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In this paper we investigate the existence of positive solutions to the following Schrö-
dinger–Poisson–Slater system⎧⎨

⎩
−�u + u + λφu = |u|p−2u in Ω,

−�φ = u2 in Ω,

u = φ = 0 on ∂Ω,

where Ω is a bounded domain in R3, λ is a fixed positive parameter and p < 2∗ = 2N
N−2 .

We prove that if p is “near” the critical Sobolev exponent 2∗, then the number of positive
solutions is greater then the Lusternik–Schnirelmann category of Ω .

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In [4,5] Benci and Cerami proved a result on the number of positive solutions of the following problem{
−�u + u = |u|p−2u in Ω,

u = 0 on ∂Ω,
(1)

where Ω ⊂ RN is a smooth and bounded domain, N � 3 and p < 2∗ = 2N
N−2 , the critical Sobolev exponent for the embedding

of H1
0(Ω) in L p(Ω). In particular they ask how the number of positive solutions depends on the topology of Ω . The core of

their results is that if Ω is “topologically rich” then there are many solutions as soon as the nonlinearity acts strongly on
the equation. For problem (1) this happens when p is near 2∗; indeed they prove the following result:

Theorem 1.1. There exists a p̄ ∈ (2,2∗) such that for every p ∈ [p̄,2∗) problem (1) has (at least) catΩ̄ (Ω̄) + 1 positive solutions.

Hereafter cat is the Lusternik–Schnirelmann category (see e.g. [16]).
They prove Theorem 1.1 by variational methods looking for the solutions as critical points of an energy functional re-

stricted to a suitable manifold on which it is bounded from below. Then, since the Palais–Smale condition (see below for
the definition) is satisfied the main effort is to find a sublevel of the functional with a non-zero category, let us say k; in
these conditions the Lusternik–Schnirelmann theory would give the existence of at least k critical points. By introducing the
barycenter map, they are able to find sublevels with category greater then the category of Ω and so the existence of at
least catΩ̄ (Ω̄) critical points is ensured. Actually this is done in [4] while the existence of another solution is proved in [5].

Another approach with the Morse theory has been used in [6] for more general nonlinearity than |u|p−2u.
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We need to recall that problems like (1), in bounded or exterior domain, even with the critical exponent and with
a control parameter ε > 0 have been object of wide investigation. Also the concentration (blow-up) of solutions in specific
points of the domain Ω when the parameter tends to zero is studied: we limit ourselves to citing [10,15,19,22,29] and the
references therein.

The aim of this paper is to prove an analogous result of Theorem 1.1 for the Schrödinger–Poisson–Slater system:⎧⎨
⎩

−�u + ωu + λφu = |u|p−2u in Ω,

−�φ = u2 in Ω,

u = φ = 0 on ∂Ω,

(2)

where Ω is a (smooth and) bounded domain in R3, p ∈ (2,2∗), ω > 0 and λ is a positive fixed parameter. It is assumed
catΩ̄ (Ω̄) > 1.

This system appears studying the nonlinear Schrödinger equation

ih̄
∂ψ

∂t
= − h̄2

2m
�xψ + |ψ |p−2ψ

which describes quantum (non-relativistic) particles interacting with the electromagnetic field generated by the motion.
Here ψ = ψ(x, t) is a complex valued function and h̄,m > 0 are interpreted respectively as the normalized Plank constant
and the mass of the particle. However, since they have no role in our analysis, we set h̄ = 1 and m = 1/2. A model for the
interaction between matter and electromagnetic field is provided by the abelian gauge theories but can also be derived by
the Slater approach to the Hartree–Fock model. Without entering in details (the reader interested is refereed e.g. to [8,26]),
if φ(x, t) and A(x, t) denote the gauge potentials of the e.m. field, the search of stationary solutions, namely solutions ψ of
the form

ψ(x, t) = u(x)eiωt , u(x) ∈ R, ω > 0,

in the purely electrostatic case

φ = φ(x) and A = 0,

leads exactly to the system we want to study. The boundary conditions u = φ = 0 on ∂Ω mean that the particle is constraint
to live in Ω . In the following, referring to (2) we will assume for simplicity ω = 1.

Problem (2) contains two kinds of nonlinearities: the first one is φu and concerns the interaction with the electric field.
This nonlinear term is nonlocal since the electrostatic potential φ depends also on the wave function to which is related
by the Poisson equation −�φ = |ψ |2 = u2. The second nonlinearity is |u|p−2u. This one contains the Slater correction term
C S |u|2/3u, where C S is the Slater constant and depends on the particles considered (for more details see [9,26]). Physically
speaking, the local nonlinearity |u|p−2u represents the interaction among many particles and is in competition with the
intrinsic nonlinearity of the system φu.

