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Abstract

A brief summary of the principal notions of the quantum^mechanical theory of the charge transfer reactions has been
presented. In the framework of this theory, the mechanism of the proton transfer consists in the classical medium
reorganization that equalizes the proton energy levels in the initial and final states, and a consequent proton transfer via a
quantum^mechanical underbarrier transition. On the basis of this mechanism, factors influencing the proton transfer
probability, and hence kinetic isotope effect, have been discussed; among them are the optimum tunneling distance, the
involvement of the excited vibrational states, etc. Semi-classical and quantum^mechanical treatments of the Swain^Schaad
relations have been compared. Some applications to enzymatic proton-transfer reactions have been described. ß 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Proton transfer is a ubiquitous component of the
vast amount of various chemical and biochemical
reactions. Therefore, the mechanism of this process
presents a problem of primary importance. The ¢rst
model of the elementary act of proton transfer was
proposed by Horiuti and Polanyi [1]. In this model,
the activation energy of the process was considered
to be caused by the necessity to stretch the hydrogen
covalent bond in proton donor to a distance at which
formation of a bond with the proton acceptor be-
comes possible (Fig. 1A). The further development
of this model proceeded by introduction of quan-
tum^mechanical corrections. First, account was tak-
en for the energies of zero-point vibrations, di¡erent
for di¡erent hydrogen isotopes (Fig. 1B); in more
sophisticated schemes involving multidimensional en-
ergy surfaces, the zero-point energies of transition
state were also accounted for. Second, the proton

(deuteron) tunneling at the top of the barrier was
included (Fig. 1C). This approach, which we will
name the bond-stretching model, was employed and
developed in many works (for review see, e.g. [2^4]).

The bond-stretching model has two important
drawbacks. First, it does not take into account the
dynamic role of the polar medium: the proton trans-
fer means a substantial charge density redistribution,
and hence is inevitably coupled with the medium re-
organization. Second, quantum^mechanical e¡ects
were included in the model as some ad hoc correc-
tions while the problem demands for a consistent
quantum^mechanical treatment just from the begin-
ning. These two principally important points were
laid in the basis of the approach proposed by Dogo-
nadze et al. [5,6]. The theory developed results in the
following general scheme of the process (Fig. 2): the
medium reorganization equalizes the proton levels in
the initial and ¢nal states, and hence makes the pro-
ton transfer possible, preferentially by a quantum^
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mechanical underbarrier transition (a more detailed
discussion of the mechanism will be given below).
This mechanism is similar to that of the electron
transfer process. The medium reorganization^proton
tunneling model (or DKL model) was further devel-
oped in many works, mainly by Dogonadze^Kuznet-
sov group (see, e.g. [7^9]).

The bond-stretching and DKL models lead to sim-
ilar general dependencies (e.g. of activation energy

on the reaction free energy vG) because these de-
pendencies are of a very general phenomenological
nature [10]. However, one can ¢nd some e¡ects
where the two model result in not only quantita-
tively, but also qualitatively di¡erent predictions,
and hence ¢nd some experimental criteria allowing
a choice to be made between the alternative models.
We have carried out such an experimental study on
the example of an electrochemical proton transfer,
viz. the rate-determining discharge of proton donors

AHn� �M�e3� � A�n31�� �MH

(here M means metal and e means electron). The
e¡ects of the electrode potential, of the metal nature
(M^H bond energy), of di¡erent proton donors, and
of the solvent on the hydrogen evolution reaction
kinetic parameters and on kinetic isotope e¡ect as
well as the characteristics of the barrierless discharge
(process with the activation energy equal to the re-
action free energy, without any additional barrier)
were studied. In all cases, it was shown that the ac-
tivation energy and the pre-exponential factor are
determined by physically di¡erent barriers; this
agrees with the medium reorganization^proton tun-
neling model and contradicts the bond-stretching
model. These data are summarized in [10,11].

Last decade, the great interest in the medium re-
organization^proton tunneling model arises. The
physical fundamentals of the model were not dis-
puted, rather a further development of these ideas
was given. The progress is connected, ¢rst of all,
with the microscopic treatment of the medium reor-
ganization (in earlier works, it was considered mainly
in the framework of continuum electrostatics, with
an account of quantum character of some polariza-
tion modes, and of possibility of the polarization
spatial correlation). Further, various theoretical
methods have been applied to the analysis of the
problem giving, in general, a rather good agreement.
A more detailed quantum^chemical calculations have
been performed for several concrete systems. As typ-
ical examples, studies by Borgis and Hynes can be
mentioned (see, e.g. [12] and a great many of the
recent papers cited there), as well as those by War-
shel and Chu [13], Cukier [14], Antoniou and
Schwartz [15] and others.

The size of this short review does not allow to give
a more or less full account of the vast literature on

Fig. 1. Potential energy curves for proton transfer in the bond-
stretching model. R, proton coordinate; Eg activation energy,
subscripts H and D refer to proton and deuteron, correspond-
ingly. (A) Original scheme by Horiuti and Polanyi [1]. (B) The
scheme accounting for the di¡erence in zero energies of two iso-
topes. (C) The scheme accounting for the tunneling at the top
of the barrier (shown by arrows); the heavier isotope tunnels
through the lower and narrower barrier.
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the problem and to describe in detail the history of
each question. The reader especially interested in the
theory can be referred, besides the reviews and pa-
pers quoted above, to detailed monographs [16^18].
In this review, our task will be to outline the main
features of the proton transfer mechanism and to
elucidate qualitatively their physical basis. We will
also apply this analysis to explanation of some ex-
perimental data.

2. General theoretical relationships

2.1. Quantum and classical degrees of freedom

As it was described above, in the DKL model
proton, like electron, tunnels from one reactant to
another after equalizing the energy levels created by
the polar medium £uctuations (Fig. 2). It should be
stressed here that it is not an ad hoc assumption, but
a result of a rigorous theoretical analysis based on
the concept of quantum and classical degrees of free-
dom [19]. Let us explain this concept.

With any barrier, there always exists a possibility
of two di¡erent types of transition: overbarrier and
underbarrier ones, and therefore one should compare
the probabilities of these ways. The probability of
the underbarrier transition (tunneling) by itself de-

pends on the form of the barrier and on the energy
(E) of the particle which is to tunnel. The energy
dependence is very strong, roughly exponential (exp
E/vE). Here vE means some energy characteristic for
the given barrier shape (by the order of magnitude, it
is the di¡erence of two neighboring discrete energy
levels), it can be di¡erent in di¡erent parts of the
barrier. On the other hand, one should account for
the probability to be at the energy level E, i.e. to
multiply the `pure' tunneling probability by the
Boltzmann factor exp(3E/kT). So, the total contri-
bution of the level E is proportional to exp(E/vE3
E/kT).

There are two typical limiting cases. When
vEgkT, the probability is virtually exp(3E/kT),
and the most probable process involves the lowest
energy level E = 0. This is a typical quantum behav-
ior: the predominant process is the tunneling from
the ground state. The second case corresponds to
vEHkT. Here the most favorable situation is for
the highest possible level E, i.e. at the top of the
barrier. Such a system behaves classically, i.e. an
overbarrier transition dominates. Besides these limit-
ing cases, the relationship vEVkT is possible; here
the most favorable pathway is the thermal excitation
to some intermediate level(s) with a subsequent tun-
neling somewhere in the middle of the barrier.

Electron is localized in a potential well formed by

Fig. 2. Potential energy curves (cross-section of the potential energy surfaces) for the medium reorganization^proton tunneling model
(DKL model). Left panel: the energy dependence on the medium coordinate q ; q0i;f equilibrium medium coordinates in the initial and
¢nal states, q* coordinate of the barrier top (crossing point), Eg activation energy. The right panel: potential curves for proton at dif-
ferent constant medium coordinates, the dashed curves correspond to equilibrium states, initial and ¢nal (q0i;f ), the solid curves to
transition state q*. Only in transition state, the ground levels of proton in its initial and ¢nal potential wells become equal, and the
tunneling becomes possible (shown by arrow).
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some hyperboloid-like surface. The typical di¡eren-
ces of the electron energy levels are much more than
kT (absorption of the visible light or, mostly, UV
quanta), and hence electron behaves in a quantum^
mechanical manner.

The covalently bound proton presents an oscillator
having in the ground state an approximately har-
monic character (the characteristic energy vE is of
order of Gg, g is the vibration frequency). The typ-
ical vibration quanta for X^H covalent bond are of
order of 3000 cm31, while kT = 200 cm31 at room
temperature. That is why we have to expect the
quantum^mechanical behavior in reaction of proton
transfer accompanied by disruption and formation of
its covalent bonds (for more details, see below).

