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SUMMARY

Before the onset of locomotion, the hippocampus
undergoes a transition into an activity-state special-
ized for the processing of spatially related input. This
brain-state transition is associated with increased
firing rates of CA1 pyramidal neurons and the occur-
rence of theta oscillations, which both correlate with
locomotion velocity. However, the neural circuit by
which locomotor activity is linked to hippocampal
oscillations and neuronal firing rates is unresolved.
Here we reveal a septo-hippocampal circuit medi-
ated by glutamatergic (VGluT2+) neurons that is
activated before locomotion onset and that controls
the initiation and velocity of locomotion as well as
the entrainment of theta oscillations. Moreover, via
septo-hippocampal projections onto alveus/oriens
interneurons, this circuit regulates feedforward inhi-
bition of Schaffer collateral and perforant path input
to CA1 pyramidal neurons in a locomotion-depen-
dent manner. With higher locomotion speed, the
increased activity of medial septal VGluT2 neurons
is translated into increased axo-somatic depolariza-
tion and higher firing rates of CA1 pyramidal neurons.

INTRODUCTION

During locomotion, CA1 pyramidal neurons integrate multimodal

sensory information about environmental stimuli (Andersen,

2007). At higher speed of locomotion, the integration time win-

dow in which sensory cue-related information can be associated

to a spatial position is substantially narrower than at slower

speed. However, even at high velocities, correct associations

must be made and rapid navigation has to be based on the cor-

rect retrieval of spatial associations from memory. A strategy to
compensate for such a ‘‘cue-sampling problem’’ is increasing

the neuronal sensitivity to input during locomotion, which would

result in increased firing rates and a higher probability of coinci-

dent pre- and postsynaptic firing. Indeed, it has been shown that

CA1 pyramidal neurons almost linearly increase their firing rates

with the velocity of locomotion (Czurkó et al., 1999; Ekstrom

et al., 2001; McNaughton et al., 1983). However, the mecha-

nisms underlying the increase of pyramidal neuron firing rates

that occurs with the change of the brain-state from resting to lo-

comotor activity are still obscure.

Already several hundred milliseconds before rodents engage

in locomotion, a predominant oscillation in the theta frequency

band emerges in the hippocampal field potential that can predict

the upcoming onset of locomotion (Green and Arduini, 1954;

Vanderwolf, 1969; Whishaw and Vanderwolf, 1973). Hippocam-

pal theta oscillations are continuously present during ongoing

locomotion and represent a brain-state specialized for process-

ing of spatially related input (Buzsáki, 2002; Buzsáki et al., 1983;

Vanderwolf, 1969). In addition, a correlation of theta frequency/

power with locomotion velocity has been found (McFarland

et al., 1975).

Key regulators of locomotion-related theta oscillations are the

medial septal nucleus and the diagonal band of Broca (MSDB)

(Buzsáki, 2002; Stumpf et al., 1962). Therefore, we hypothesized

that septo-hippocampal projections might be crucially involved

in the mechanisms by which CA1 pyramidal neurons increase

their firing rates during locomotion.

The three main septo-hippocampal projections are GABAergic

(Freund and Antal, 1988), cholinergic (Frotscher and Léránth,

1985), and glutamatergic (Colom et al., 2005; Köhler et al., 1984)

and almost exclusively target interneurons of the hippocampal

formation (Léránth and Frotscher, 1987; Tóth et al., 1997).

Althoughvesicularglutamate transporter 2-positiveglutamatergic

neurons (VGluT2 neurons) are an important source of synaptic

excitation within the MSDB (Huh et al., 2010; Leão et al., 2015;

Manseau et al., 2005), almost nothing is known about their func-

tion during behavior. If these glutamatergic neurons were inte-

grated into locomotor circuitry, their proposedexcitatory synaptic
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Figure 1. MSDB VGluT2 Neuronal Activity Increases before the

Onset of Voluntary Locomotion along with Hippocampal Theta

Amplitude and It Correlates with the Locomotion Velocity

(A) Recording configuration.

(B) Representative recording of MSDB VGluT2 population GCaMP5 fluores-

cence, hippocampal LFP, and velocity.

(C) Increased mean VGluT2 fluorescence during locomotion (individual mouse

data are presented in gray, n = 4 mice, mean values ± SEM).

(D) Positive correlation of GCaMP5 fluorescence slope and velocity.

(E) Mean GCaMP5 fluorescence and hippocampal theta amplitude before

locomotion onset (gray areas denote SD, n = 4 mice). A small motion artifact

(dip in fluorescence) followed the initiation of locomotion.

(F) Mean fluorescence increases in the 100 ms pre-locomotion interval

compared to baseline (n = 4 mice, mean values ± SEM).

(G) Increased hippocampal theta amplitude before locomotion onset (n = 4

mice, mean values ± SEM).

Also see Figure S1.
transmission onto other medial septal cell types could contribute

to the initiationof thetaoscillations,while their septo-hippocampal

projections onto CA1 interneurons could allow for modulation of

hippocampal microcircuits in a locomotion-dependent manner.
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Thus, MSDB VGluT2 neurons may represent a missing mecha-

nistic link coupling neuronal firing rates and theta oscillations to

movement velocity.

Here, we cell-type specifically monitored the Ca2+ activity of

MSDB VGluT2 neurons during locomotion and optogenetically

stimulated these neurons during single-cell whole-cell patch-

clamp and population two-photon imaging of CA1 pyramidal

neurons in awake head-fixed mice. We found locomotion-corre-

lated activity of both MSDB VGluT2 neurons and CA1 pyramidal

neurons. Combining mono-transsynaptic retrograde tracing and

brain slice electrophysiology, our findings reveal a disinhibitory

mechanism that facilitates the synaptic integration of Schaffer

collateral and perforant path input by CA1 pyramidal neurons

during the brain-state transition from resting to locomotion.