Motivated by some perturbation results (see e.g. [13,23] in which the case with Ω = R3 and λ → 0+ is considered), we
have introduced the parameter λ > 0 which takes a role also in a bounded domain, at least for small values of p.

Because of its importance in many different physical framework, the Schrödinger–Poisson–Slater system (sometimes
called Schrödinger–Maxwell system) has been extensively studied in the past years: besides the results on bounded domains
(see e.g. [7,20,21,25]), there are also many papers on R3 which treat different aspects of the SPS system, even with an
additional external and fixed potential V (x). In particular ground states, radially and non-radially solutions or semiclassical
limit and concentration of solutions are studied, see e.g. [2,3,11,12,14,17,18,24,28].

We approach problem (2) by variational methods: the weak solutions are characterized as critical points of a C1 func-
tional I = I(u) defined on the Sobolev space H1

0(Ω) or a suitable submanifold (see below). A fundamental tool to apply
variational techniques is the so-called Palais–Smale condition (PS for brevity): every sequence {un} such that{

I(un)
}

is bounded and I ′(un) → 0 in H−1(Ω), (3)

admits a converging subsequence. Sequences which satisfy (3) are called Palais–Smale sequences.
Now, it is known that when p ∈ (4,2∗) the PS condition holds (see e.g. [21]), hence we have hope to apply classical

theorems of LS theory in the same spirit of [4] and [5], to find critical points of I; indeed we get the following result:

Theorem 1.2. There exists a p̄ ∈ (4,2∗) such that for every p ∈ [p̄,2∗) problem (2) has at least catΩ̄ (Ω̄) + 1 positive solutions.

It is understood that p̄ does not depend on the “strength” of the interaction λ. We remark that the weak solutions found
by means of the variational method are indeed classical solutions, by standard regularity results.

To prove the theorem we use the general ideas of Benci and Cerami adapting their arguments to our problem which
contains also the coupling term φu.

The paper is organized as follows: in the next section we fix the notations and recall some useful facts. Sections 3
and 4 are devoted to the functional setting and to introduce the ingredients which allow us to use the abstract theory of
Lusternik–Schnirelmann. Finally the proof of Theorem 1.2 is completed in Section 5.
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2. Some notations and preliminaries

Without loss of generality we assume in all the paper 0 ∈ Ω . We denote by | · |Lp(A) the L p-norm of a function defined
on the domain A. If the domain is specified (usually Ω) or if there is no confusion, we use the notation | · |p . Moreover let
H1

0(Ω) be the usual Sobolev space with (squared) norm

‖u‖2 = |∇u|22 + |u|22
and dual H−1(Ω).

We use Br(y) for the closed ball of radius r > 0 centered in y. If y = 0 we simply write Br .
The letter c will be used indiscriminately to denote a suitable positive constant whose value may change from line to

line and we will use o(1) for a quantity which goes to zero.
Finally, in view of our Theorem 1.2, from now on we assume p > 4. Other notations will be introduced in Section 4.
First of all, let φu ∈ H1

0(Ω) be the unique (and positive) solution of −�φ = u2 and φ = 0 on ∂Ω and let us recall the
following properties that will be repeatedly used (for a proof see e.g. [24]):

• for any α,β � 0, t > 0 let ut(·) = tαu(tβ(·)). Then

φut (·) = t2(α−β)φu
(
tβ(·));

• un ⇀ u in H1
0(Ω) ⇒ ∫

Ω
φun u2

n dx → ∫
Ω

φuu2 dx;
• |∇φu |2 � c|∇u|22 for some constant c > 0;
• ∫

Ω
|∇φu |2 dx = ∫

Ω
φuu2 dx.

The functional associated to (2) is

I p(u) = 1

2

∫
Ω

(|∇u|2 + u2)dx + λ

4

∫
Ω

φuu2 dx − 1

p

∫
Ω

|u|p dx (4)

and its critical points are the solutions of the system (see e.g. [7]). However the functional is unbounded from above and
from below on H1

0(Ω). The idea is to restrict the functional to a suitable manifold on which this unboundedness is removed.
In [5] the authors deal with E(u) = 1

2 ‖u‖2 − 1
p |u|p

p and to overcome the unboundedness they introduce the constraint

V p = {
u ∈ H1

0(Ω): |u|p = 1
}
.