It is clear that the quantum^mechanical or classi-
cal behavior is not an inherent property of the sys-
tem under any conditions. The system behaving clas-
sically at high temperature may become a quantum^
mechanical one at very low temperature. For in-
stance, this can explain the transition from the Ar-
rhenius dependence of the reaction rate at room tem-
perature to its temperature independence at low
temperatures. Sometimes one can meet a statement
that the process governed by tunneling shall always
be temperature-independent, while the presence of
some temperature dependence (at least, Arrhenius
dependence) contradicts the tunneling. Indeed, the
underbarrier transition probability proper does not
depend on the temperature. However, tunneling be-
comes possible only in the case the energy levels in
initial and ¢nal states are equal (only then a transi-
tion will not violate the energy conservation law). To
equalize these levels, that, generally, are not equal
from the beginning, some reorganization of the me-
dium (interacting electrostatically with electron, pro-
ton, etc.) is necessary. This reorganization proceeds
via thermal £uctuation, and the probability to
achieve the necessary medium con¢guration is deter-
mined by an Arrhenius-like expression. Only in the
case when medium behaves also quantum^mechani-
cally, i.e. the temperature is low enough as compared
to medium's vibration quanta, the total probability
becomes temperature-independent. In the intermedi-
ate region, where medium's vEVkT, a non-Arrhe-
nius dependence takes place.

A more graphic demonstration of the relationships
between quantum and classical modes can be pre-

sented in the following way. The underbarrier tran-
sition probability is proportional to the resonance
integral v ii Vif ifdv, where i's are wave functions
in the initial (i) and ¢nal (f) states and Vif is the
potential of their interaction. It is clear that the
probability is the higher the stronger is the overlap
of the wave functions, i.e. the higher is the probabil-
ity for the particle in some element of volume to
belong as well to the initial as to the ¢nal states.

The normalized wave function for a harmonic os-
cillator at some n-th level is (see, e.g. [20])

i n � 1�����
an
p 1

2nn!
����
Z
p

� �1=2

Hn�s�exp�31=2�s2�: �1�

Here an is the amplitude of classical vibrations at
the n-th level [an = a0(2n+1)1=2], Hn is the n-th Her-
mite polynomial, s = x/an is the reduced coordinate, x
being the deviation from the equilibrium position.
For the wave function at the ground level we have

i 0 � 1�����
a0
p ����

Z4
p exp�3�1=2��x=a0�2�: �1a�

Fig. 3 shows, as an example, the wave functions
for n = 0, 2 and 4. We see that out of the classically
accessible region (marked by a vertical lines) these
wave functions decay with a similar speed. So, the
classical amplitude in the ground state can be con-
sidered as a characteristic length determining decay
of any wave function in the classically forbidden re-
gion.

Let us consider now the particle transition between
two harmonic oscillators (Fig. 4 depicts their poten-

Fig. 3. Normalized wave functions (i) of a harmonic oscillator.
Quantum numbers of the levels shown at i's maxima. Vertical
lines mark the vibration's amplitude of a classic oscillator with
the given energy.
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tial energy, two vibrational levels, and, in some arbi-
trary units, the wave functions corresponding to
these levels). When the potential curves are steep
and/or the oscillators reduced mass is small (both
are typical of hydrogen covalent bonds), the zero-
point energy (1/2 Gg) is large; correspondingly, the
amplitude a0 is large too, and the wave functions
decay slowly (Fig. 4A). Therefore, the wave func-
tions overlap is substantial already for the ground
level, and the transition probability at this level is
high enough to predominate over the transitions at
excited levels (the overlap there is better, but the
Boltzmann factor is low). Even with the same poten-
tial energy curves, but at a high oscillators reduced
mass (Fig. 4B), 1/2 Gg is small, so is the amplitude
a0, and the overlap is poor. In this case, the only
realistic pathway is to excite the oscillator to very
high levels, close to the barrier top, at which the
transition probability is not negligibly low. Hence,
when we speak on the quantum^behavior condition
vEgkT (for harmonic oscillator, vE is practically
Gg), we do not mean the di¤culty to achieve some
excited level (the Boltzmann factor for any level E is
the same both for quantum and classical oscillators),
but the larger delocalization of a quantum particle
giving it the possibility to tunnel from the ground
state. That is the reason why the underbarrier tran-
sition is preferential for the proton transfer.

2.2. Non-adiabatic and adiabatic transitions

In the preceding considerations, we have used po-
tential curves (more strictly, free energy surfaces)
corresponding to the initial and ¢nal states sepa-
rately. These energy curves, una¡ected by the reac-
tants' interaction, are called `diabatic curves'. How-
ever, interaction of the reactants in£uences the form
of potential curves and the position of the corre-
sponding energy levels. This is shown schematically,
for the case of electron transfer, on Fig. 5. When the
system is close to one of the energy minima, the
states of the reactants are strongly dissimilar, the
interaction between them is weak, and they do not
form a uni¢ed state. Nearer to the barrier top, the
energy of two reactants becomes similar, they can
interact e¡ectively, and they can form a uni¢ed state.
More exactly, from two initially existing states (i and
f) two new states appear, one which is lower than
intersection point of the diabatic curves by the inter-
action energy Vif , and the other lying by the same
value higher. These curves (free energy surfaces) are
called adiabatic ones (U� and U3, Fig. 5, left panel).
Two adiabatic curves correspond to two di¡erent
electronic states, and, instead of one energy level in
each potential well (dashed horizontal lines in the
right panel of Fig. 5), two levels appear (solid lines,
Fig. 5, right).

Fig. 4. Scheme of potential energy curves for two harmonic oscillators in the state where the particle transfer (along R coordinate) be-
comes possible (the levels are equalized due to the medium £uctuations: see, e.g. Fig. 2). The corresponding wave functions are pre-
sented in arbitrary units (dashed curves). (A) An oscillator with large Gg ; the wave function overlap at ground level is substantial ;
also shown is the ¢rst excited vibrational level, much higher in energy. (B) The same potential curves, but with small Gg ; the wave
functions overlap at ground level is negligible; also shown is one of excited levels with a large quantum number, the wave functions
are depicted conditionally, their overlap becomes tangible.
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When the system moves slowly from left to right
along the polarization (classical) coordinate q (the
left panel of Fig. 5), it is ¢rst in the initial diabatic
curve (i), then it passes to the lower adiabatic curve
U�, and then goes over to the ¢nal curve (f); at the
top of the adiabatic curve, electron goes under the
barrier along the quantum coordinate r (the right
panel of Fig. 5) remaining in the lower adiabatic
state.

Such a pattern, however, can be realized only in
the case of a slow enough movement along the clas-
sical coordinate. Indeed, the electron (and/or proton)
transition from one potential well to the other (rear-
rangement of its wave function) takes some time dif .
The transition can take place only in vicinity of the
barrier top along the q coordinate: according to the
Franck^Condon principle, the fast quantum^me-
chanical transfer proceeds at constant coordinates
of all constituents of a slow classical subsystem, the
energy of the quantum particle being constant (due
to very di¡erent characteristic times of the classical
and quantum motions, the quantum particle cannot
borrow energy from the virtually immobile classical
subsystem). On the other hand, the coordinate q is
changing continuously, and the classical subsystem
remains near the barrier top only for some restricted
time dc. If this time is much longer than dif , the
quantum particle can exchange many times between

the reactants, the interaction leading to splitting of
the energy levels can develop in a full extent, and
hence adiabatic curves can form. In this case, at
the top of the adiabatic q-barrier, the particle goes
over from the initial position to the ¢nal one with the
probability equal to 1.

In the opposite case, when dcHdif , the interaction
between initial and ¢nal states does not have enough
time to develop, the system remains in the diabatic
state, and the barrier height is determined by inter-
section of the diabatic curves. In the course of its
thermal £uctuations, the classical subsystem will
pass the crossing point many times before the par-
ticle jumped to its ¢nal position. Therefore, at the
top of the classical barrier, the transfer probability
is much less than unity and is close, by order of
magnitude, to the ratio dc/dif .