Locomotion-related firing of VGluT2 septo-hippocampal pro-

jections resulted in alveus/oriens (A/O) interneuron-mediated

suppression of Schaffer collateral and perforant path feedfor-

ward inhibition already before locomotion onset. Through this

mechanism, the velocity-dependent activity of MSDB VGluT2

neurons is translated into increased axo-somatic depolarization

and higher firing rates of hippocampal CA1 pyramidal neurons

during locomotion.

Moreover, we provide in vivo evidence for a key role of MSDB

VGluT2 neurons in the pre-motor control of locomotion. Firing of

MSDB VGluT2 not only resulted in reliable initiation of locomo-

tion, but the firing rate and number of activated VGluT2 neurons

directly controlled the speed and the duration of locomotion. The

pre-motor activity ofMSDBVGluT2 neurons predicted the speed

and delay to onset of the upcoming movement. In parallel, the

pre-motor activation of MSDB VGluT2 neurons led to reliable

entrainment of hippocampal theta oscillations before locomotion

onset. Thus, the firing of MSDB VGLuT2 neurons actively initi-

ated the brain-state transition from resting to locomotion. It

mechanistically linked locomotion with theta oscillations and

the speed-related regulation of hippocampal CA1 pyramidal

neuron firing rates.

RESULTS

MSDB VGluT2 Neurons Are Active before and during
Locomotion
We performed fluorometric monitoring of the population activity

of MSDB VGluT2 neurons in head-fixedmice on a linear treadmill

using cre-recombinase-dependent cell-type-specific expres-

sion of the genetically encoded Ca2+ indicator GCaMP5 (Fig-

ure 1A; Experimental Procedures). We simultaneously recorded

the locomotion velocity, the local CA1 hippocampal field poten-

tials, and MSDB-VGluT2-GCaMP5 fluorescence (Figure 1B).

Locomotion-related theta oscillations with an average frequency

of 7.04 Hz could be reliably observed in area CA1 (Figure 1B and

Figures S1C–S1E). We found that the mean DF/F0 recorded in

MSDB VGluT2 neurons was significantly higher during locomo-

tion than during resting phases, indicating a locomotion-depen-

dent regulation of the VGluT2 neuronal activity (Figure 1C).

Furthermore, the slope of the rising phase of the GCaMP5 fluo-

rescence positively correlated with the velocity of locomotion,

indicating higher MSDB VGluT2 activity at higher velocities (Fig-

ure 1D). The increase of fluorescence preceded the onset of



locomotion by several hundred milliseconds, suggesting that

VGluT2 neurons were recruited during the movement initiation

process (Figures 1E and 1F). Likewise, the onset of locomo-

tion-related theta oscillations occurred prior to movement onset

(Figures 1E and 1G).

Firing of MSDB VGluT2 Neurons Actively Controls the
Speed and Onset of Locomotion and Entrains
Hippocampal Theta Oscillations
The majority of medial septal neurons displays theta-burst firing

patterns during locomotion (King et al., 1998). To understand

the role of MSDB-VGluT2 neurons during the initiation of loco-

motion and theta oscillations, we performed cell-type-specific

stimulation of MSDB-VGluT2 ChR2-expressing neurons via the

implanted light fiber at frequencies covering the theta range

(from 3 Hz to 12 Hz; Figure S2; Experimental Procedures). The

stimulation of MSDB VGluT2 neurons resulted in the initiation

of stimulus-locked theta field potential oscillations in CA1 (Fig-

ure 2A). These induced hippocampal oscillations almost exactly

mirrored the stimulation frequency of MSDB-VGluT2 ChR2-ex-

pressing neurons (Figure 2B). In addition, all mice initiated and

maintained locomotion during VGluT2-ChR2 theta stimulation

(Figure 2C). No changes in either LFP or locomotion properties

were observedwith 561 nm stimulation (Figure S2J). The charac-

teristics of induced locomotion depended on the frequency of

VGluT2-ChR2 neuron firing. The maximal running velocity

increased with higher firing frequencies, while the time to loco-

motion onset showed a negative dependence on the frequency

of firing (Figures 2D and 2E; Movie S1). Furthermore, we found

that increasing the number of action potentials per burst and

the total number of recruited VGluT2 neurons both augmented

the reliability of locomotion initiation and the maximal velocity,

while the delay to locomotion initiation decreased (Figures S2E

and S2F). Reducing the stimulation frequency during ongoing

9 Hz-stimulated locomotion (to 6 Hz) resulted in a respective

reduction of locomotion velocity, which returned to initial values

when the frequency was returned to 9 Hz (Figure 2F).