On V p the functional E is bounded from below (achieves its minimum), satisfies the PS condition and the classical LS theory
applies. This gives constraint critical points and Lagrange multipliers appear in the right-hand side of the equation in (1).
Finally, “stretching” the multipliers one gets solutions of (1).

In our case the constraint V p is not a good choice although I p would have a minimum on V p . This is due to a different
degree of homogeneity of the added term λφuu; indeed it is easy to see that there is no way to eliminate the Lagrange
multiplier once it appears. We study the functional (4) on a natural constraint and in this case the Nehari manifold works
well.

3. The Nehari manifold

In this section we recall some known facts about the Nehari manifold that will be used throughout the paper.
The Nehari manifold associated to (4) is defined by

N p = {
u ∈ H1

0(Ω) \ {0}: G p(u) = 0
}

where

G p(u) := I ′p(u)[u] = ‖u‖2 + λ

∫
Ω

φuu2 dx − |u|p
p.

On N p the functional (4) has the form

I p(u) = p − 2

2p
‖u‖2 + λ

p − 4

4p

∫
Ω

φuu2 dx. (5)

Sometimes we will refer to (5) as the constraint functional, also denoted with I p|N p .
In the next lemma we recall the basic properties of the Nehari manifold.

Lemma 3.1. We have:

1. N p is a C1 manifold,
2. there exists c > 0 such that for every u ∈ N p: c � ‖u‖,
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3. for every u 
= 0 there exists a unique t > 0 such that tu ∈ N p ,
4. the following equalities are true

mp = inf
u 
=0

max
t>0

I p(tu) = inf
g∈Γp

max
t∈[0,1] I p

(
g(t)

)

where

Γp = {
g ∈ C

([0,1]; H1
0(Ω)

)
: g(0) = 0, I p

(
g(1)

)
� 0, g(1) 
= 0

}
.

Then recalling that p > 4, we have

mp := inf
u∈N p

I p(u) > 0.

Moreover the manifold N p is a natural constraint for I p (given by (4)) in the sense that any u ∈ N p critical point of I p|N p

is also a critical point for the free functional I p (for a proof of these facts, see e.g. Section 6.4 in [1]). Hence the (constraint)
critical points we find are solutions of our problem since no Lagrange multipliers appear.

The Nehari manifold well behaves with respect to the PS sequences:

Lemma 3.2. Let {un} ⊂ N p be a PS sequence for I p|N p . Then it is a PS sequence for the free functional I p on H1
0(Ω).

Proof. By definition, {un} ⊂ N p , I p|N p (un) is bounded and there exist Lagrange multipliers {μn} ⊂ R such that
(I p|N p )

′(un) = I ′p(un) − μnG ′
p(un) → 0 in H−1(Ω). Then recalling the definition of N p we have

(I p|N p )
′(un)[un] = μnG ′

p(un)[un] → 0.

Since G ′
p(un)[un] 
= 0 it follows that the sequence of multipliers vanishes and

I ′p(un) = (I p|N p )
′(un) + μnG ′

p(un) → 0. �
As we have already anticipated, for p ∈ (4,2∗) it is known that the free functional I p given by (4) satisfies the PS

condition on H1
0(Ω) (see e.g. [21]). The fact that the PS condition follows also for the functional restricted to N p is standard.

In the following we will deal always with the restricted functional on the Nehari manifold; this will be denoted simply
with I p .

As a consequence of the PS condition we deduce that

∀p ∈ (
4,2∗): mp = min

N p
I p = I p(up),

i.e. mp is achieved on a function, hereafter denoted with up , in N p . Since up minimizes the energy I p , it will be called a
ground state.

Observe that the sequence of minimizers {up}p∈(4,2∗) is bounded away from zero; indeed, since up ∈ N p ,

‖up‖2 � |up|p
p � C‖up‖p (6)

where C is a positive constant which can be made independent of p. Hence

∃c > 0 s.t. ∀p ∈ (
4,2∗): 0 < c � ‖up‖.

Remark 3.3. Turning back to (6), we have that {|up|p}p∈(4,2∗) is bounded away from zero. Moreover, denoting with |Ω| the
Lebesgue measure of Ω , by the Hölder inequality,

|up|p � |Ω| 2∗−p
2∗ p |up|2∗

and so also {|up|2∗ }p∈(4,2∗) is bounded away from zero.

Clearly, all we have stated until now is true also in the case λ = 0. Moreover also the case p = 2∗ is covered for those
results which do not require compactness (in particular Lemmas 3.1 and 3.2).