Let us estimate this ratio. The time dif is inversely
proportional to Vif (the stronger the interaction, the
more rapid is the transition). From dimensionality
considerations, as the proportionality factor we can
assume the Planck constant: difVh/Vif . On the other
hand, dc =vq/v*, where vq is the width of the tran-
sition region (which lies in vicinity of the barrier top
q*, see Fig. 5, left), and v* is the velocity of the
system motion in this transition region. From the
Franck^Condon principle, the transition proceeds
at constant q and the system energy; the latter means

Fig. 5. Scheme of adiabatic electron transfer. Diabatic and adiabatic potential energy curves for classical subsystem (left panel). Cross-
ing of diabatic curves (not a¡ected by two partners' interaction) is shown by dashed lines. Interaction results in splitting of curves by
2Vif , forming lower (U�) and higher (U3) adiabatic curves. Di¡erent activation energies for non-adiabatic and adiabatic transition are
shown. The width of the region of substantial reactants interaction is marked as vq. Right panel : potential energy curves for electron
at initial (left) and ¢nal (right) positions. Dashed horizontal line, electron energy levels without reactants' interaction; solid lines, split
electronic levels. The quantum subsystem (electron) undergoes the tunneling when the quantum level equalize, at the top of adiabatic
U� barrier (the right panel of the ¢gure).
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that the di¡erence in energies of initial and ¢nal dia-
batic states, i.e. MdUi/dq3 dUf /dqMq� vq should be
compensated for by the interaction energy Vif .
From the equality of these two quantities, the width
vq can be found. Substituting it into expression
for dc, we can ¢nally estimate the ratio dc/dif , so
called adiabaticity parameter (Landau^Zener param-
eter Q) :

Q � V2
if=hv � dU i

dq
3

dU f

dq

���� ����q�: �2�

The total transition probability P accounting for a
many times passage of the system around the inter-
section point (at given energy, the classical oscillator
moves back and forth along its diabatic curve) is

P � �13e32Z Q �= 13
e32Z Q

2

� �
: �3�

At 2ZQg1, P = 1 (adiabatic process), at 2ZQH1,
P = 4ZQH1 (non-adiabatic process). A large adiaba-
ticity parameter can be a result of di¡erent factors:
strong interaction Vif , low velocity v*, and low slope
of the initial and ¢nal diabatic curves (dUi;f /dq ; no-
tice, that these two curves have the slopes of opposite
sign, and therefore both corresponding terms in Eq.
2 are positive).

The medium can be described as some set of har-
monic oscillators, or one oscillator with an e¡ective
frequency geff . Then, for the transition probability
per unit time we can write

W � g eff

2Z
U exp 3

vGg

kT

� �
: �4�

Here geff /2Z gives the number of the system's oscil-
lations towards the barrier top, exp(3vGg/kT) deter-
mines the fraction of these oscillations having the
energy enough to reach the barrier top, and the
transmission coe¤cient U gives the probability of
transition to the ¢nal state for a system which has
reached the barrier (U is essentially the same as Lan-
dau^Zener probability P ; this designation is more
usual in chemical kinetics).

Let us estimate U using Eqs. 2 and 3. For a har-
monic oscillator,

U � 1
2
G �q3q0�2 �5�

where q0 is the equilibrium coordinate. Hence MdU/

dqM=Gg (q3q0), the corresponding di¡erence of de-
rivatives is Gg(q0f3q0i) = (2EsGg)1=2, the subscripts i
and f mark the equilibrium coordinates of initial and
¢nal states, and Es is the medium reorganization en-
ergy

Es � 1
2
G �q0f3q0i�2: �6�

Exactly at the crossing point of two diabatic
curves the total oscillators energy equals to its poten-
tial energy (kinetic energy is zero), and in vicinity of
this point the system possesses kinetic energy of or-
der of the average thermal energy mv2/2 = kT. This
equality, the expression for oscillators frequency
g= (f/m)1=2 and Eq. 5 give us the value of
v* = (2ZkTg/G)1=2 (the coe¤cient Z1=2 appears due
to averaging of velocities in some energies interval
around kT). Substituting in Eq. 2 expressions for
derivatives and velocity, we obtain the ¢nal result
for transmission coe¤cient

U � 2ZV2
if

Gg eff

Z
kTEs

� �
1=2
: �7�

The other useful form of Eqs. 4 and 7 is

W � V 2
if

G
Z

kTEs

� �
1=2

exp 3
vGg

kT

� �
: �8�

For the non-adiabatic reaction, the activation en-
ergy vGg is determined by intersection of two dia-
batic curves and is expressed through reorganization
energy Es and the free energy of the elementary act
G0 by the usual quadratic expression of the Marcu-
sian type

Gg � �Es � vG0�2
4Es

: �9�

For adiabatic reaction, the activation barrier is
determined not simply by crossing of two diabatic
curves, but is lower by the value of the interaction
energy Vif (see Fig. 5, left panel).

Let us consider brie£y the in£uence of the medium
vibration frequency on the reaction rate. As is seen
from Eqs. 4 and 7, in non-adiabatic processes geff

enters the rate equation both in numerator and de-
nominator, and hence cancels out (this is presented
explicitly in Eq. 8). The physical reason of that is
clear: an increasing geff means more crossings the
barrier in a time unit, but simultaneously a larger
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velocity of this crossing, and hence a decrease in dc

and in transition probability at each crossing.
In adiabatic process, the medium frequency enters

the rate equation explicitly. However, one remark
seems to be expedient here. In the real medium, there
is a lot of di¡erent vibrational modes of di¡erent
frequencies. The e¡ective value of Eqs. 4 and 7
should be obtained by averaging the squared fre-
quencies of all modes weighted proportional to their
contributions into activation energy. Because the
squares are averaged, the dominant is the highest
frequency present in a tangible proportion. Usually,
it is the frequency close to the classical limit (note,
that only classical subsystem moves over the barrier).
This limit is kT/G, hence for the totally adiabatic
process we obtain the usual pre-exponential of the
transition state theory kT/h. In the above consider-
ations (as well as in the transition state theory), it
was accepted that there does exist a thermal equilib-
rium distribution of all microcon¢gurations (corre-
sponding, in particular, to various dipoles orienta-
tions). If the rate of the thermal equilibration is
not high enough (high viscosity, conformational rig-
idness of the proteins structure), the characteristic
relaxation time enters the pre-exponential of the
rate equation of an adiabatic reaction (see, e.g. [21^
25]).

3. Proton transfer

3.1. The principal regimes of proton transfer

Up to this point of our discussion, we have not
speci¢ed what a quantum particle is considered, elec-
tron or proton, and they really have much common
in their behavior. However, there exists a substantial
di¡erence between them: the characteristic time of
electron movement is by approximately one order
of magnitude shorter than that of proton. Therefore,
we should consider not only adiabatic or non-adia-
batic behavior of some quantum particle relative to
movement of the classical subsystem (medium polar-
ization), but also the problem if electron follows
adiabatically proton movement or not.

When proton goes under the barrier from its initial
to ¢nal well, at the proton coordinate R* (the top of
the barrier along R) some rearrangement of the elec-

tronic cloud should proceed leading to disruption of
A^H bond and formation of a new B^H bond. The
time of this rearrangement should be compared with
the time of proton residence in vicinity of R*. So,
here appears a new adiabaticity parameter, described
by the same Eq. 2, but with the other meaning of
velocity v*. This velocity is no more the velocity of
classical movement, but the absolute value of the
imaginary velocity of proton inside the classically
prohibited region under the barrier. Further, the de-
rivatives of Ui;f should be taken relative to proton
coordinate. If the adiabaticity parameter, determined
in such a way, 2ZQtunnH1, then we have a totally non-
adiabatic process, both electron and proton do not
follow adiabatically the medium movement, and elec-
tron does not follow proton's motion (as a matter of
fact, this case, with a low proton tunneling probabil-
ity, was depicted in Fig. 2).

In this case, the interaction matrix element in Eqs.
7 and 8 is the electron^proton one, and it is deter-
mined as

V ep �
Z

i piV ifi pfdvWV if

Z
i pii pfdv �

V if exp 3
1
2
c

� �
�10�

where c is the tunneling factor determined by the
overlap of the vibrational wave functions of pro-
ton in A^H (i) and in B^H (f) corresponding to
the coordinate q* of the surrounding medium (the
top of the barrier along q). Eqs. 7 and 8 take the
form

U � 2ZV2
if exp�3c �
Gg eff

Z
kTEs

� �
1=2

�7a�

W � V 2
if

G
Z

kTEs

� �
1=2

exp�3c �exp 3
vGg

kT

� �
: �8a�

For a totally non-adiabatic reaction, activation en-
ergy will be determined by Eq. 9.

