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Recently, a new model obtained from generalizing teleparallel gravity, named f (T ) theory, is proposed to
explain the present cosmic accelerating expansion with no need of dark energy. In this Letter, we analyze
the dynamical property of this theory. For a concrete power law model, we obtain that the dynamical
system has a stable de Sitter phase along with an unstable radiation dominated phase and an unstable
matter dominated one. We show that the Universe can evolve from a radiation dominated era to a matter
dominated one, and finally enter an exponential expansion phase.

© 2010 Elsevier B.V. Open access under CC BY license. 
1. Introduction

The models obtained from modifying general relativity theory
are viable candidates to explain the current cosmic acceleration,
which was first discovered from the supernova observations [1]
and then further confirmed by many other cosmological tests, in-
cluding the cosmic microwave background radiation [2] and the
large scale structure [3], and so on. One such modification to gen-
eral relativity is the f (R) theory (see [4] for recent review), where
the Ricci scalar R in the Einstein–Hilbert action is generalized to
an arbitrary function f of R .

Recently, a new modified gravity to account for the cosmic
accelerating expansion, named f (T ) theory, is proposed by ex-
tending the action of teleparallel gravity [5,6] in analogy to the
f (R) theory, where T is the torsion scalar. The teleparallel the-
ory of gravity is built on teleparallel geometry, which was first
introduced by Einstein to unify gravity and electromagnetism [5]
and then was revived as a geometrical alternative to the Rieman-
nian geometry of general relativity [7]. In teleparallel geometry,
the Weitzenböck connection rather than the Levi-Civita connection
is used. As a result, the spacetime has only torsion and thus is
curvature-free.

It has been demonstrated that the f (T ) theory can not only
explain the present cosmic acceleration with no need of dark en-
ergy [8], but also provide an alternative to inflation without an in-
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flaton [9,10]. It therefore has attracted some attention recently. In
this regard, Linder [11] proposed two new f (T ) models to explain
the present cosmic accelerating expansion and found that the f (T )

theory can unify a number of interesting extensions of gravity be-
yond general relativity. We performed a statefinder diagnostic to
these two models and also placed observational constraints on
them from the latest data [12]. More recently, a reconstruction of
f (T ) theory from the background expansion history and the f (T )

theory driven by scalar fields have been studied [13,14]. In this
Letter, we plan to analyze the dynamical property of f (T ) theory.

2. The f (T ) theory

In teleparallel gravity, the dynamical object is the vierbein eμ
i ,

which has the property,

eμ
i e j

μ = δ
j
i , eμ

i ei
ν = δ

μ
ν , (1)

where ei
μ is the inverse matrix of vierbein, i is an index running

over 0,1,2,3 for the tangent space of the manifold, and μ, also
running over 0,1,2,3, is the coordinate index on the manifold.
This vierbein relates with the metric through

gμν = ηi je
i
μe j

ν, (2)

where ηi j = diag(−1,1,1,1).
As mentioned in the previous section, teleparallel gravity uses

the curvatureless Weitzenböck connection, which is defined as

Γ̂ λ
μν = eλ∂νei

μ = −ei
μ∂νeλ. (3)
i i
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From this Weitzenböck connection, one can introduce a non-null
torsion tensor T λ

μν ,

T λ
μν = Γ̂ λ

νμ − Γ̂ λ
μν. (4)

The torsion scalar T in the action of teleparallel gravity is then
given by

T ≡ Sσ
μν T σ

μν, (5)

where

Sσ
μν ≡ 1

2

(
Kμν

σ + δ
μ
σ T αν

α − δν
σ T αμ

α

)
, (6)

and K μν
σ is the contorsion tensor,

Kμν
σ = −1

2

(
T μν

σ − T νμ
σ − Tσ

μν
)
. (7)

For a flat homogeneous and isotropic Friedmann–Robertson–
Walker universe described by the metric gμν = diag(−1,a2(t),
a2(t),a2(t)) where a is the scale factor, one has, from Eq. (5),

T = −6H2, (8)

with H = ȧa−1 being the Hubble parameter.
The action of f (T ) theory is obtained by replacing T in the ac-

tion of teleparallel gravity by T + f (T ). Varying this action with
respect to the vierbein, we obtain the field equation of f (T ) grav-
ity, which leads to the following modified Friedmann equation

H2 = 8πG

3
ρ − f

6
− 2H2 f T , (9)

(
H2)′ = 16πG P + 6H2 + f + 12H2 f T

24H2 f T T − 2 − 2 f T
, (10)

where a prime denotes a derivative with respect to ln a, sub-
script T , a derivative with respect to T , ρ is the energy density
and P is the pressure. Here we assume that the energy compo-
nents in the Universe are matter and radiation, thus

ρ = ρm + ρr, P = 1

3
ρr, (11)

where ρm and ρr represent the energy densities of matter and
radiation, respectively.