It has been suggested that changes of theta frequency and po-

wer can predict subsequent behavioral changes (Vanderwolf,

1969; Wyble et al., 2004). We found that even brief sub-second

episodes of MSDB-VGluT2/ChR2-firing were sufficient to initiate

locomotion (Figure S2G). These brief stimulations led to entrain-

ment of locomotion-related theta oscillations, which persisted

even in the absence of stimulation and were continuously pre-

sent during the time lag between the end of stimulation and

the successful movement initiation (Figures 2G–2I). When we

locally applied NBQX/D-AP5 within the MSDB to block glutama-

tergic transmission (Experimental Procedures; Figure S2H), we

observed a pronounced reduction of the theta amplitude (by

30%–57%, see Figure 2J and Figure S2I). Thus, VGluT2-medi-

ated excitation of other (synaptically connected) medial septal

cell populations contributed predominantly to CA1 theta field os-

cillations. This finding was not unexpected, since a role of MSDB

GABAergic neurons in the pacing of theta oscillations has been

found (Freund and Antal, 1988; Hangya et al., 2009). However,

in the presence of NBQX/D-AP5 not only the correlation between

theta frequency and locomotion velocity that we had observed in

the unstimulated intervals was lost (Figures 2K and 2L), but also
the effects of VGluT2 neurons on locomotion and theta oscilla-

tions were effectively decoupled, because during the blockade

of theta oscillations by NBQX/D-AP5, we still observed reliable

initiation of locomotion. (Figure S2I). Thus, we concluded that

MSDB VGluT2 neurons were indeed the main effector cells of

locomotion and played a key role in the initiation of hippocampal

theta oscillations, which were transmitted to the hippocampus

by the concerted action of VGluT2+ and other MSDB cell types.

Integration of MSDB VGluT2 Neurons into Locomotor
Circuitry
Stimulation-induced initiation of locomotion, theta oscillations,

or both has been described for several diencephalic (posterior

hypothalamus, supramammillary nucleus) and mesencephalic

(pontine) locomotor regions (Bland and Oddie, 2001). To probe

whether some of these regions selectively project onto MSDB

VGluT2 neurons, we performedmodified rabies virus-dependent

retrograde mono-transsynaptic tracing. Our data are consistent

with monosynaptic input neurons in several hypothalamic

subregions and the median raphe nuclei (Table 1; Figures

S6A–S6H). Immunohistochemical detection of eYFP-containing

MSDB VGluT2 efferent projections was consistent with a high

density of axons in the ventral tegmental area (VTA), median

raphe nuclei, and several hypothalamic nuclei (Figures S6I–

S6K), confirming an afferent and efferent integration of MSDB

VGluT2 neurons into a more extended theta synchronizing and

locomotion promoting circuitry (Bland and Oddie, 2001).

MSDB VGluT2 Activity Translates into Axo-Somatic
Depolarization and Increased Firing Rates of CA1
Pyramidal Neurons
A prominent bundle of efferent glutamatergic axons has been

shown to project to the hippocampal formation via the fornix.

Since the in vivo function of these projections is unknown, we

next studied the function of MSDB VGluT2 septo-hippocampal

projections on hippocampal processing during locomotion. We

investigated synaptic integration of hippocampal CA1 principal

cells with subthreshold resolution using combined CA1 LFP

and whole-cell recordings during locomotion to understand the

mechanisms by which a speed-dependent regulation of CA1 py-

ramidal neuron firing (Ekstrom et al., 2001; McNaughton et al.,

1983) is achieved. At resting potential, VGluT2-ChR2 stimulation

in themedial septum consistently evoked a repetitive, summating

subthreshold depolarization of the membrane potential consis-

tent with an increased integration of excitatory synaptic input

(Figures 3A–3C). In response to this depolarizing input, CA1 pyra-

midal neurons showed an increased firing of stimulus-locked ac-

tion potentials/bursts (Figures 3D and 3E). We then altered the

stimulation frequencies and observed a frequency-dependent

increase of both the peak and mean depolarization (Figures 3F–

3H), further supporting that the regulation of CA1 pyramidal

neuron firing rates may occur on the level of synaptic integration.

We next tested whether the locomotion speed-dependent ac-

tivity increase could be detected on the population activity level

of CA1 hippocampal neurons. Therefore, wemonitored the activ-

ity of more than 1,000 neurons using two-photon Ca2+ imaging

through a chronic hippocampal window (Figure 4B). We found a

positive dependence of the number of detected Ca2+ transients
Neuron 86, 1253–1264, June 3, 2015 ª2015 Elsevier Inc. 1255
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Figure 2. MSDB VGluT2 Neuronal Activity Initiates Locomotion, Controls Locomotion Velocity, and Entrains Hippocampal Oscillations

(A) Representative example of MSDB VGluT2-ChR2 stimulation-induced LFP oscillations in CA1 and locomotion at different frequencies.

(B) CA1 LFP oscillations match the stimulation frequencies (individual mouse data are presented in gray, n = 10 mice, mean values ± SEM).

(C–E) Reliability of locomotion initiation, locomotion velocity and the delay to locomotion onset depend on the stimulation frequency (n = 10 mice, mean

values ± SEM).

(F) Transition of CA1 LFP oscillations and locomotion velocity in response to alternating stimulation frequencies (grand average of LFP spectrograms, gray area:

SD of locomotion velocities, n = 4 mice, mean values ± SEM).

(G–I) Brief 1 s stimulation at 9 Hz effectively entrains endogenous (unstimulated) theta oscillations prior to the initiation of locomotion (n = 3 mice, mean ± SEM).

(J) Representative spectrograms (single mouse data) of CA1 LFP before, during, and 1 hr after local MSDB application of NBQX/D-AP5.

(K) Intraseptal glutamatergic blockade results in loss of the velocity-frequency correlation during unstimulated locomotion (single mouse data).

(L) NBQX/D-AP5 associated decrease in the correlation coefficient (n = 5 mice, mean ± SEM).

Also see Figure S2.
on the firing frequency ofMSDBVGluT2neurons (Figures 4A–4C).