At the opposite relationship, 2ZQtunn s 1, electron
follows adiabatically proton motion during its under-
barrier transition. However, proton transition can
be, at the same time, non-adiabatic (UH1). In this
case, proton behaves non-adiabatically relative the
medium while electron follows proton adiabatically.
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This process can be called a partially adiabatic (or
partially non-adiabatic) reaction [7].

For the partially adiabatic reaction, expressions
similar to Eqs. 7 and 8 are valid, but with the follow-
ing di¡erence: the half of the vibrational levels split-
ting vE/2 should be substituted for Vif . This splitting
is connected with the tunneling factor through

vEWG6 pexp 3
c ad

2

� �
�11�

where 6p is the frequency of the proton vibration,
and cad refers to the tunneling under the adiabatic
barrier. Similar to adiabatic electron transfer, the
activation barrier is lowered here by corresponding
interaction energy, i.e. by vE/2. However, for parti-
ally adiabatic process, the proton wave functions
overlap is weak, and hence the splitting of vibration-
al levels vE is small. So, activation energy is practi-
cally close to that calculated by Eq. 9.

For the sake of simplicity, we have not accounted
for the existence of several discrete vibrational levels
in both initial and ¢nal state, for each combination
of them its own U should be introduced. The total
reaction probability should be found as a sum of
probabilities of all partial transfers.

In simple chemical reactions, it can be often as-
sumed that electrons of the two transformed covalent
bonds follow adiabatically the proton movement, i.e.

a partially adiabatic process takes place. However, in
some biological, especially bioenergetic processes, we
meet the situation of a concerted proton and electron
transfer, electron being transferred from a rather dis-
tant donor. In this case, a totally non-adiabatic
transfer can be expected.

When all Q's are more than unity, the process pro-
ceeds totally adiabatic. For totally adiabatic process
the transmission coe¤cient U= 1. Large Q is caused
by good overlap of all wave functions, including pro-
tonic ones. Therefore, in the totally adiabatic process
splitting of the vibrational levels can be substantial,
and this may result in a marked correction to acti-
vation energy (see Fig. 6).

3.2. Some typical cases of proton transfer

As we have seen, the probability of proton transfer
(tunneling factor c) depends strongly on the overlap
of its vibrational wave functions. An important
quantitative parameter of the oscillator's wave func-
tion is the vibration amplitude of a corresponding
classical oscillator. For a typical A^H covalent
bond with a stretching vibration frequency about
3000 cm31 the zero-point vibration amplitude
a0 = 0.1 Aî . This is the characteristic length determin-
ing, in the ¢rst approximation, the proton transfer
mechanism.

Fig. 6. Scheme of adiabatic proton transfer. The ¢gure is similar to Fig. 5. Diabatic and adiabatic potential energy curves for classical
subsystem (left panel). Right panel : potential energy curves for proton at initial (left) and ¢nal (right) positions. Reactants interaction
splits proton vibrational level by vE.
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Let us consider the case when the proton donor
and acceptor are held at some large distance, so that
the distance between two minima is of order of sev-
eral angstroms. It is easy to conclude that in this case
the tunneling probability at the ground level is negli-
gibly small. For such a large distance, the donor^
acceptor interaction is weak, and hence the splitting
of vibrational levels is negligible, as is shown in Fig.
7. At large deviations from the equilibrium positions,
the anharmonicity of the corresponding oscillators is
substantial, and therefore the curves acquire the
shape depicted in Fig. 7. The underbarrier transition
becomes possible only near the top of the barrier, i.e.
the system behaves virtually classically, both for pro-
ton and medium movements; electron follows them
adiabatically. The activation energy consists of the
barrier along the polarization coordinate q (not
shown) and the barrier along the proton coordinate
R. The last one, due to the curves anharmonicity, is
close, by order of magnitude, to the bond dissocia-
tion energy. So, we can expect here an activation
energy of order of many tens of kilocalories; that
means the proton transfer on large distances of sev-
eral angstroms is improbable.

Let us go over to the proton transfer at the dis-
tance of the order of 1 Aî or less. Here it is expedient
to consider two types of systems, viz. with a weak or
strong donor^acceptor interaction. To the ¢rst type
belong the couples involving C^H acids and/or cor-
responding bases, metallic electrode in electrochemi-
cal proton discharge, systems with hydride anion

transfer, etc. The second type of systems includes
the proton donors and acceptors forming a well-ex-
pressed hydrogen bond.

In the weakly interacting systems, the equilibrium
distance between donor and acceptor equals the sum
of their van der Waals radii. At the neutral H radius
V1.2 Aî , typical acceptor atom radius V1.5 Aî , and
the covalent bond length V1.1 Aî , the equilibrium
distance between two minima is V1.6 Aî . This is
too large as compared to 0.1 Aî , and hence the pro-
ton transfer in this position is strongly unfavorable.
However, the tunneling probability increases drasti-
cally with the closer approach of reactants. As can be
seen from Eqs. 1 and 1a, proton wave function de-
cays exponentially with the distance squared. There-
fore, the tunneling probability depends exponentially
on the square of the tunneling distance

exp�3c � � exp 3
m
G

6 i6 f

6 i �6 f
�vR�2

� �
: �12�

Here m is the reduced mass (practically, mass of H
atom), 6i;f proton frequencies in the initial and ¢nal
states, vR is the distance between two minima (tun-
neling distance). Decrease in the tunneling distance
increases the tunneling probability.

On the other hand, the approach of the reactants
cannot be an unrestricted one because repulsion be-
tween reactants hinders their mutual approach. The
repulsion energy can be described by, e.g. Born^
Mayer potential

U � Be
3

R
b �13�

where R is the distance between two heavy atoms
(vR plus length of two covalent bonds), B and c
are empirical constants. The total transfer probabil-
ity is proportional to

exp 3
m
G

6 i6 f

6 i �6 f
�vR�2

� �
exp 3

B exp 3
R
b

� �
kT

0BB@
1CCA:
�14�

The two opposite trends result in some optimal
distance ensuring a maximum of expression (Eq.
14), i.e. the high enough tunneling probability and,

Fig. 7. The potential curves for proton transfer at the top of
the medium barrier (q*). The distance between reactants is very
large, Morse-like character of potential curves is well pro-
nounced, the reactants' interaction is weak, and hence the reso-
nance splitting of energy levels is practically negligible. The ac-
tivation energy component due to proton movement Egp is
close, by order of magnitude, to the bond dissociation energy
D.
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at the same time, not too large energy expenditure
necessary to overcome the repulsion. The estimates
for proton transfer between two C atoms carried out
with realistic constants borrowed from independent
experimental data have shown that the optimum tun-
neling distance is much shorter than the equilibrium
one: about 0.4 Aî instead of 1.5 Aî [26]. The empirical
parameters used in these calculations were, of course,
only approximate ones. Furthermore, the formula
for non-adiabatic tunneling of protons in a double
well of two harmonic oscillators was employed, and
hence the donor^acceptor interaction even at small
inter-reactant distance was neglected. Therefore, the
result of these calculations cannot be considered as a
strict and quantitative one. Nevertheless, it shows
unambiguously that, in a transition con¢guration, a
very substantial approach of the reactants should
take place, and gives the realistic order of its magni-
tude. It should be mentioned that the calculations
employing, instead of harmonic, a Morse potential
for C^H and O^H covalent bonds and substituting
another Morse potential for CTO interaction have
resulted in a quite similar value of the optimal tun-
neling distance, viz. 0.46 Aî [9].

As is seen from Eq. 14, the optimum distance de-
pends, generally speaking, on temperature, and this
may cause some deviations from the Arrhenius equa-
tion.

The other type of systems present O^H and similar
acids reacting with O, N and other bases. The do-
nor^acceptor interaction is rather strong already
under equilibrium conditions, and the hydrogen
bond is forming. For typical O^HTO bond with
OTO distance of 2.8^3.0 Aî and the O^H bond length
of 1 Aî , the equilibrium inter-minima distance equals
to 0.8^1.0 Aî . This is also somewhat too large for an
e¡ective proton tunneling, and hence some approach
of the reactants is necessary. In contrast to the pre-
vious case, the process is facilitated by two circum-
stances. First, the inter-reactant interaction makes
the approach substantially easier than described by
Eq. 13; the energy dependence on the distance is
described here by a Morse-like equation with a
much more gentle energy rise upon decrease in the
OTO distance. Second, the energy curve along the
proton coordinate deviates substantially from two
intersecting parabolas of harmonic oscillators. Cor-
respondingly, barrier along this coordinate is lower,

and the tunneling probability is higher, and is not
obeying Eq. 12. The form of the corresponding de-
pendence can be determined, in principle, from quan-
tum^chemical calculations. In particular, at not too
short distances, it follows an exponential form
exp(3avR) similar to this for the long-range electron
transfer, but with much larger coe¤cient a (about
30^40 Aî 31 against V1 Aî 31 for electron transfer
[27]). As a result, proton transfer for the reactant
of the ¢rst type is usually markedly slower than for
those of the second.