From Eqs. (9), (10), we can define an effective dark energy,
whose energy density and the equation of state can be expressed,
respectively, as

ρeff = 1

16πG
(− f + 2T f T ), (12)

weff = − f /T − f T + 2T f T T + 1
3

8πGρr
3H2 ( f T + 2T f T T )

(1 + f T + 2T f T T )( f /T − 2 f T )
. (13)

3. Dynamical analysis

In order to analyze the dynamics of a general f (T ) model, we
rewrite the equations of motion as a dynamical system with the
following dimensionless variables:

x ≡ − f

6H2
, y ≡ T f T

3H2
, z ≡ Ωr ≡ 8πGρr

3H2
, (14)

where Ωr is the dimensionless energy density parameter of radia-
tion. Using Eqs. (9), (10) and the energy conservation equations of
matter and radiation, one can obtain
x′ = −(2x + y)
z + 3 − 3x − 3y

2my − 2 + y
, (15)

y′ = 2my
z + 3 − 3x − 3y

2my − 2 + y
, (16)

z′ = −4z − 2z
z + 3 − 3x − 3y

2my − 2 + y
, (17)

where a prime denotes a derivative with respect to ln a and

m ≡ T fT T

f T
. (18)

Defining r ≡ −2 T f T
f = y

x , one can express T as a function of y/x
(or r). And then m can be expressed in terms of y/x. For exam-
ple, the model, f (T ) = α[(−T )p − β]q , yields m(r) = (1 − q)r/2q +
p − 1. Thus, for a given form of f (T ), the dynamical system given
in Eqs. (15), (16), (17) becomes autonomous.

Using x, y and z, Eq. (9) and weff can be rewritten as

Ωm ≡ 8πGρm

3H2
= 1 − x − y − z, (19)

weff = − x + y/2 − my

(1 − y/2 − my)(x + y)
, (20)

where Ωm is the dimensionless density parameter of matter.
In order to analyze the dynamical properties of system given in

Eqs. (15)–(17), we should firstly solve these equations with x′ = 0,
y′ = 0 and z′ = 0. Here, besides two isolated critical points (de-
noted as Point A and Point B), we also get a continuous line of
critical points, which is called Line C:

Point A: xc = 0, yc = 0, zc = 1, (21)

Point B: xc = 0, yc = 0, zc = 0, (22)

Line C: xc = 1 − yc, zc = 0. (23)

One can see that Line C is a straight line in the phase space.

• Point A: radiation dominated point.

At this critical point, we have

Ωr = 1, (24)

which corresponds to a radiation dominated phase. Now we exam-
ine the stability of this point, which is determined by the eigenval-
ues of the linearized system. After some calculations, we find the
eigenvalues at Point A,

1, 2
(
1 − m ±

√
1 + 2m + m2 − 2m′ ), (25)

where m′ = dm/dr. This critical point is unstable because there is
a positive eigenvalue.

• Point B: matter dominated point.

Using Eq. (19), one has

Ωm = 1, (26)

at this critical point. Thus, it represents a matted dominated era.
Through the same calculation as that in Point A, we obtain that
the eigenvalues of the linearized system at this point are

−1, 2 − 2m ± 2
√

1 + 2m + m2 − 2m′. (27)

For a successful cosmological scenario, this point must be unstable
so that the Universes can exit from the matter dominated era. This
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Fig. 1. The cosmic evolution for the case of power law model with n = 0.2. ai is the initial value of the scalar factor. The dot-dashed, solid, and dashed lines correspond to
the evolutionary of curves of Ωr , Ωm and the dimensionless density parameter of the effective dark energy, respectively. In the left panel the initial conditions are set as
xi = yi = 10−13 and zi = 0.98, while in the right panel they are xi = yi = 10−5 and zi = 0.98.
means that the real part of one of the eigenvalues in the above
expression must be positive. This may be possible for a given f (T )

model as long as the model parameters satisfy certain conditions.

