization problem 
is lineal, in the second it is quadratic and in the third case, the model can be easily transformed to lineal.  

Other well-known multicriteria techniques based on minimization of distance which have been widely used 
in discrete multicriteria decision making are: Goal Programming9, VIKOR10 and TOPSIS. 

3. Dependent and independent attributes in TOPSIS 

TOPSIS is based on the supposition that the contemplated attributes are independent11,12. Unfortunately, this 
is rarely occurs in the real-life cases to which the technique is applied.  

3.1. The traditional TOPSIS approach 

Given a discrete multicriteria decision problem which considers m alternatives  
evaluated using  criteria  traditional TOPSIS contemplates each alternative or object as a 
point or vector of space  and the calculation of the Euclidean distance between the normalized 
distributive mode data is  based on the initial alternatives ( ) and those of  two special alternatives: the ideal 
( ) and the anti-ideal ( ), on the understanding that the best alternatives are those which are closest to the 
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ideal and furthest from the anti-ideal3,13,14. To apply this technique, the attribute values should be numeric and 
have commensurable units. 

As can be noted in the table of effects related with the problem (Table 1), the value associated with 
alternative  for the attribute or criterion  is denoted as , whilst  is the weight or importance of the 

 criterion. 

Table 1. TOPSIS decision matrix 

w1 w2 … wj wn

C1 C2 … Cj … Cn

A1 x11 x12 … x1j … x1n 

… … … … … … … 

Ai xi1 xi2 … xij … xin 

… … … … … … … 

Am xm1 xm2 … xmj … xmn 

 
The procedure is better described in the following steps, as suggested by Hwang and Yoon3 in their original 

proposal (traditional TOPSIS): 

Step 1. Calculate the normalized decision matrix 

As TOPSIS allows the evaluated criteria to be expressed in different measurement units, it is necessary to 
convert them into normalized values. The normalization process, like the metric used to calculate the ideal and 
anti-ideal distances, is Euclidean. In this case, the normalization of element  of the decision matrix 
(Euclidean normalization mode) is calculated as:  

  (5)

Step 2. Calculate the weighted normalized decision matrix 

The weighted normalized value ij of a weighted normalized decision matrix is calculated as: 

  (6)

Where  represents the weight or importance of the  attribute, given that . The 
weights are usually obtained8 from different modes: direct assignation, AHP, etc. 

Step 3. Determine the “positive ideal” and “negative ideal” alternatives 

Without losing generality and supposing that all the criteria are maximized, the ideal positive solution is 
given by , where  and the ideal negative or anti-ideal 
solution is given by , where .

Step 4. Calculate the distances 
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The separation of each alternative  from the ideal solution  is calculated as:  

  (7)

The separation of each alternative  from the ant-ideal solution  is calculated as: 

  (8)

Step 5. Calculate the relative proximity to the ideal solution 

The relative proximity of  with regards to   is given by  and can be expressed as: 

  (9)

where  is the best while it is most proximate to 0 (0  1). 

Step 6. Preference order 

Finally,  is used to order the alternatives; the greater the proximity the value of is to 0, the greater is its 
proximity to the ideal and, therefore, it has a higher priority than the  alternative. 

3.2 TOPSIS-M and dependent attributes. 

As previously mentioned, the traditional TOPSIS approach does not consider the dependency between the 
attributes. This means that the calculation of distance using a Minkowski metric incorporates redundant 
information. A possible solution to this problem is to use the Mahalanobis distance15,16 that determines the 
similarity between two multi-dimensional random variables as well as considering the existent correlation 
between them (  is required to obtain ). The Mahalanobis distance between two random variables 
with the same  and  probability distribution and with  variance-covariance matrix is formally defined as: 

  (10)

where: 

  (11)

X is the data matrix with m objects in rows by n columns,  is the centered matrix, , and  the 
arithmetic mean. 

This distance coincides with the Euclidean distance if the covariance matrix is the identity matrix, i.e. if all 
bivariate correlations between variables are zero. This statement is easily verified by applying both measures to 
a data matrix that has independent columns. An example is the matrix data that appear in Table 3, where the 
data are derived from the application of a principal component analysis to the example taken from the 
literature12 (“Profiles of Graduate Fellowship Applicants”). 
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Table 2. Results obtained by Principal Component Analysis 

Alternatives F1 F2 F3 F4 F5 

A1 1,0151 -0,8463 0,001 1,4672 0,5175 

A2 -0,8201 1,5214 -0,0746 1,0127 -0,3852

A3 -0,2968 0,0543 -1,385 -0,7713 1,25 

A4 -0,5684 -1,0871 -0,5394 -0,2665 -1,5165

A5 1,4887 0,7791 0,3708 -0,962 -0,5298

A6 -0,8185 -0,4214 1,6272 -0,4801 0,664 

Table 3.  for traditional TOPSIS and TOPSIS-M 

  TOPSIS TOPSIS-M 

   Rank  Rank 

A1 0,4335 1 0,4335 1 

A2 0,4738 2 0,4738 2 

A3 0,5915 5 0,5915 5 

A4 0,8206 6 0,8206 6 

A5 0,4826 3 0,4826 3 

A6 0,4885 4 0,4885 4 

 
The values of  (measured with both Euclidean and Mahalanobis distances), and the rankings obtained, are 

shown in Table 3. It is clear that the preference order is the same because the attributes are independent and the 
correlation matrix is an identity matrix; in addition, the  indexes are also the same.  