We observed an increase of CA1 population activity during volun-

tary locomotion in the absence of stimulation. However, the

MSDB VGluT2 stimulation-dependent increase in Ca2+ transient
1256 Neuron 86, 1253–1264, June 3, 2015 ª2015 Elsevier Inc.
frequency could be observed independently of locomotion,

confirming that it directly depended on MSDB VGluT2 firing

(Figure 4D). We then analyzed whether the observed VGluT2-fre-

quency-dependent increase in population activity was consistent



Table 1. Mono-Transsynaptic Retrograde Tracing of MSDB

VGluT2 Inputs

Brain Region

Number of Neurons

per Brain Region,

Mean ± SEM

Density,

Mean ± SEM

Hypothalamus: Periventricular region/ zone

Arcuate hypothalamic nucleus

(ARH)

46 ± 34 97 ± 70

neurons/mm2

Dorsomedial hypothalamic

nucleus (DMH)

36 ± 19 31 ± 15

neurons/mm2

Medial preoptic area (MPO) 539 ± 75 179 ± 25

neurons/mm2

Median preoptic nucleus

(MEPO)

101 ± 28 436 ± 121

neurons/mm2

Paraventricular hypothalamic

nucleus (PVH)

173 ± 128 320 ± 236

neurons/mm2

Periventricular hypothalamic

nucleus (PVpo, PVi)

85 ± 23 259 ± 64

neurons/mm2

Hypothalamus: Hypothalamic medial zone

Medial mammillary nucleus

(MM)

18 ± 12 8 ± 5

neurons/mm2

Posterior hypothalamic nucleus

(PH)

38 ± 22 14 ± 8

neurons/mm2

Premammillary nuclei (PM) 30 ± 12 50 ± 29

neurons/mm2

Supramammillary nucleus lateral

part (SUMl)

16 ± 10 23 ± 14

neurons/mm2

Supramammillary nucleus

medial part (SUMm)

23 ± 11 45 ± 21

neurons/mm2

Ventromedial hypothalamic

nucleus (VMH)

39 ± 23 30 ± 17

neurons/mm2

Hypothalamus: Hypothalamic lateral zone

Lateral hypothalamic area (LHA) 284 ± 165 21 ± 12

neurons/mm2

Lateral preoptic area (LPO) 63 ± 19 21 ± 6

neurons/mm2

Tubernal nucleus (TU) 68 ± 40 76 ± 43

neurons/mm2

Pons

Median raphe nucleus (MRN)

(superior central nucleus raphe)

27 ± 1 31 ± 1

neurons/mm2

Also see Figure S6.
with amore global mechanism acting onmost neurons or a rather

specific modulation of selected subpopulations of neurons. We

plotted for all neurons the event frequency (9 Hz stimulation)

against the unstimulated event frequency and observed that the

increase in event frequencies was consistent with simulated

data using a uniformly increased event rate (Figures 4E and 4F).

This suggested a more global, unspecific increase of the activity

of CA1 neurons.

Speed-Dependent Regulation of CA1 Input via Alveus/
Oriens Interneuron Mediated Disinhibition
In several brain areas, disinhibitory interneuron-interneuron

microcircuits control the activity of principal neurons during
behavior (Fu et al., 2014). We found the strongest accumula-

tion of VGluT2-EYFP-ChR2 axons in the alveus/oriens (A/O)

region (Figure 5A) and hypothesized that local interneurons

of the A/O subfield may represent a preferred synaptic target

of septo-hippocampal VGluT2 axons (Klausberger and Somo-

gyi, 2008). To test this directly, we stimulated the ChR2-ex-

pressing VGluT2 septo-hippocampal axons in acute hippo-

campal slices using field illumination with an optical fiber

and performed whole-cell patch-clamp recordings of A/O in-

terneurons. In the brain slice recordings monosynaptic input

from VGluT2-ChR2 septo-hippocampal axons could be de-

tected in 27.9% (64 of 229) A/O interneurons (Figures 5B

and 5C, median delay 4.06 ms; Figure S4A). Excitatory post-

synaptic potentials (EPSPs) were fully blocked by NBQX/D-

AP5 (Figure 5C). We found that 2 out of 18 CA1 pyramidal

neurons showed small stimulus-triggered EPSPs (delays: 22

and 5 ms, amplitudes: <0.5 mV), which raised the possibility

that a small fraction of VGluT2-ChR2 septo-hippocampal

axons may directly excite the dendritic compartment of pyra-

midal neurons. The post hoc recovered interneurons (8 out

of 10 biocytin-filled A/O interneurons) were immuno-positive

for somatostatin, identifying these neurons as putative ori-

ens-lacunosum moleculare (O-LM) interneurons (Figure S4C;

Klausberger and Somogyi, 2008). The MSDB VGluT2 axonal

stimulation-evoked synaptic depolarization of A/O interneu-

rons gradually increased with the stimulation frequency from

3 to 12 Hz (Figures 5D and 5E), suggesting that A/O interneu-

rons increase their output firing with stronger VGluT2 input

from the medial septum.

To test this in vivo in awake animals, we monitored the fluo-

rescence of GCaMP6s-expressing A/O interneurons during

VGluT-ChR2-stimulation induced locomotion on a linear tread-

mill using two-photon Ca2+ imaging. We found that A/O inter-

neurons increased their fluorescence with higher stimulation

frequencies, which is consistent with a discharge at higher

rates (Figures 5F and 5G). We then monitored A/O interneuron

activity during voluntary locomotion. We found that the

GCaMP6s fluorescence of 132 out of 146 (90.4%) A/O inter-

neurons strongly increased with locomotion (Figure S4D).