With the inter-reactant distance decreasing, the
barrier for proton tunneling becomes narrower, and
this favors proton tunneling. Initially, at rather large
distances, proton tunnels in the upper part of the
barrier, and electron follows it adiabatically (parti-
ally adiabatic process). Upon further approach, the
tunneling at the ground level becomes most favor-
able, the (imaginary) proton velocity rises, and the
process becomes totally non-adiabatic. At a shorter
distance, the barrier height (along R coordinate) de-
creases, the proton velocity decreases, and the pro-
cess goes over to a partially adiabatic regime. A more
closer approach can make the interaction so strong
that the parameter 2ZQ exceeds unity, and the process
becomes totally adiabatic. But this adiabatic process
di¡ers from the case of very large distances: in the
latter proton moves classically, but at very short dis-
tances, a fast tunneling of proton takes place. Fur-
ther, at very short distances, the lowest vibrational
level lies over the barrier top, and proton belongs to
both molecules simultaneously (Fig. 8A). In a limit-

Fig. 8. Potential energy curves at very short distances between
proton donor and acceptor. (A) The double-well potential curve
with common vibrational levels. (B) Two wells have merged
into a single one.
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ing case, a one-minimum well is formed (Fig. 8B).
An equilibrium structure, corresponding to situation
depicted on Fig. 8, can be formed sometimes by ex-
tremely strong interacting molecules; this is a very
short hydrogen bond (shorter than V2.5 Aî ). For
these systems, the question of proton transfer loses
its sense.

It is understandable that variations in the reaction
parameters can be very large depending on the e¡ec-
tive potentials along OTO and H coordinates. This
potential is a¡ected both by the direct reacting atoms
(e.g. OH and O) interaction and by the in£uence of
groups bonded to O atoms; the latter can a¡ect the
OTO approach via, e.g. steric hindrances. In the lat-
ter case, reaction rate is substantially lower.

A specially interesting case presents the system
with strong inter-reactant interactions (but weaker,
than in couples with a very short hydrogen bond)
and without any additional obstacles for the reac-
tants movement. In such a system, the molecules
can reach such a short distance that the single lowest
vibrational level becomes common for both potential
wells or even a one-minimum well, i.e. something like
a very short hydrogen bond appears, but only as an
non-equilibrium, transient con¢guration (Fig. 8). In
that case, the proton tunneling becomes unnecessary,
and the reaction rate will not depend on the proton
movement, but will be determined by the rate of the
molecules approach (the same will be for the case of
a very fast, strongly adiabatic proton tunneling).
Close to such behavior is, probably, proton transfer
along the chain of highly mobile water molecules in
some channels [28].

4. Kinetic isotope e¡ect

Substantially quantum^mechanical character of
the proton movement results, for many processes,
in a very well expressed kinetic isotope e¡ect
(k.i.e.). Therefore, studies of k.i.e. become one of
the most important tools for the proton transfer in-
vestigations, both experimental and theoretical. The
presence of k.i.e. is considered as an evidence that
proton transfer is involved in the rate-determining
step (or, at least, in one of the steps a¡ecting the
reaction rate). On the other hand, absence of k.i.e.
is widely accepted as a line of evidence for the rate-

determining step not involving proton transfer. We
will address this problem at the end of this sec-
tion.

A vast literature exists on the topic, a review of
many data can be found in [2^4]; the k.i.e. in enzy-
matic reactions was also reviewed many times, par-
ticularly detailed in [29^33]. Here, we will try to dis-
cuss some important features of the phenomenon
from the point of view of the proton transfer theory
described above.

4.1. K.i.e. at constant donor^acceptor distance

As we have discussed previously, the usual situa-
tion in the proton transfer mechanism is the donor
and acceptor approaching to the distance favorable
for proton tunneling, and, at the same time, not too
close to result in an excessive repulsion energy. This
optimal distance should be, generally speaking, dif-
ferent for the light and heavy isotopes. However,
under de¢nite conditions, the distance can remain
the same for all isotopes. We will start our discussion
with this case, the simplest from the theoretical point
of view.

The situation is depicted in Fig. 9 (for the sake of
clarity, we accepted here that pK of both donor and
acceptor are the same; the e¡ect of vpK will be dis-
cussed below). At the crossing point of the curves for
classical subsystem, the levels of the quantum one
equalize, and the proton (deuteron) tunneling be-
come possible. Both for H and D, the levels are the
same, the activation energy is the same, as deter-
mined by classical subsystem (see Fig. 9), and hence
there is no e¡ect of di¡erent zero-energy on the k.i.e.
Only the tunneling probabilities are di¡erent, and
hence the k.i.e. is determined only by this di¡erence,
i.e. by variation of pre-exponential factors (Eqs. 7a
and 8a). This result is opposite to the conclusions of
the bond-stretching model (in semi-classical approx-
imation, Fig. 1B, the activation energies should be
di¡erent; account for the tunneling at the top of the
barrier, Fig. 1C, cannot change this conclusion). So,
for the process at ¢xed distance, we have to expect,
in the framework of the reorganization^tunneling
model, a temperature-independent k.i.e. (the correc-
tion for non-equal di¡erence of zero energies in ini-
tial and ¢nal states, which applies for non-equal pK
of the donor and acceptor, will be considered later;
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its value is usually small, on the verge of the exper-
imental accuracy).

A constant tunneling distance may be expected in
the case when the distance between donor and accep-
tor is determined not by necessity to optimize proton
transfer, but by some other factor. One example of
such a situation we can ¢nd in the enzymatic hydro-
lysis by serine proteases. For ester hydrolysis, the
rate determining is deacylation step, more precisely,
formation of a tetrahedral intermediate:

�15�
The optimal disposition of heavy atoms is deter-

mined by the closest possible approach of O atom of
attacking nucleophil (H2O) to C of carbonyl group.
The O^C distance should be the same for both light
and heavy water, and the O^N distance (N is the
proton-accepting atom of the His-57 imidazole
ring) is as short as compatible with the geometry of
mutual disposition of H2O, CxO, and Im. So, the
O^N distance is not optimized separately for H and
D transfer, and remains the same for both isotopes.
We have studied some hydrolytic reactions catalyzed

by K-chymotrypsin [34,35] and L-trypsin [36]. A typ-
ical example is given in Fig. 10. In all cases, practi-
cally the same activation energy was found for reac-
tions in H2O and D2O, i.e. k.i.e. was temperature-
independent. In absence of the activation energy dif-
ference, k.i.e. can be determined only by the di¡er-
ence in pre-exponentials, i.e. by the di¡erence in tun-
neling probability. To the best of my knowledge, this
was the ¢rst demonstration of proton tunneling in an
enzymatic reaction.

K.i.e. for serine proteases is not high, kH/kD about
3. This is, probably, due to rather favorable condi-
tions for proton tunneling: donor, O^H, and accep-
tor, N, are connected with a hydrogen bond. In con-
trast, extremely large k.i.e., kH/kD = 48 was observed
by Klinman and coworkers [37] in the lypoxigenase

Fig. 10. Arrhenius dependence of the catalytic rate constant for
hydrolysis of N-benzoyl-L-arginine ethyl ester catalyzed by
L-trypsin [35]. 1, In H2O; 2, in D2O. Equal slopes of these
curves mean equal activation energy for H and D transfer.

Fig. 9. Left panel : potential curves along the classical coordinate q ; as pK of donor and acceptor are supposed to be the same, the re-
actions vG = 0 (both minima at the same level). Right panel: potential curves along the proton coordinate: dashed for the light iso-
tope and solid for the heavy one.
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reaction. The details of enzyme structure and reac-
tion mechanism are yet to be elucidated, but an im-
portant point is clear: proton (or H atom) is ab-
stracted here from C^H bond, and hence one
cannot suppose its hydrogen bonding to an acceptor.
Therefore, in this reaction, one should expect proton
tunneling under a rather high and wide barrier, re-
sulting in a large k.i.e. Very weak temperature de-
pendence observed suggests that, by some unknown
reason, in this system the tunneling distances for
proton and deuteron are similar.