4. Numerical example 

This section compares the procedure and results obtained by traditional TOPSIS and TOPSIS-M using the 
variants described above. A numerical example was taken from the literature and the relative proximity of  to 
each  with respect to  and  was calculated as follows: (i) the data were normalized; (ii) results were 
compared using Minkowski metric distances; (iii) results were compared using the Mahalanobis distance. 

4.1 Example: TOPSIS and TOPSIS-M  

The example ("Profiles of Graduate Fellowship Applicants") is a problem in which six alternatives are 
evaluated with respect to five criteria12. The data are shown in Table 4. 

Table 5 shows the relative proximity  calculated with the Manhattan distance (MD), using a variety of 
normalization modes (the distributive mode-DM; the Euclidean mode-EM; the ideal mode-IM; the utility 
mode-UM); the statistical standardization mode-SS; non-normalized data-NN) and the ranking of the 
alternatives (Rank).  
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Table 4. Data for “Profiles of Graduate Fellowship Applicants” 

Alternatives C1 C2 C3 C4 C5

A1 690 3.1 9 7 4 

A2 590 3.9 7 6 10 

A3 600 3.6 8 8 7 

A4 620 3.8 7 10 6 

A5 700 2.8 10 4 6 

A6 650 4 6 9 8 

Table 5.  for the Manhattan distance with various normalization modes (DM, EM, IM, UM, EE, NN) 

Alternatives DM Rank EM Rank IM Rank UM Rank SS Rank NN Rank 

A1 0,6200 5 0,6178 5 0,6024 5 0,5182 5 0,5332 5 0,1643 2 

A2 0,4151 2 0,4166 2 0,4288 3 0,5000 3 0,4866 3 0,9206 6 

A3 0,4548 4 0,4555 4 0,4583 4 0,5152 4 0,5071 4 0,8443 5 

A4 0,4230 3 0,4239 3 0,4201 2 0,4621 2 0,4616 2 0,6855 4 

A5 0,6414 6 0,6388 6 0,6319 6 0,5333 6 0,5435 6 0,0881 1 

A6 0,3744 1 0,3757 1 0,3750 1 0,3909 1 0,3938 1 0,4481 3 
 

 
The resulting rankings for the different normalization modes are: 
A6 A2 A4 A3 A1 A5 for DM and EM  
A6 A4 A2 A3 A1 A5 for IM, UM and SS 
A5 A1 A6 A4 A3 A2 for non-normalized data 
 
The relative proximity  calculated with the Euclidean distance (ED) using normalizations DM, EM, IM, 

UM, SS and NN and the ranking for the alternatives can be seen in Table 6. 

Table 6.  for the Euclidean distance (ED) with various normalizations (DM, EM, IM, UM, EE, NN) 

  DM Rank EM† Rank IM Rank UM Rank SS Rank NN Rank 

A1 0.6321 5 0.6297 5 0.6116 5 0.5127 4 0.5335 6 0.1080 2 

A2 0.4130 2 0.4144 2 0.4295 3 0.5000 3 0.4832 3 0.9443 6 

A3 0.4382 4 0.4388 4 0.4379 4 0.5129 5 0.4998 4 0.8979 5 

A4 0.4355 3 0.4364 3 0.4280 2 0.4729 2 0.4727 2 0.7231 4 

A5 0.6340 6 0.6307 6 0.6223 6 0.5183 6 0.5299 5 0.0623 1 

A6 0.3869 1 0.3896 1 0.3944 1 0.4263 1 0.4298 1 0.4541 3 

 
The resulting rankings for the different normalization modes are: 
A6 A2 A4 A3 A1 A5 for DM and EM 
A6 A4 A2 A3 A1 A5 for IM 

 

 
† Results associated with traditional TOPSIS are in bold.
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A6 A4 A2 A1 A3 A5 for UM 
A6 A4 A2 A3 A5 A1 for SS 
A5 A1 A6 A4 A3 A2 for non-normalized data 
 
The relative proximity  calculated with the Tchebycheff distance (TD) using the normalizations DM, EM, 

IM, UM, SS and NN and the ranking for the alternatives can be seen in Table 7. 