Moreover, consistent with the activation patterns of MSDB

VGluT2 neurons, the increase of fluorescence of locomotion-

active A/O interneurons preceded the onset of movement, as

was indicated by a significant increase in DF/F0 before locomo-

tion onset (Figures 5H–5J).

We then asked how an increased activity of A/O interneu-

rons could be translated into increased excitatory input to

CA1 principal neurons during locomotion at higher velocities.

Therefore, we selectively stimulated ChR2-eYFP expressing

A/O interneurons using somatostatin (Sst)-cre mice. Action

potential firing could be reliably evoked in A/O interneurons

using light pulses of 3 ms duration (Figure S5). The electro-

physiological profiles of the recorded neurons were consistent

with O-LM interneurons (Gloveli et al., 2005; Table S1). O-LM

interneurons have been recently shown to provide disinhibition

by targeting local hippocampal feedforward interneurons

(Leão et al., 2012). To find out whether a disinhibitory circuitry

may be recruited in response to MSDB VGluT2 input, we stim-

ulated ChR2-expressing A/O interneurons in brain slices of
Neuron 86, 1253–1264, June 3, 2015 ª2015 Elsevier Inc. 1257
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Figure 3. Stimulation-Locked Excitatory

Input onto CA1 Pyramidal Neurons In-

creases with Higher MSDB VGluT2 Firing
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(A) Combined in vivo CA1 LFP and whole-cell

patch-clamp recording configuration.

(B) Characteristic response pattern of a CA1 py-

ramidal cell to �200 pA and +500 pA current in-

jections and response to 10 Hz MSDB VGluT2

stimulation.

(C) The membrane potential of a CA1 pyramidal

neuron depolarizes in response to 10 Hz MSDB

VGluT2-ChR2 stimulation (n = 13 neurons from

5 mice; mean ± SEM).

(D) Characteristic response pattern of a CA1

pyramidal cell to �200 pA and +500 pA current

injections, response to 10 Hz MSDB VGluT2 stim-

ulation, and the timing of APs/bursts recorded in 93

sweeps from 12 cells.

(E) Action potential firing rate of CA1 pyramidal

neurons increases in response to 10 Hz MSDB

VGluT2-ChR2 stimulation and is locked to the

stimulation phase (n = 12 neurons from 5 mice;

mean ± SEM).

(F) Characteristic response pattern of a CA1 pyra-

midal cell to �200 pA and +500 pA current

injections and increasing subthreshold depolari-

zation in response to increasing MSDB VGluT2

firing frequencies (from 6 Hz to 9 Hz)

(G and H) Peak and mean membrane potential

depolarization increase with higher MSDB

VGluT2 firing frequencies (n = 6 neurons in 3 mice;

mean ± SEM).
Sst-cre mice while recording from feedforward interneurons

in stratum radiatum (SR) and stratum lacunosum-moleculare

(SLM). SR and SLM interneurons were classified as feedfor-

ward interneurons when they received monosynaptic EPSPs

upon stimulation and showed electrophysiological profiles

consistent with hippocampal feedforward interneurons (Elfant

et al., 2008; Table S1: 66% of patched feedforward interneu-

rons responded with monosynaptic inhibitory postsynaptic

potentials [IPSPs] to A/O interneuron stimulation). When we

paired electrical stimulation of either Schaffer collateral (CA3

input) or perforant path axons (MEC L3 input) with optogenetic

activation of A/O interneurons in the hippocampal brain slice,

the EPSPs evoked by both pathways were strongly curtailed

(SR: by 59%, SLM: by 142%, Figures 6B–6D and 6H–6J).

When stimulating A/O interneurons at theta frequencies, we

observed a frequency-dependent inhibition of feedforward in-

terneurons in SR and SLM (Figures 6E, 6F, 6K, and 6L),

providing a global CA1 disinhibitory mechanism that links

the integration of synaptic input of CA1 pyramidal neurons to

the activity of MSDB-VGluT2 neurons.
1258 Neuron 86, 1253–1264, June 3, 2015 ª2015 Elsevier Inc.
DISCUSSION

Hippocampal oscillations and neuronal

activity rates have long been known to

depend on locomotion (McNaughton

et al., 1983). However, the circuit mecha-
nisms by which locomotion-related activity translates into

speed-correlated neuronal activity have remained obscure along

with the underlying circuitry. The present study reveals that the

activity levels of hippocampal feedforward interneurons situated

in both major CA1 input pathways (from entorhinal cortex and

CA3) are controlled by locomotion-dependent inhibition. This

disinhibitorymechanism ismediated via A/O interneurons, which

integrate locomotion speed-dependent input from the MSDB via

VGluT2 septo-hippocampal projections.

Entorhinal perforant path input from layer 3 to CA1 neuronal

distal tuft dendrites is under strong feedforward and feedback

inhibitory control (Ahmed and Mehta, 2009; Kitamura et al.,

2014; Müller et al., 2012; Pouille and Scanziani, 2001; Royer

et al., 2012). However, it has been demonstrated that perforant

path input can evoke large EPSPs or nonlinear dendritic

spikes/plateau potentials, which have been linked to the induc-

tion of synaptic plasticity and the transition of silent cells to

place cells (Golding and Spruston, 1998; Golding et al., 2002;

Lee et al., 2012; Takahashi and Magee, 2009). Under in vivo

conditions of more predominant inhibition (Ahmed and Mehta,
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(A) In vivo two-photon imaging configuration.