3.1. The limit cases

We consider in this subsection two limit cases related to (2). Our intent is to evaluate the limit of the sequence
{mp}p∈(4,2∗) when p → 2∗ .

The first case is the critical problem. Let us introduce the functional

I∗(u) = 1‖u‖2 − 1
∗ |u|2∗

2∗

2 2
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whose critical points are the solutions of{
−�u + u = |u|2∗−2u in Ω,

u = 0 on ∂Ω.
(7)

It is known that the lack of compactness of the embedding of H1
0(Ω) in L2∗

(Ω) implies that I∗ does not satisfies the PS
condition at every level. This is due to the invariance with respect to the conformal scaling

u(·) 
→ uR(·) := R1/2u
(

R(·)) (R > 1)

which leaves invariant the L2-norm of the gradient and the L2∗
-norm, i.e. |∇uR |22 = |∇u|22 and |uR |2∗

2∗ = |u|2∗
2∗ .

As a consequence, if

N∗ = {
u ∈ H1

0(Ω): G∗(u) = 0
}
, G∗(u) = ‖u‖2 − |u|2∗

2∗

is the Nehari manifold associated, it can be proved that

m∗ := inf
N∗

I∗ is not achieved.

The following lemma is known but for the sake of completeness we give the proof.

Lemma 3.4. There holds

m∗ = 1

3
S3/2

where S = infu∈H1
0(Ω), u 
=0

‖u‖2

|u|22∗
is the best Sobolev constant.

Proof. This is indeed an easy computation. First observe that for A, B > 0 it results

max
t>0

{
t2

2
A − t2∗

2∗ B

}
= 1

3

(
A

B1/3

)3/2

.

Then

m∗ = inf
u 
=0

max
t>0

I∗(tu) = 1

3

(
inf
u 
=0

‖u‖2

|u|22∗

)3/2

= 1

3
S3/2. �

The value m∗ turns out to be an upper bound for the sequence of ground states levels {mp}p∈(4,2∗) . Before to prove this,
let us observe that, as easy computations show:

(1) |uR |p
p = R

p−2∗
2 |u|p

p ,
(2)

∫
Ω

φuR u2
R dx = R−3

∫
Ω

φuu2 dx.

Lemma 3.5. We have

lim sup
p→2∗

mp � m∗.

Proof. Fix ε > 0. By definition of m∗ there exists u ∈ N∗ such that

I∗(u) = 1

2
‖u‖2 − 1

2∗ |u|2∗
2∗ = 1

3
‖u‖2 < m∗ + ε

2
. (8)

For R > 1 (to be specified later), we have

I∗(uR) = 1

2
|∇u|22 + 1

2R2
|u|22 − 1

2∗ |u|2∗
2∗ < m∗ + ε

2
.

Now consider, for any p ∈ (4,2∗), the unique positive value tp such that tpuR ∈ N p . By definition, tp satisfies

‖tpuR‖2 + λt4
p

∫
Ω

φuR u2
R dx = |tpuR |p

p (9)

from which we deduce:

• {tp}p∈(4,2∗) is bounded away from zero.
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Indeed by (9) and the embedding of L p in H1
0 we get ‖tpuR‖2 � C‖tpuR‖p so ‖tpuR‖2 � c and finally t2

p � c
‖uR‖2 � c

‖u‖2 > 0.

• {tp}p∈(4,2∗) is bounded above.

Indeed

‖uR‖2

t2
p

+ λ

∫
Ω

φuR u2
R dx = t p−4

p |uR |p
p

and, by the continuity of the map p 
→ |uR |p , it is readily seen that if tp tends to +∞ we get a contradiction.
So we may assume that limp→2∗ tp = t∗ and passing to the limit in (9) we get

t2∗|∇u|22 + t2∗
R2

|u|22 + λ
t4∗
R3

∫
Ω

φuu2 dx = t2∗
∗ |u|2∗

2∗

= t2∗
∗

(|∇u|22 + |u|22
)

or equivalently,

(
t2∗
∗ − t2∗

)|∇u|22 = t2∗
R2

|u|22 + λ
t4∗
R3

∫
Ω

φuu2 dx − t2∗
∗ |u|22.