4.2. K.i.e. at di¡erent tunneling distances

In the case when there are no special restrictions
upon the mutual movement of the proton donor and
acceptor, they will approach up to some optimal
tunneling distance (see Section 3.2). This optimal dis-
tance will be di¡erent for light and heavy isotopes:
tunneling of the latter is more di¤cult, and hence it

is favorable, in this case, to spend more energy
against repulsion forces, but decrease the tunneling
distance. For instance, in the model discussed in [26],
the optimal tunneling distance for H, D, and T were
calculated to be equal to 0.393, 0.336 and 0.300 Aî ,
respectively. In another model calculations [9], typi-
cal tunneling distances for H and D about 0.46 and
0.40 Aî were obtained.

The energy diagram is depicted schematically in
Fig. 11. The shorter optimal tunneling distance for
deuterium transfer means a larger energy expenditure
to arrive to this distance, and, hence, the higher ef-
fective activation energy as compared to protium
transfer. Therefore, as a most common case, one
should expect a substantial temperature dependence
of k.i.e. It should be mentioned also that, as it was
discussed in Section 3.2), the optimal tunneling dis-
tance is, in principle, temperature-dependent, and
this may result in deviations from the linear Arrhe-
nius plot, stronger for the heavier isotope.

Fig. 11. Left panel : potential curves along the classical coordinate q. For the sake of clarity, pK values of donor and acceptor are
supposed to be equal. The same is accepted for the repulsion energies between A^H and B (initial state) and A and B^H (¢nal state).
EaH, EaD, energies of approach of the H or D species to the optimal tunneling distance; Eg

H, Eg
D, e¡ective activation energies of H

and D transfer; Eg
H;D = EaH;D+Eg

i , where Eg
i is the activation energy of the proton (deuteron) transfer in the optimal con¢guration;

as a good approximation, Eg
i is the same for all isotopes (see Fig. 9). The lowest curves in the left panel relate to the reactant being

at the van der Waals' distances, the upper ones to reactant at the distances optimal for tunneling, dashed for the light isotope and
solid for the heavy one. Right panel : potential curves along the proton coordinate. Dashed for the light isotope and solid for the
heavy one; the ground levels in initial and ¢nal states for each of the isotopes are equal. The shorter distance for deuteron tunneling
is shown.
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Klinman and coworkers have carried out an exten-
sive investigation of H, D, and T isotope e¡ects for
several enzymatic reactions, and came to conclusion
on a substantial role of tunneling in these processes
(reviewed in [38,39]). As the reactions studied in-
volved breaking of C^H bond, the observed e¡ects
were quite large. Except lipoxygenase reaction de-
scribed above, all of them show a very well expressed
temperature dependence of k.i.e. That could be ex-
pected because in all these reactions the heavy atom
movement can in£uence the tunneling distance. As
an example, the data on yeast alcohol dehydrogenase
[40] can be shown (Fig. 12). In this reaction, proton
abstraction from C^H bond to some base takes
place.

4.3. Relationship between k.i.e. involving di¡erent
isotopes

In many studies of k.i.e., based on the bond-
stretching model supplemented by tunneling at the
top of the barrier, the relationship between kH, kD,
and kT has been used as a criterion of tunneling
[4,29^33,38,39]. From the point of view of semi-clas-

sical treatment, activation energy of reaction is
A3E0 where E0 is the zero energy; for any isotope,
E0 = E0H/km, E0H being the zero energy for protium,
and m is the relative mass of the given isotope. From
this considerations, the ratio of rates for two isotopes
can be easily expressed as

ki=kk � exp�E0H�1=kmi31=kmk��=RT

and hence

ki=kk � �km=kn�X where X �

�1=kmi31=kmk�= �1=kmm31=kmn�: �16�
Most often studied ratios are

kH=kT � �kD=kT�3:26 and kH=kT �

�kH=kD�1:44 �Swainÿ Schaad relations�: �16a�
Experimental values of X exceeding 3.26 (or, cor-

respondingly, 1.44) are considered as evidence for a
substantial tunneling contribution.

However, this conclusion is based entirely on semi-
classical bond-stretching model (with tunneling cor-
rections), but was never tested in comparison with
predictions of the reorganization^tunneling mecha-
nism. Remember that, in the latter model, the proton
tunneling takes place almost in all cases (the only
exception is when two proton vibrational ground
levels merge together, see Fig. 8B). The correspond-
ing relations in the framework of this mechanism will
now be discussed.

According to Eq. 12, the tunneling probability can
be presented in the form

exp�3a0H f �R�kmi�
where f(R) is a function of tunneling distance, a0H is
a constant related to protium, and the square root of
the reduced mass of isotope i appears because fre-
quencies are inversely proportional to km. This ex-
pression is practically valid not only for harmonic
oscillator, but, with another form of f(R), for tunnel-
ing through other barriers too [15] (remember that
Gamow equation for tunneling probability at any
barrier form contains km).

Under condition of constant tunneling distance R,
the ratios of rate constants are:

ki=kk � exp�3a0Hf �R��kmi3kmk��

Fig. 12. Arrhenius plots for primary k.i.e. in oxidation of ben-
zyl alcohol catalyzed by yeast alcohol dehydrogenase; curve 1
for kH/kT, curve 2 for kH/kD (reproduced after [39]). Substantial
temperature dependence of k.i.e. points to a substantial di¡er-
ence in activation energies of transfer of three isotopes.
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and hence

ki=kk � �km=kn�Y where Y � �kmi3kmk�=�kmm3kmn�
�17�

and

kH=kT � �kD=kT�2:31 and kH=kT � �kH=kD�1:76:

�17a�

We see that exponents in Eqs. 16, 16a, 17 and 17a
are di¡erent though of the same order of magnitude.
Eqs. 17 and 17a are derived for conditions of a con-
stant tunneling distance. As has been discussed be-
fore, the most frequent case is when the distance is
di¡erent for all isotopes, being shorter for the heavier
one. Therefore, in real systems, deviations from Eqs.
17 and 17a should be expected. The extent of these
deviations depends on the relative in£uence of the
reactants approach on the rates of all isotopes trans-
fers (note that the e¡ect is not simply change of f(R),
but also appearance of an additional contribution to
activation energy: see, e.g. Eq. 14).

Let us consider e¡ect due to variations of the op-
timal tunneling distance (and other similar e¡ects
too). With corrections (relative to H) pT and pD,

kH=kT � k0H=k0TpT ; kD=kT � k0DpD=k0TpT ; kH=kD

� k0H=k0DpD

where k0i are the constants at the distance of the
optimal H tunneling, we obtain

kH=kT � �k0D=k0T�Y 1=pT � �kD=kT�Y �pT�Y31=

�pD�Y � �kD=kT�Y �pT=pD�Y=pT �18a�

kH=kT � �k0H=k0D�Y 1=pT � �kH=kD�Y �pD�Y=pT �

�kH=kD�Y �pD=pT�Y �pT�Y31: �18b�
Both factors pT, pD s 1, and (pT/pD)s 1 too: the

heavier the isotope is, the stronger is the tunneling
distance e¡ect. Taking into account the numerical
values of Y in Eqs. 18a and 18b (2.31 and 1.76,
respectively), one can show that if the correction in
Eq. 18a is larger than 1, the correction in Eq. 18b
will be smaller. Correspondingly, the apparent expo-
nential will be larger or smaller than calculated by
Eq. 17a. Precisely this situation can be observed in

the results of numerical calculations given below. We
see that an account of the tunneling distance e¡ect
shifts the results of quantum^mechanical analysis to-
wards the ¢gures corresponding to semi-classical for-
mulae, and, at more pronounced distance e¡ect, they
can exceed the latter. So, the system may have pa-
rameters close to the semi-classical Swain^Schaad
relations, but this does not mean that the system
behaves really semi-classically. The deviations from
Eq. 16, in the reorganization^tunneling mechanism,
do not mean larger or smaller extent of tunneling:
tunneling is predominant in all cases.

The e¡ect of the reactants approach was consid-
ered in [9,26]. Though the model calculations give
reasonable order of magnitude for k.i.e., the calcu-
lated deviations from the Swain^Schaad relations are
very sensitive to parameters used: e.g. for the param-
eters of repulsion potential employed in the text of
[26] the values of Y were calculated to be 2.56 and
1.65, correspondingly, with other parameters of the
same model the exponentials were 8.05 and 1.14 [26],
for hydrogen-bonded reactants the values of 2.77 and
1.56 were obtained.