(B) CA1 populationmean fluorescence, GCaMP6s-Ca2+ event onsets and average locomotion velocities at 3 and 9 HzMSDB VGluT2 stimulation (n = 4mice, gray

area represents SD).

(C) Frequency-dependent increase in the number of detected hippocampal GCaMP6s-Ca2+ transients (n = 4 mice, mean values ± SEM).

(D) CA1 population activity increases during voluntary locomotion, but the stimulation-dependent increase in hippocampal Ca2+ transient frequency can be

evoked in the absence of locomotion (n = 4 mice, mean values ± SEM).

(E and F) The observed increase in event frequencies is consistent with simulated data assuming a uniform increase in event frequencies (Poisson processes with

uniformly increased rates, bin size 0.005 3 0.005 Hz2).

Also see Figure S3.
2009; English et al., 2014), e.g., during states associated with

immobility, feedforward inhibition is expected to prevent the

distal depolarization from propagating to the soma (Ang et al.,

2005; Pouille and Scanziani, 2001). It has been demonstrated

that synergistic, temporally overlapping inputs from CA3 onto

proximal dendrites help to counteract dendritic inhibition, thus

increasing axo-somatic depolarization and leading to the initia-

tion of action potential firing (Jarsky et al., 2005).

We show that during a brain-state transition from immobility to

locomotion an MSDB-VGluT2-mediated reduction of feedfor-

ward inhibition is acting on both Schaffer collateral and perforant

path excitatory input streams. Thus, increased axo-somatic

depolarization of CA1 pyramidal neurons would be expected

to result from the reduced filtering of dendritic inputs. The loco-

motion speed-dependent reduction of input filtering via the

MSDB-VGluT2-A/O interneuron circuit is consistent with the

experimentally observed increase of the axo-somatic depolari-

zation and neuronal activity with higher VGluT2 firing rates, which

correlate to locomotion speed. This disinhibitory mechanism,

which increases the sensitivity of CA1 pyramidal neurons to

afferent input, could serve to compensate for the reduced sen-

sory information per distance unit that can be integrated at

higher speeds of locomotion.

All relevant elements of the intrahippocampal disinhibitory

microcircuitry have been described in isolation. A/O interneurons
(O-LM cells) have been shown to synapse onto local feedforward

interneurons in SR (Leão et al., 2012). Likewise, experimental

evidence suggests a disinhibitory synaptic connectivity with

SLM-associated feedforward interneurons (Elfant et al., 2008).

The VGluT2-mediated septo-hippocampal glutamatergic con-

nectivity onto A/O interneurons has not been demonstrated

yet, although the presence of this connection has been postu-

lated (Huh et al., 2010).

It is possible that hippocampal pyramidal neurons in CA3

(Huh et al., 2010) and in CA1 (2/16 cells receive small-amplitude

EPSPs in the present study) directly integrate some gluta-

matergic MSDB input, which could contribute to axo-somatic

depolarization in a frequency-dependent manner. However,

the glutamatergic EPSPs that were observed in acute prepara-

tions could be also explained by disinhibition of glutamatergic

input deriving from spontaneous activity in CA3.

Further, there is evidence that A/O interneurons receive nico-

tinic input from the MSDB (Bell et al., 2011; Leão et al., 2012),

which may be of particular importance during more immobility-

associated sharp-wave states (Vandecasteele et al., 2014) and

during contextual learning (Lovett-Barron et al., 2014). Given

that intraseptal glutamatergic synapses onto cholinergic neu-

rons have been reported (Leão et al., 2015; Manseau et al.,

2005), it is possible that nicotinic synapses further contribute

to excitation of A/O interneurons during locomotion.
Neuron 86, 1253–1264, June 3, 2015 ª2015 Elsevier Inc. 1259
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Figure 5. Hippocampal Alveus/Oriens Interneurons Integrate Locomotion-Dependent MSDB VGluT2 Input
(A) The density of septo-hippocampal glutamatergic fibers is highest in the alveus/oriens region. Inset: tracing of immunolabeledMSDB VGluT2-eYFP-ChR2 pos.

axonal projections in subfield CA1.

(B) Brain slice whole-cell patch-clamp recordings from A/O interneurons with optical stimulation of VGluT2-ChR2 septo-hippocampal axons.

(C) Monosynaptic VGluT2-ChR2-evoked EPSPs are fully blocked by NBQX/D-AP5 (n = 7 cells individually displayed in gray, mean values ± SEM).

(D and E) Frequency-dependent summation of VGluT2-EPSPs and increase in mean depolarization of A/O interneurons in response to axonal stimulation at

3–12 Hz. (n = 15 cells, mean values ± SEM).

(F andG) In vivo two-photon imaging reveals frequency-dependent increases of somatic GCaMP6s fluorescence in response toMSDB VGluT2 stimulation from 3

to 12 Hz (frequency dependence was determined of 67.6% (125 of 185) A/O interneurons that were activated by MSDB VGluT2 stimulation).

(H) Somatic GCaMP6s fluorescence of A/O interneurons increases during voluntary locomotion (gray areas: locomotion intervals, dashed framemagnified in right

panel).

(I) GCaMP6s fluorescence of A/O interneurons activated during locomotion increases prior to locomotion onset (n = 7 mice, gray area represents SD). Inset:

average fluorescence obtained from the A/O interneuron population of 7 mice aligned to locomotion onset with a linear fit of the 500 ms interval preceding

locomotion onset.

(J) Positive slope of the DF/F0 normalized fluorescence of A/O interneurons is detected during the 500 ms interval preceding the onset of locomotion (n = 7 mice,

mean ± SEM).