Now if R is chosen sufficiently large, the r.h.s. above is negative and we deduce

t∗ < 1. (10)

Furthermore

I p(tpuR) = p − 2

2p
‖tpuR‖2 + λ

p − 4

4p
t4

p

∫
Ω

φuR u2
R dx

= p − 2

2p
t2

p|∇u|22 + p − 2

2p

t2
p

R2
|u|22 + λ

p − 4

4p

t4
p

R3

∫
Ω

φuu2 dx

and passing to the limit for p → 2∗ , taking advantage of (10),

lim
p→2∗ I p(tpuR) = 1

3
t2∗|∇u|22 + 1

3

t2∗
R2

|u|22 + λt4∗
12R3

∫
Ω

φuu2 dx

<
1

3
‖u‖2 + λ

12R3

∫
Ω

φuu2 dx.

Lastly, if R is such that λ

12R3

∫
Ω

φuu2 dx < ε/2 we get, using (8)

lim sup
p→2∗

mp � lim
p→2∗ I p(tpuR) <

1

3
‖u‖2 + ε

2
< m∗ + ε

which concludes the proof since ε is arbitrary. �
Note that by (5), the boundedness of {mp}p∈(4,2∗) implies the boundedness of the ground state solutions, namely

∃c > 0 such that ∀p ∈ (
4,2∗): ‖up‖ � c. (11)

We need now a technical lemma.

Lemma 3.6. Let p ∈ (4,2∗) and tp > 0 the unique value such that tpup ∈ N∗ . Then

lim sup
p→2∗

tp � 1.

Proof. By definition of N∗, tp satisfies

t2∗
p |up|2∗

∗ = t2
p‖up‖2
2



294 G. Siciliano / J. Math. Anal. Appl. 365 (2010) 288–299
and using that up ∈ N p and the Hölder inequality we get

t2∗−2
p = |up|p

p − λ
∫
Ω

φup u2
p dx

|up|2∗
2∗

�
|up|p

p

|up|2∗
2∗

� |Ω| 2∗−p
2∗

|up|2∗−p
2∗

. (12)

By the embedding L2∗
(Ω) ↪→ H1

0(Ω) and (11) we deduce that the sequence {|up|2∗ }p∈(4,2∗) is bounded. Moreover recalling

Remark 3.3 we have that it is also bounded away from zero. So the conclusion follows by (12) since limp→2∗ |Ω|
2∗−p

2∗
|up |2∗−p

2∗
= 1. �

Note that by the proof of the lemma it follows that {tp}p∈(4,2∗) is bounded away from zero.

Remark 3.7. Again note that Lemma 3.5, (11) and Lemma 3.6 hold also for problem (2) with λ = 0.

The other limit case we consider is that related to problem (1), namely setting λ = 0 in (2).
For any p ∈ (4,2∗) let Ĩ p(u) = 1

2 ‖u‖2 − 1
p |u|p

p be the functional on H1
0(Ω) whose critical points solve

{
−�u + u = |u|p−2u in Ω,

u = 0 on ∂Ω.

As usual, we can define Ñ p = {u ∈ H1
0(Ω) \ {0}: ‖u‖2 = |u|p

p} on which the functional is Ĩ p(u) = p−2
2p ‖u‖2 and we denote

with

m̃p := min
Ñ p

Ĩ p = Ĩ p(ũp).

By Remark 3.7 we have{‖ũp‖}p∈(4,2∗) is bounded. (13)

Moreover, if tp > 0 is such that tpup ∈ Ñ p , by (6) we get t p−2
p = ‖up‖2

|up |p
p

� 1 and so

m̃p � Ĩ p(tpup) = p − 2

2p
t2

p‖up‖2 � p − 2

2p
‖up‖2 < I p(up).

This means

m̃p < mp . (14)

Now we are ready to compute the limit of mp when p tends to 2∗ .

Proposition 3.8. For any bounded domain we have

lim
p→2∗ mp = m∗.

Proof. By (14) and Lemma 3.5 it is sufficient to prove that

m∗ � lim inf
p→2∗ m̃p .

Let tp > 0 the unique value such that tpũp ∈ N∗ . Applying Lemma 3.6 (with λ = 0) we know

lim sup
p→2∗

tp � 1.

Finally, using (13) we derive

m∗ � I∗(tpũp) =
(

1

2
− 1

2∗

)
t2

p‖ũp‖2

= Ĩ p(ũp)t2
p +

(
1

p
− 1

2∗

)
‖ũp‖2t2

p

= m̃pt2
p + o(1)

where o(1) → 0 for p → 2∗ . Hence the conclusion follows. �
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4. The barycenter map

In this section we introduce the barycenter map that will allow us to compare the topology of Ω with the topology of
suitable sublevels of I p; precisely sublevels with energy near the minimum level mp .