The isotopic rate constants ratio can be in£uenced
by another e¡ect: di¡erent involvement of vibration-
ally excited states, especially pronounced at large vG
(see Section 4.4). I do not know any calculations
where e¡ect on the exponentials was analyzed with
account of two factors simultaneously.

4.4. pK dependence of k.i.e.

In pK dependence of k.i.e., there are two contri-
butions which will be consider separately. The ¢rst
e¡ect is illustrated by Fig. 13. The di¡erence in pK
can be ascribed to the di¡erent energies of the cor-
responding X3H bonds. This results in some di¡er-
ence in zero-point energies E0 in the initial (i) and
¢nal (f) states, both for H and D (and hence, in
corresponding di¡erence of true pK values). As E0

for H is k2 times larger than for D, (E0f3E0i)D =
(E0f3E0i)H/k2. So, the equilibrium energy gap for
protium di¡ers from that for deuterium by
(E0f3E0i)H (131/k2), and the change of activation
energy equals fraction K of this value (K is the
BrÖnsted coe¤cient determined by the ratio of the
slopes of potential curves; under usual conditions, at
Vs MvGM, the value of K is around 0.50). When pK
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of donor is higher than of acceptor, E0f 6E0i, the
correction diminishes activation energy for H trans-
fer as compared to D, at the opposite sign of vpK,
the e¡ect is also opposite.

Let us estimate the possible magnitude of this ef-
fect. According to an empirical rule, E0 is propor-
tional to the bond energy D [41]

E0 � 0:042 D �19�
or, accepting that vpK =vD/2.3 RT

vE0 � 0:058 vpK : �19a�
At typical vpKW6 (e.g. di¡erence of pK of side

chains His and Ser), we obtain a correction to acti-
vation energy of only about 0.05 kcal, and a correc-
tion factor in primary isotope e¡ect of order of 1.09
(these values increase up to about 0.1 kcal and 1.18,
if an estimate for the e¡ect of two bending vibrations
will be added). This is smaller than the correspond-
ing experimental errors.

The second e¡ect, which plays a more important
role, is the e¡ect of participation of vibrationally
excited levels. The corresponding energy diagrams
are presented in Fig. 14. The minima of curves for
classical subsystem (central panel) are shifted verti-
cally according to the equilibrium energies of the
ground and the ¢rst excited vibrational levels for H
and D (right panel). Several transitions between vi-

brational levels are possible: 0C0, 0C1, 1C0 and
1C1. For the 0C0 transition, the activation ener-
gies for H and D are rather close (as it was discussed
above, Fig. 13). However, due to smaller vibrational
quanta for deuterium, the di¡erence in positions of
`classical' (central) curves for H and D for excited
state increases: G(gH3gD) instead of G(gH3gD)/2
for ground level. Therefore, for some of transitions
(in Fig. 14, it is 0C1 transition for deuterium), acti-
vation energy is albeit higher, but not too high as
compared to 0C0 transition. At the same time, over-
lap of vibrational wave function for excited state is
better (the barrier is lower and narrower) than in the
ground state (Fig. 14, left panel). Therefore, contri-
bution of the excited state is not negligible. This
contribution is relatively larger for D than for H
because for the latter, the excited level lies markedly
higher.

Participation of excited vibrational states is possi-
ble, in principle, at any vpK, including vpK = 0.
However, this e¡ect increases markedly with increase
in MvpKM. Indeed, for the situation depicted in Fig.
14 (an exergonic process, pK of donor is less than of
acceptor), the lower is the energy of the product, the
lower are the intersection points of potential curves
D0 in the initial state and D0 and D1 in the ¢nal one
(central panel). The closer is the intersection point to
the curve's minimum, the smaller is K, i.e. the ratio

Fig. 13. Left panel : potential curves along the classical coordinate q. The minima of these curves correspond to the ground levels in
the equilibrium initial and ¢nal states shown in the right panel. Right panel : potential curves along the proton coordinate; ground
levels dashed for the light isotope and solid for the heavy one. Besides two equilibrium curves, those in transition state are shown.
For the sake of clarity, the last curves are given only for the light isotope.
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of the slopes. This means that activation energy de-
creases for excited state with increasing vpK faster
than for the ground state, and the relative contribu-
tion of the 0C1 transition increases. For H transfer,
the e¡ect of excited level is less pronounced than for
D, and hence with increasing vpK transfer of D ac-
celerates stronger than of H. So, increase in vpK
decreases k.i.e. With the opposite sign of vpK, for
endergonic process, the most important additional
contribution originates from 1C0 transition. By sim-
ilar considerations, in this case, k.i.e. also decreases
with increasing absolute value of vpK. So, we see
that participation of di¡erent excited vibrational lev-
els explains well qualitatively (and, in model calcula-
tions, semi-quantitatively) the bell-shaped depen-
dence of k.i.e. on vpK (with a maximum close to
vpK = 0) that was observed experimentally in several
homologous series of acids (bases) [9]. Strong exper-
imental arguments in favor of substantial involve-
ment of excited levels were obtained recently [42]
for electrochemical discharge of proton donors: in
this case, much smaller bond energy of hydrogen
adsorbed on metal results in smaller vibrational
quanta what makes the excited states more easily
accessible.

4.5. Secondary k.i.e.

When transfer of one of protons is coupled with a
substantial change of position of another hydrogen
atom (e.g. in the case of changing of hybridization of
carbon orbitals), a secondary k.i.e. can be observed.
The secondary hydrogen can move to its new loca-
tion quantum^mechanically, i.e. by tunneling. Here,
the tunneling distance is much shorter, and should
proceed along the coordinate connected not with va-
lence (stretching) vibration, but rather with bending
vibrations (notice that the typical hydrogen bending
frequencies are about 1500 cm31, i.e. substantially
higher than kT). Secondary k.i.e. are, naturally,
much lower than the primary ones. Experimentally,
the ratios of isotopic rate constants for secondary
hydrogens were found to be very sensitive to various
factors [38,39]. The general approaches described
above should be applicable for this problem too.
However, a strict theory of secondary k.i.e. has yet
to be developed.

4.6. Proton inventory method

For many enzymatic reactions, a question arises,

Fig. 14. Central panel: potential curves along the classical coordinate q. The minima of these curves correspond to the ground and
¢rst excited levels (marked D0, D1 and H0, H1, respectively) in the equilibrium initial and ¢nal states shown in the right panel. Acti-
vation energies for deuteron transfer from the initial ground level to ¢nal ground (Eg

00) and ¢rst excited (Eg
01) levels are shown. Right

panel : potential curves along the proton coordinate in equilibrium state: ground and ¢rst excited levels dashed for the light isotope
and solid for the heavy one. Left panel : potential curves along the proton coordinate in transition state; deuteron transitions from
the ground to the ground and ¢rst excited levels are shown (initial state on the left, and ¢nal state on the right. Solid lines, 0^0 transi-
tion; dash-and-dotted lines, 0^1 transition).
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how many protons are transferred in the rate-deter-
mining step. A classical example of this problem is
the mechanism of action of serine proteases: is it an
one-proton reaction (as was presented in Eq. 15), or
the second proton is transferred simultaneously from
the other side of imidazole moiety to the nearby Asp
(so-called `charge-relay mechanism' [43])? The prob-
lem is often addressed by means of the proton in-
ventory method (for review see, e.g. [4,44]). The
method is based on the study of the dependence of
the reaction rate on the atomic fraction of D in a
mixed medium (usually, H2O^D2O mixtures). The
treatment of the data employs the following formula
(Gross^Butler equation) obtained by summing up
the partial rates due to all isotopically di¡erent spe-
cies:

kn � k02
m
�13n� nP i��=2

m
�13n� nP i�: �20�

Here, the product involves all m reacting proton
sites, kn is the rate constant at the atomic fraction of
D equal to n, k0 is the same at n = 0, Pi and Pi* are
the fractionation coe¤cients for the distribution of D
between solvent and the initial states and, respec-
tively, the transition states of all proton transfer re-
actions. This expression has been derived in the
framework of semi-classical approximation as it sup-
poses an equilibrium population of several transition
states considered as some quasi-molecules. However,
in reality, this equation is valid also for a pure quan-
tum^mechanical mechanism of proton tunneling
when the notion of some de¢nite transition-state co-
ordinates of proton loses its sense. The correct and
general form of Eq. 20 is [45]

kn � k02
m �13n� nQ iP i�=2

m �13n� nP i�: �20a�

Here, as before, Pi are the fractionation coe¤cients
for D distribution between solvent and reacting spe-
cies (in the state before reaction), and Qi are the ratios
of true kinetic constants (D/H) at each reacting site.
Eq. 20a transforms into Eq. 20 by substitution PI*
for QiPi : this substitution is strictly correct if transi-
tion state can be described semi-classically.