Also see Figure S4.
Our mono-transsynaptic retrograde tracing identified several

hypothalamic areas and the median raphe nucleus as main

input regions to MSDB VGluT2 neurons (Bland and Oddie,

2001). These identified hypothalamic projection regions were

distributed throughout the periventricular zone/region, the hypo-

thalamic medial zone, and the lateral zone. Several of these

hypothalamic nuclei, including the supramammillary nuclei, the

periventricular nuclei, and the preoptic nuclei, have been identi-

fied as functional components of the diencephalic andmesence-

phalic locomotor zones (Sinnamon, 1993). Electrical and phar-

macological stimulation (the latter avoiding stimulation of fibers
1260 Neuron 86, 1253–1264, June 3, 2015 ª2015 Elsevier Inc.
of passage) of these regions initiated theta oscillations in the

septohippocampal system and led to successful initiation of

locomotion (Bland and Oddie, 2001; Oddie et al., 1996; Thinsch-

midt et al., 1995; Woodnorth and McNaughton, 2005). Notably,

the initiation of locomotion and the evoked hippocampal theta

oscillations were blocked when the medial septum was pharma-

cologically inactivated, suggesting a crucial role of the MSDB in

both processes (Oddie et al., 1996).

Several lines of evidence support the notion that the execution

of locomotion following VGluT2 stimulation is mediated via

excitation of the ventral tegmental area (Oades and Halliday,
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Figure 6. Firing of Hippocampal A/O Interneurons at Rhythmic VGluT2 Input Rates Suppresses Feedforward Inhibition in Both Main CA1

Input Pathways

(A) Locations of the recorded stratum radiatum (SR) feedforward interneurons (n = 22) within the hippocampal slices, responding with a monosynaptic EPSP to

electrical Schaffer collateral (SC) stimulation and a monosynaptic IPSP to optical stimulation of ChR2 expressing Sst+ A/O interneurons.

(B–D) SR feedforward interneurons identified by SC stimulation (EPSP) with characteristic response to �200 pA and +500 pA current injections, show reduced

peak amplitude and mean depolarization when electrical stimulation is paired with optical A/O interneuron stimulation (n = 13 cells individually displayed in gray,

mean values ± SEM).

(E and F) Mean hyperpolarization evoked by optical A/O interneuron stimulation increases with higher stimulation frequencies (n = 17 cells, mean values ± SEM).

(G) Locations of the recorded stratum lacunosum-moleculare (SLM) feedforward interneurons (n = 14) within the hippocampal slices, responding with a

monosynaptic EPSP to electrical perforant path (PP) stimulation and a monosynaptic IPSP to optical stimulation of ChR2 expressing Sst+ A/O interneurons.

(H–J) SLM feedforward interneurons identified by PP stimulation (EPSP) with characteristic response to �200 pA and +500 pA current injections, show reduced

peak amplitude and mean depolarization when electrical stimulation is paired with optical A/O interneuron stimulation (n = 10 cells individually displayed in gray,

mean values ± SEM).

(K and L) Mean hyperpolarization evoked by optical A/O interneuron stimulation increases with higher stimulation frequencies (n = 12 cells, mean values ± SEM).

Also see Figure S5.
1987; Parker and Sinnamon, 1983; Sinnamon, 1993). (1) The

firing rate of VTA non-dopaminergic and dopaminergic neurons

strongly increases during the initiation of locomotion (Lee et al.,

2001;Wang and Tsien, 2011) and the neuronal activity correlates

with locomotion speed (Puryear et al., 2010; Wang and Tsien,

2011). (2) Electrical stimulation of VTA reliably initiates locomo-

tion (Kalivas et al., 1981; Parker and Sinnamon, 1983). (3) The

MSDB directly projects to VTA via VGluT2-positive axons (Geis-

ler and Wise, 2008), a projection that was confirmed by axonal

tracing in the present study. (4) VTA neurons modulate the excit-
ability of nucleus accumbens (Mogenson et al., 1980) and motor

cortex (Hosp et al., 2011; Kunori et al., 2014) and thus are prob-

ably involved in the generation of motor commands.

One importantmodulator of septo-hippocampal function is the

median raphe nucleus (Varga et al., 2009), which has both

afferent and efferent MSDB connections (see the present study

and Vertes et al., 1999). It is associated with the inhibition of theta

oscillations and motor activity. It has been shown that activation

of median raphe neurons either blocked or desynchronized theta

oscillations, while serotonergic blockade activated them (Maru
Neuron 86, 1253–1264, June 3, 2015 ª2015 Elsevier Inc. 1261



et al., 1979; Vertes et al., 1999). In addition, electrical and optoge-

netic stimulation of the raphe system led to behavioral inhibition

andmovement arrest (Fonseca et al., 2015; Steinfels et al., 1983).

Thus, efferent and afferent connectivity of the MSDB with hy-

pothalamic locomotor regions, the median raphe nucleus—and

the common projection to VTA (Geisler and Wise, 2008)—may

promote the initiation and modulation of locomotion upon

MSDB VGluT2 neuronal stimulation. Interestingly, these regions

partially overlap with ascending brain stem pathways that have

been associated with motivation and arousal (Mink et al., 1983;

Moruzzi and Magoun, 1949).

Further supporting evidence for the speed-modulating action of

the MSDB was provided by a recent study using muscimol for

septal inactivation (Wang et al., 2015), which reduced the running

speed during wheel running and during active navigation (but see

Brandon et al., 2014). Likewise, upon medial septal heating, an

increased oscillation frequency of MSDB neurons and increased

running speed has been reported, while cooling had opposite ef-

fects (G. Buzsáki and E. Pastalkova, personal communication).