Before to proceed, some other notations are in order. For u ∈ H1(R3) with compact support, let us denote with the same
symbol u its trivial extension out of supp u. The barycenter of u (see [4]) is defined as

β(u) =
∫

R3 x|∇u|2 dx∫
R3 |∇u|2 dx

.

From now on, we fix r > 0 a radius sufficiently small such that Br ⊂ Ω and the sets

Ω+
r = {

x ∈ R3: d(x,Ω) � r
}
,

Ω−
r = {

x ∈ Ω: d(x, ∂Ω) � r
}

are homotopically equivalent to Ω . In particular we denote by

h :Ω+
r → Ω−

r (15)

the homotopic equivalence map such that h|Ω−
r

is the identity.

Let us introduce the space D1,2(R3) = {u ∈ L2∗
(R3): ∇u ∈ L2} which can also be characterized as the closure of C∞

0 (R3)

with respect to the (squared) norm

‖u‖2
D1,2(R3)

=
∫

R3

|∇u|2 dx.

A function in H1
0(Ω) can be thought as an element of D1,2(R3).

The following “global compactness” result is taken from Struwe (see Theorem 3.1 of [27]) and will be useful to study the
behavior of the PS sequences for the limit functional I∗(u) = 1

2 ‖u‖2 − 1
2∗ |u|2∗

2∗ .

Theorem 4.1. Let {vn} be a PS sequence for I∗ in H1
0(Ω). Then there exist a number k ∈ N0 , sequences of points {x j

n} ⊂ Ω and

sequences of radii {R j
n} (1 � j � k) with R j

n → +∞ for n → +∞, there exist a positive solution v ∈ H1
0(Ω) of (7) and nontrivial

solutions v j ∈ D1,2(R3) (1 � j � k) of

−�u = |u|2∗−2 in R3, (16)

such that a (relabeled) subsequence {vn} satisfies

vn − v −
k∑

j=1

v j
Rn

(· − x j
n
) → 0 in D1,2(R3),

I∗(vn) → I∗(v) +
k∑

j=1

Î
(

v j)

where Î : H1
0(R3) → R is given by

Î(u) = 1

2

∫

R3

|∇u|2 dx − 1

2∗

∫

R3

|u|2∗
dx.

Basically the theorem states that if the PS condition fails, it is due to the solutions of (16). For what concerns Î , it is
known that it achieves its minimum on functions of type

U R(x − a) = (3R2)1/4

(R2 + |x − a|2)1/2
, R > 0, a ∈ R3 (17)

and the minimum value is exactly Î(U R(· − a)) = 1
3

∫
R3 |∇U |2 dx = m∗ , namely the infimum of I∗ . On the other hand, the

value of Î on solutions of (16) which do not belong to the family (17) is greater than 2m∗ . As a consequence, if the sequence
{vn} of Theorem 4.1 is a PS sequence for I∗ at level m∗ , we deduce I∗(v) = 0, k = 1 and v1 = U . Furthermore, since v is a
solution of (7) and I∗ is positive on the solutions, necessarily v = 0 and so Theorem 4.1 gives

vn − U Rn (· − xn) → 0 in D1,2(R3).
Thanks to the previous theorem we can prove that, roughly speaking, if p is near the critical exponent 2∗ , the functions

with barycenter outside Ω have an energy away from the ground state level mp .
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Proposition 4.2. There exists ε > 0 such that if p ∈ (2∗ − ε,2∗), it follows

u ∈ N p and I p(u) < mp + ε ⇒ β(u) ∈ Ω+
r .

Proof. We argue by contradiction. Assume that there exist sequences εn → 0, pn → 2∗ and un ∈ N pn such that

I pn (un) � mpn + εn and β(un) /∈ Ω+
r . (18)

Then, by Proposition 3.8

I pn (un) → m∗ (19)

and {un} is bounded in H1
0(Ω). Let tn > 0 such that tnun ∈ N∗ . By Lemma 3.6 we may assume (up to subsequence) that

tn → t0 ∈ (0,1] and we evaluate

I pn (un) − I∗(tnun) =
(

1

2
− 1

pn

)
‖un‖2 + λ

pn − 4

4pn

∫
Ω

φun u2
n dx −

(
1

2
− 1

2∗

)
t2
n‖un‖2

�
(

1

2
− 1

pn

)
‖un‖2 −

(
1

2
− 1

2∗

)
t2
n‖un‖2

=
(

1

2
− 1

pn

)
‖un‖2(1 − t2

n

) −
(

1

pn
− 1

2∗

)
t2
n‖un‖2

= o(1)

which gives

m∗ � I∗(tnun) � I pn (un) + o(1).