• Line C: effective dark energy dominated era.

At this critical line, we have Ωm = 0, Ωr = 0 and

weff = −1. (28)

Substituting Eq. (9) into (10) and considering ρ = 0 and p = 0, one
can find easily that

(
H2)′ = 0. (29)

Thus, Line C corresponds to a de Sitter phase, if H �= 0. The eigen-
values of the linearized system at this critical line are

−4, 0, −3. (30)

It is easy to see that Line C is always stable. Thus, for a given f (T )

model, the Universe finally enters a de Sitter phase.
Now we consider a concrete power law model given in [8,11]:

f (T ) = α(−T )n, (31)

where α and n are two model parameters. In Refs. [11,12], it has
been pointed out that this model has the same background evolu-
tion equation as some phenomenological models [15,16] and it re-
duces to the �CDM model when n = 0, and to the DGP model [17]
when n = 1/2. When n = 1, the Friedmann equation (Eq. (9)) can
be rewritten as H2 = 8πG

3(1−α)
ρ , which is the same as that of a

standard cold dark matter (SCDM) model if we rescale the New-
ton’s constant as G → G/(1 − α). Thus, next, we will focus our
attention on the case of n �= 1. Let us note that, in order to be con-
sistent with the present observational results, it is required that
|n| � 1 [8,11,12].

Substituting Eq. (31) into Eq. (9), one can show that, when
n �= 1, the case ρ = 0 (Line C) gives that the Hubble parameter
is a nonzero constant, which corresponds to a de Sitter phase. Us-
ing Eq. (18), we have m = −1 + n and m′ = 0. The eigenvalues at
critical point B becomes

−1, 2, −2n, (32)

which means that critical point B is always unstable and its stabil-
ity is independent of the value of model parameter n. Therefore,
for a power law model, we find that, if n �= 1, the Universe is
able to evolve from a radiation dominated era to a matter dom-
inated one, and finally enter an exponential expansion phase. In
Fig. 1, we show the cosmic evolution with different initial condi-
tions. It is easy to see that xi and yi ( f /T and −2 f T at ai , where
ai is the initial value of scale factor) must be very very small to
have a long enough period of radiation domination give the cor-
rect primordial nucleosynthesis and radiation–matter equality, and
to ensure the appearance of a matter dominated phase, otherwise
the Universe has unusual early behavior and evolves directly from
radiation dominated phase to a de Sitter one. Thus, for the power
law f (T ) model, the conditions for the Universe to evolve to a
cosmic accelerating expansion and have usual early behavior are
xi � 1, yi � 1 and n �= 1. Note, however, that in order to satisfy the
current observations constraints, |n| � 1 is still required [8,11,12].

4. Conclusion

The f (T ) theory, obtained from generalizing teleparallel grav-
ity, is a new modified gravity capable of accounting for the present
cosmic accelerating expansion with no need of dark energy. In this
Letter, we analyze the dynamical behavior of the f (T ) theory by
assuming the existence of matter and radiation in our Universe.
Two critical points (Point A and Point B), corresponding to a matter
dominated phase and a radiation dominated one, respectively, and
a critical line (Line C), corresponding to an effective dark energy
dominated era, are found. We find that both Point A and Point B
are unstable while Line C is always stable. Thus, the Universe can
finally enter a de Sitter expansion phase, if H is nonzero at the
critical line C. For a power law model, the case n �= 1 is considered
since n = 1 corresponds to a SCDM model if we rescale the New-
ton’s constant as G → G/(1 − α). The results show that, if n �= 1,
the final state of our Universe in the f (T ) theory is an exponential
expansion since H is a nonzero constant at Line C. In addition, we
find that, to obtain the usual early universe behavior, it is required
that xi and yi ( f /T and −2 f T at ai ) should be very very small.
Thus, for the power law model, the conditions to have a success-
ful cosmological scenario are that xi � 1, yi � 1 and n �= 1. But,
according to the results obtained in Refs. [8,11,12], |n| � 1 is re-
quired in order to be consistent with current observations.
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