Together, our findings strongly suggest an important role of

the MSDB-VGluT2 circuitry in the concerted initiation of locomo-

tion and theta oscillations as well as in the active regulation of

locomotion speed. Moreover, via activation of septo-hippocam-

pal VGluT2 projections and the disinhibition of both major CA1

hippocampal input pathways, VGluT2 firing translates corollary

information on the locomotor state into speed-correlated CA1

neuronal firing rates.

EXPERIMENTAL PROCEDURES

In Vivo Experimental Setup

For all in vivo experiments, habituated mice were placed on either a linear or

spherical treadmill and were head fixed. Further connections for fluorometric

monitoring or optical stimulation with simultaneous electrophysiological mea-

surements or imaging were established. Locomotion of the mice was tracked

by an optical computer mouse, which measured the rotation of the linear or

spherical treadmill. Details of the experimental setups and transgenic mouse

lines can be found in the Supplemental Experimental Procedures.

Fluorometric Monitoring

Stereotactic injection of AAV1.hSyn.Flex.GCaMP5G (GCaMP3-

T302L.R303P.D380Y) WPRE.SV40, AV-1-PV2540 was used for local expres-

sion of GCaMP5 in MSDB VGluT2 neurons of VGluT2-cre mice. Ca2+ signals

of MSDB VGluT2 neurons were monitored with a FiberOptoMeter coupled to

an implanted fiber optic cannula delivering 470 nm excitation light into the

MSDB and detecting the emitted activity-dependent fluorescence of MSDB

VGluT2 neuronal population. Stereotactic coordinates, light fiber positioning,

and surgery protocols can be found in the Supplemental Experimental

Procedures.

In Vivo Optogenetic Stimulation

Stereotactic injections of pAAV2.1-EF1a-double floxed ChR2-EYFP-WPR

(H134R) were used for local expression of ChR2 in MSDB VGluT2 neurons

of VGluT2-cre mice. Light stimulation was performedwith a 473 nmdiode laser

(Omicron-Laserage) coupled to an implanted fiber optic cannula. Detailed

stimulation protocols can be found in the Supplemental Experimental Proce-

dures. pcDNA3.1/hChR2(H134R)-EYFP was a gift from Karl Deisseroth (Addg-

ene plasmid #20940).

In Vivo Electrophysiology

In all in vivo experiments hippocampal local field potentials were recorded

using monopolar field potential electrodes positioned in hippocampal stratum
1262 Neuron 86, 1253–1264, June 3, 2015 ª2015 Elsevier Inc.
radiatum. Whole-cell patch-clamp recordings were obtained from CA1 pyra-

midal cells in a depth of 1,000–1,400 mm from brain surface. Details of the

in vivo recordings and the electrophysiological data acquisition and analysis

can be found in the Supplemental Experimental Procedures.

In Vivo Two-Photon Hippocampal Imaging in Awake Mice

GCaMP6swas expressed in all hippocampal neurons by stereotatical injection

of AAV1.Syn.GCaMP6s.WPRE into the right dorsal hippocampus. Two-

photon imaging of hippocampal Ca2+ activity in awake mice on a treadmill

was performed through an implanted hippocampal window using a resonant

scanning microscope equipped with a Ti:sapphire laser. Image series of

GCaMP fluorescence in either alveus/stratum oriens or stratum pyramidale

were acquired at frame rates >15 Hz. Details of the surgery and the imaging

acquisition/analysis can be found in the Supplemental Experimental

Procedures.

Electrophysiological Recordings in Brain Slices

Whole-cell patch-clamp recordings were obtained from MSDB or hippocam-

pal neurons in coronal and horizontal slices prepared from either VGluT2-cre

mice expressing ChR2 in MSDB VGluT2 neurons or Sst-cre mice expressing

ChR2 in hippocampal A/O interneurons. The ChR2 light stimulation of septo-

hippocampal VGluT2 axons (VGluT2-cre) or A/O interneurons (Sst-cre) was

performed using 473 nm illumination via an optical fiber. Hippocampal feedfor-

ward interneurons were identified by electrical stimulation of either Schaffer

collateral or perforant path axons. Details of the slice preparation and the

recording procedures can be found in the Supplemental Experimental

Procedures.

Mono-Transsynaptic Retrograde Tracing

Injection of modified rAAVs and RABV into the MSDB of VGluT2-cre mice al-

lowed for retrograde tracing of monosynaptic connection to MSDB VGluT2

neurons. Brain regions with retrogradely labeled neurons were identified using

Allen Brain Atlas (Lein et al., 2007), available online from http://mouse.

brain-map.org/. Details about the viral constructs, the injection and detailed

images of labeled neurons throughout various brain regions can be found in

the Supplemental Experimental Procedures.

Data Analysis and Statistics

All data were processed using custom written algorithms in MATLAB 2013

(The MathWorks) or Igor Pro 6.3 (WaveMetrics). All data were tested for

normality using a Kolmogorov-Smirnov test and subsequently analyzed using

an appropriate statistical test: paired t test or Wilcoxon rank test for two pairs

of data and one-way ANOVA with post hoc Bonferroni test or Friedman with

post hoc Dunn’s test for multiple comparisons. Further details about the

methods used for data processing and statistics can be found in the Supple-

mental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, one table, and one movie and can be found with this article online

at http://dx.doi.org/10.1016/j.neuron.2015.05.001.
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