By (19), I∗(tnun) → m∗ for n → +∞. The Ekeland’s variational principle implies that there exist {vn} ⊂ N∗ and {μn} ⊂ R
such that

‖tnun − vn‖ → 0,

I∗(vn) = 1

3
‖vn‖2 → m∗,

I ′∗(vn) − μnG ′∗(vn) → 0

and Lemma 3.2 (in the case λ = 0) ensures that {vn} is a PS sequence for the free functional I∗ at level m∗ . By the remarks
after Theorem 4.1,

vn − U Rn (· − xn) → 0 in D1,2(R3)
where {xn} ⊂ Ω , Rn → +∞ and we can write

vn = U Rn (· − xn) + wn

with a remainder wn such that ‖wn‖D1,2(R3) → 0. It is clear that tnun = vn +tnun − vn; so, renaming the remainder again wn ,
we have

tnun = U Rn (· − xn) + wn.

Now writing x ∈ R3 as x = (x1, x2, x3), the i-th coordinate of the barycenter of un satisfies

β(un)
i‖tnun‖2

D1,2(R3)
=

∫

R3

xi
∣∣∇U Rn (x − xn)

∣∣2
dx +

∫

R3

xi
∣∣∇wn(x)

∣∣2
dx + 2

∫

R3

xi∇U Rn (x − xn)∇wn(x)dx. (20)

The aim is to localize the sequence of barycenters, so we pass to the limit in the above expression evaluating ‖tnun‖2
D1,2(R3)

and the right-hand side.
First,

‖tnun‖2
D1,2(R3)

= ‖U‖2
D1,2(R3)

+ o(1) (21)

and simple computations show that∫
3

xi
∣∣∇U Rn (x − xn)

∣∣2
dx = 1

Rn

∫
3

yi
∣∣∇U (y)

∣∣2
dy + xi

n

∫
3

∣∣∇U (y)
∣∣2

dy. (22)
R R R
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Moreover, since vn are supported in Ω , there holds

U Rn (· − xn) = −wn on R3 \ Ω

and we evaluate∫

R3

xi
∣∣∇wn(x)

∣∣2
dx =

∫
Ω

xi
∣∣∇wn(x)

∣∣2
dx + An

where

An =
∫

R3\Ω
xi

∣∣∇wn(x)
∣∣2

dx

=
∫

R3\Ω
xi Rn

∣∣∇U
(

Rn(x − xn)
)∣∣2

dx

=
∫

R3\Rn(Ω−xn)

(
yi

Rn
+ xi

n

)∣∣∇U (y)
∣∣2

dy

= 1

Rn

∫

R3\Rn(Ω−xn)

yi
∣∣∇U (y)

∣∣2
dy + xi

n

∫

R3\Rn(Ω−xn)

∣∣∇U (y)
∣∣2

dy = o(1).

As a consequence,∫

R3

xi
∣∣∇wn(x)

∣∣2
dx =

∫
Ω

xi
∣∣∇wn(x)

∣∣2
dx + o(1) = o(1). (23)

The last term in (20) is estimated as
∫

R3

xi∇U Rn (x − xn)∇wn(x)dx =
∫
Ω

xi∇U Rn (x − xn)∇wn(x)dx − An

� c

(∫
Ω

∣∣∇U Rn (x − xn)
∣∣2

dx

)1/2(∫
Ω

|∇wn|2 dx

)1/2

− An

with An defined as before and then,∫

R3

xi∇U Rn (x − xn)∇wn(x)dx = o(1). (24)

Putting together (21)–(24) by (20) we deduce

β(un)
i = xi

n

∫
R3 |∇U (y)|2 dy + o(1)

‖U‖2
D1,2(R3)

+ o(1)
. (25)

Since {xn} ⊂ Ω , (25) implies that definitively β(un) ∈ Ω̄ which is in contrast with (18) and proves the proposition. �
5. Proof of Theorem 1.2

Here we complete the proof of our theorem but first we need a slight modification to the previous notations. We add a
subscript r (r > 0 and small as before) to denote the same quantities defined in the previous sections when the domain Ω

is replaced by Br ; namely integrals are taken on Br and norms are taken for functional spaces defined on Br . Hence

N p,r =
{

u ∈ H1
0(Br): ‖u‖2

H1
0(Br)

+ λ

∫
Br

φuu2 dx = |u|p
L p(Br)

}

and, for u ∈ N p,r
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I p,r(u) = p − 2

2p
‖u‖2

H1
0(Br)

+ λ
p − 4

4p

∫
Br

φuu2 dx,

mp,r = min
N p,r

I p,r = I p,r(up,r).