From Eq. 20a is seen that in the case of only one
proton transferred and without isotopic enrichment
of the reacting site (P= 1) the kn3n dependence is
linear. At two or more protons involved the curve

deviates from linearity. However, these deviations
are not always well expressed. So, for two reacting
protons with identical parameters the deviation at
n = 0.5 (close to the maximum one) equals to 11%
for total kH/kD = 4 (Q = 0.5), 7% for kH/kD = 3, and
3% for kH/kD = 2. It is clear that the method can give
reliable results only for substantial k.i.e.

4.7. Isotope e¡ect on reorganization energy

In principle, isotopic substitution somewhat
changes the dielectric properties of solvents, and
hence should change the coupling constant C, and,
correspondingly, reorganization energy (here C = 1/
Oo31/Os, Oo and Os being optical and static dielectric
constants). Using experimental data on Oo and Os of
heavy and light water, one can calculate that for
D2O reorganization energy should be higher only
by 0.07%. However, it was shown by the spectral
Stokes shift method [46] that water shows some
anomalies in its behavior. Its reorganization energy
is markedly higher than it could be expected in com-
parison with several aprotic solvents and even alco-
hols. This can be related to speci¢c features of water
as a liquid with a tridimensional network of hydro-
gen bonds. A substantial role of hydrogen bonds in
the abnormal component of reorganization energy is
con¢rmed by an isotope e¡ect in reorganization en-
ergy about 2.5% [46]; this exceeds markedly the val-
ue calculated in the framework of continuum electro-
statics. For enzymatic reactions, the di¡erence
between reorganization energies in H2O and D2O
should be lower because only some part of reorgan-
ization energy (most probably, less than a half) is
due to water reorganization.

4.8. Is a substantial primary k.i.e. inevitable in any
rate-determining proton transfer reaction?

The answer to this question should be de¢nitely
not. As it is clear from the preceding discussion, usu-
ally the main reason for k.i.e. is the di¡erence in tun-
neling probabilities for the light and heavy isotopes,
but not the di¡erence in their zero-point energies.
The di¡erence in zero energies is present always,
and hence, in the framework of the bond-stretching
model, should always result in a di¡erence of activa-
tion energies, i.e. in a substantial k.i.e. (except imag-

BBABIO 44816 1-5-00

L.I. Krishtalik / Biochimica et Biophysica Acta 1458 (2000) 6^2724



inary, but highly improbable case of equal zero en-
ergies both in initial and transition states).

In contrast to that, the reorganization^tunneling
model points clearly to the situation where the pri-
mary k.i.e. can be practically absent. When the tun-
neling probability for both (or even three) isotopes is
high enough that the process becomes adiabatic
(transmission coe¤cients in Eq. 4 equal to one),
the di¡erence between tunneling probabilities for
these isotopes disappears. It was shown recently
[47] that for a totally adiabatic process another rea-
son for k.i.e. can exist. As was discussed in Section
3.2, at this regime a marked splitting of vibrational
energy levels takes place, and this lowers activation
energy by E/2 (more strictly, by 2vEK(13K), so the
e¡ect has its maximum at symmetric barrier, K= 1/2).
As the splitting for di¡erent isotopes is di¡erent, ac-
tivation energies become di¡erent, and this causes a
k.i.e. Adiabatic regime is possible under condition of
fairly strong interaction of the initial and ¢nal states,
in our case, of proton acceptor and donor. The ex-
tent of the splitting depends on the strength of their
interaction. So, if the hydrogen bond is strong
enough to make the process close to the totally adia-
batic one, but not too strong to produce a large
vibrational levels splitting, the k.i.e. becomes very
small. With a further increase in the hydrogen
bond strength, k.i.e. increases.

An important reservation should be made here. An
intermediate case can exist when, at the same tunnel-
ing distance, proton transfer is adiabatic, but not
that for deuteron. The latter can go over to an adia-
batic regime at a shorter distance, but for this pur-
pose some additional repulsion should be overcome,
and D transfer will have somewhat higher activation
energy than H transfer. So, under these conditions,
some k.i.e. could be observed, but its magnitude
would be lower than for the case of totally non-adia-
batic transfers.

An additional contribution can be expected at
vpKg0. As has been explained before (Section 4.4),
at real vpK, there is a small di¡erence in reaction
energy and, hence, in activation energy. At
vpK = þ 6 the corresponding rate constants ratios
are of order of 1.1 and 0.9. The e¡ect of involvement
of excited vibrational states, based on the gain in
tunneling probability, seems to be insubstantial for
adiabatic transfer.

For a totally adiabatic process, some e¡ect can
originate also from di¡erent e¡ective frequencies of
classical subsystem, geff (see Eq. 4). This frequency
can be in£uenced by the isotopic substitution. For
instance, when the reaction coordinate includes rela-
tive motion of two water molecules, the correspond-
ing frequency can di¡er by (20/18)1=2 = 1.05 times
(the ratio of masses of D2O and H2O).

Summing up, we can conclude that, at strong
enough (but not too strong) interaction between pro-
ton donor and acceptor (good hydrogen bond), a
regime close to the adiabatic one may appear, which
results in low k.i.e.

One interesting case of a seemingly high k.i.e. for
reactants forming a good hydrogen bond presents an
acid-base reaction with di¡usion limitations. When
the rate of proton recombination with a base is de-
termined by di¡usional collision of reactants, the rate
of the reverse reaction, the dissociation of the corre-
sponding acid, is determined by di¡usion of products
from the cage where they were formed. Concentra-
tion of the products in the cage is determined by
dissociation constant, and this is strongly a¡ected
by the di¡erence of zero-point energies. So, the meas-
ured k.i.e. is, as a matter of fact, not a kinetic e¡ect
proper, but re£ects the shift of the dissociation equi-
librium.

5. Conclusions

The proton transfer presents one of the most fre-
quent processes in chemical and biochemical reac-
tions. A rigorous treatment of this phenomenon de-
mands, ¢rst of all, for a consistent account of
quantum^mechanical behavior typical of proton.
Second, proton transfer is connected, in most cases,
with charge transfer, and hence with a change of
charge interaction with the medium polarization.
The latter behaves classically.

On this physical basis, the following mechanism of
proton transfer has been formulated and developed
during the last three decades. As a result of classical
thermal £uctuations of the medium polarization
(and, if applicable, of other components of the clas-
sical subsystem), the energy levels of proton in its
initial and ¢nal states become equal, and at that mo-
ment an underbarrier proton transition (tunneling)
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becomes possible. The probability of the process is
determined, ¢rst, by the probability to reach the top
of the barrier along the classical coordinate(s), and,
second, the probability of proton tunneling under
isoenergetic conditions. Depending on the subsys-
tems parameters, one can discern three main regimes.
First is the totally adiabatic regime, when both elec-
trons and proton follow adiabatically the classical
subsystem movement, all of them remaining in the
ground states; in this regime, the proton transfer
probability at the top of the barrier equals to one.
Second is the partially adiabatic regime, when elec-
trons follow adiabatically the proton movement, but
the latter does not follow classical subsystem. The
tunneling probability at the top of the barrier is
less than 1. The lowest transfer probability takes
place at the totally non-adiabatic regime, where
both proton and electrons undergo underbarrier
transition with probabilities less than 1.

The property which is especially sensitive to quan-
tum^mechanical nature of proton movement, is the
kinetic isotope e¡ect. In treatment of this phenom-
enon, it is often not su¤cient to restrict oneself with
simple models, but is necessary to account for subtle
e¡ects a¡ecting markedly the experimental results.
Among such e¡ects, two of them deserve a special
mention. First is the necessity for proton donor and
acceptor to approach at the distance optimum for
tunneling. This distance is usually di¡erent for di¡er-
ent isotopes. The second e¡ect is the possibility of
involvement of the vibrationally excited states. The
extent of this involvement is also di¡erent for di¡er-
ent isotopes.

The reorganization^tunneling mechanism explains
well, at least semi-quantitatively, the main experi-
mental regularities of the proton transfer process.
To the contrary, classical or semi-classical descrip-
tion of proton motion, being inconsistent from the
theoretical point of view, cannot describe, even qual-
itatively, the total set of experimental data.
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