Table 7.  for the Tchebycheff distance (TD) with various normalizations (DM, EM, IM, UM, EE, NN) 

  DM Rank EM Rank IM Rank UM Rank SS Rank NN Rank 

A1 0.6822 6 0.6820 6 0.6667 6 0.5238 5 0.5760 6 0.0909 2 

A2 0.3832 1 0.3834 1 0.4000 1 0.5000 2 0.4474 2 0.9483 6 

A3 0.4459 4 0.4457 4 0.4286 3 0.5769 6 0.5388 5 0.9091 5 

A4 0.4171 2 0.4168 2 0.4000 1 0.4286 1 0.4232 1 0.7273 4 

A5 0.6157 5 0.6109 5 0.6000 5 0.5000 2 0.5055 3 0.0517 1 

A6 0.4282 3 0.4332 3 0.4444 4 0.5000 2 0.5210 4 0.4545 3 

 
The resulting rankings for the different normalization modes are: 
A2 A4 A6 A3 A5 A1 for DM and EM 
A2 =A4 A3 A6 A5 A1 for IM 
A4 A2 =A5 =A6 A1 A3 for UM 
A4 A2 A5 A6 A3 A1 for SS 
A5 A1 A6 A4 A3 A2 for non-normalized data 
 
The relative proximity  calculated with the Mahalanobis distance (MD) using the normalizations DM, EM, 

IM, UM, SS and NN and the ranking for the alternatives can be seen in Table 8. 

Table 8.  for the Mahalanobis distance (ED) with various normalizations (DM, EM, IM, UM, EE, NN) 

  DN Or EN Or IM Or UM Or EE Or NN Or 

A1 0.4713 3 0.4713 3 0.4713 3 0.4713 3 0.4713 3 0.4713 3 

A2 0.4726 4 0.4726 4 0.4726 4 0.4726 4 0.4726 4 0.4726 4 

A3 0.4699 1 0.4699 1 0.4699 1 0.4699 1 0.4699 1 0.4699 1 

A4 0.4743 6 0.4743 6 0.4743 6 0.4743 6 0.4743 6 0.4743 6 

A5 0.4727 5 0.4727 5 0.4727 5 0.4727 5 0.4727 5 0.4727 5 

A6 0.4709 2 0.4709 2 0.4709 2 0.4709 2 0.4709 2 0.4709 2 

 
The resulting ranking for the different normalization modes is:  
A3 A6 A1 A2 A5 A4 for any normalization type and non-standardized data 

4.2 Analysis of the results 

Firstly, it can be observed that the rankings obtained using traditional TOPSIS (distance and Euclidean 
normalization) and TOPSIS-M (Mahalanobis distance and non-normalized data) are clearly different when 
there is certain dependence with regards to the data. Even in the case of attributes with close to null dependence 
(Gleason-Staelin’s  < 0.0230), traditional TOPSIS rankings and those of TOPSIS-M do not coincide. In the 
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example used in Section 4.1, the value of the indicator of the Gleason-Staelin redundancy measure (Phi) is = 
0.6736, which is higher than the 0.5 threshold considered as necessary for the contemplation of the existence of 
redundancy and dependency. This result can be verified with any of the other Minkowski distances that were 
used (Manhattan -  - or Tchebycheff -  -). If the attributes are independent, as previously mentioned, 
the values obtained with traditional TOPSIS and TOPSIS-M are exactly the same.  

Secondly, it should be noted that the data normalization mode that is followed for the Minkowski distances 
conditions the results obtained. This does not occur with the Mahalanobis distance as the results are the same if 
the initial data are normalized or not, irrespective of the type of normalization that is employed.  

If the Manhattan distance ( ) is used, the denominator of expression (9) is constant (
), so the ranking given by the measurement of relative proximity ( ) is the same as that given by the 

ideal distance ) and the anti-ideal distance ( ). 
Furthermore, it can be seen, as is well known, that the Minkowski distances diminish as the  order of the 

augmented norm increases (||.||1 ||.||2 ||.|| ). The example demonstrates that with a fixed norm order 
( , the Minkowski distances to the ideal and anti-ideal increase with the different 
normalization modes, in the following manner‡: . This 
latter result is not verified by relative proximity ( ) for the problem that presents the synthesis of the ideal and 
anti-ideal distances as a quotient.   

5. Conclusions 

TOPSIS, in its traditional form, is one of the multicriteria techniques used for decision making in the world 
of business. However, the method by which the technique is applied (considering the independence between 
the evaluated attributes), does not occur in real-life cases and it is therefore necessary to adapt it in order to 
consider dependent attributes.  

This paper suggests replacing the Euclidean distance with the Mahalanobis distance to capture the effect of 
the correlation between the attributes in construction. Despite its greater complexity, TOPSIS-M is 
recommended for calculating the distances to the ideal and the anti-ideal points when conducting evaluation 
processes in which the attributes are dependent.  

With the aim of analysing the significant differences between the rankings obtained with traditional TOPSIS 
and the new proposal (TOPSIS-M) when the attributes are dependent, a simulation study is being developed 
that will reflect the evolution of the rankings in accordance with the level of dependence (Gleason-Staelin’s ); 
the study will provide a set of rules for deciding which type of distance is the most appropriate for each 
situation. 

Another future work will present a new method for the synthesis of the two distances (ideal and anti-ideal) 
in the final arrangement that allows the combination of both aspects without the problems associated with a 
quotient. 
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