Moreover let

I
mp,r
p = {

u ∈ N p: I p(u) � mp,r
}

which is non-vacuous since mp < mp,r .
Define also, for p ∈ (4,2∗) the map Ψp,r :Ω−

r → N p such that

Ψp,r(y)(x) =
{

up,r(|x − y|) if x ∈ Br(y),

0 if x ∈ Ω \ Br(y)

and note that we have

β
(
Ψp,r(y)

) ∈ Br(y) and Ψr,p(y) ∈ I
mp,r
p .

Moreover, since mp + kp = mp,r where kp > 0 and tends to zero if p → 2∗ (see Proposition 3.8), in correspondence of ε > 0
provided by Proposition 4.2, there exists a p̄ ∈ [4,2∗) such that for every p ∈ [p̄,2∗) it results kp < ε; so if u ∈ I

mp,r
p we have

I p(u) � mp,r < mp + ε,

at least for p near 2∗ . Hence the following maps are well defined:

Ω−
r

Ψp,r−−→ I
mp,r
p

h◦β−−→ Ω−
r

where h is given by (15). Since the composite map h ◦ β ◦ Ψp,r is homotopic to the identity of Ω−
r , by a property of the

category, the sublevel I
mp,r
p “dominates” the set Ω−

r in the sense that

cat
I
mp,r
p

(
I
mp,r
p

)
� catΩ−

r

(
Ω−

r

)

(see e.g. [16]) and our choice of r gives catΩ−
r
(Ω−

r ) = catΩ̄ (Ω̄). In conclusion, we have found a sublevel of I p on N p with

category greater than catΩ̄ (Ω̄). Since, as we have already said, the PS condition is verified on N p , applying the Lusternik–
Schnirelmann theory we get the existence of at least catΩ̄ (Ω̄) critical points for I p on the manifold N p which give rise to
solutions of (2).

The existence of another solution is obtained with the same arguments of [5]. Since by hypothesis Ω is not contractible
in itself, by the choice of r it results catΩ+

r
(Ω−

r ) > 1, namely Ω−
r is not contractible in Ω+

r . We claim now that the set

Ψp,r(Ω
−
r ) cannot be contractible in I

mp,r
p . Indeed, assume by contradiction that cat

I
mp,r
p

(Ψp,r(Ω
−
r )) = 1: this means that

there exists a map H ∈ C([0,1] × Ψp,r(Ω
−
r ); I

mp,r
p ) such that

H(0, u) = u ∀u ∈ Ψp,r
(
Ω−

r

)
and

∃w ∈ I
mp,r
p : H(1, u) = w ∀u ∈ Ψp,r

(
Ω−

r

)
.

Then F = Ψ −1
p,r (Ψp,r(Ω

−
r )) is closed, contains Ω−

r and is contractible in Ω+
r as we can see by defining the map

G(t, x) =
{

β(Ψr,p(x)) if 0 � t � 1/2,

β(H(2t − 1,Ψp,r(x))) if 1/2 � t � 1.

Then also Ω−
r would be contractible in Ω+

r giving a contradiction.
On the other hand we can choose a function z ∈ N p \ Ψp,r(Ω

−
r ) so that the cone

C = {
θ z + (1 − θ)u: u ∈ Ψp,r

(
Ω−

r

)
, θ ∈ [0,1]}

is compact and contractible in H1
0(Ω) and 0 /∈ C . Denoting with tu the unique positive number provided by Lemma 3.1, it

follows that if we set

Ĉ = {tuu: u ∈ C}, Mp = max
Ĉ

I p

then Ĉ is contractible in I
Mp
p and M p > mp,r . As a consequence also Ψp,r(Ω

−
r ) is contractible in I

Mp
p .

Summing up, the set Ψp,r(Ω
−
r ) is contractible in I

Mp
p and not in I

mp,r
p . Since the PS condition is satisfied we deduce the

existence of another critical point with critical level between mp,r and M p .
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It remains to prove that these solutions are positive. Note that we can apply all the previous machinery replacing the
functional (4) with

I+p (u) = 1

2

∫
Ω

(|∇u|2 + u2)dx + λ

4

∫
Ω

φuu2 dx − 1

p

∫
Ω

(
u+)p

dx

obtaining again at least catΩ̄ (Ω̄) + 1 nontrivial solutions. Finally the maximum principle ensures that these solutions are
positive, hence they solve (2).
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