

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science

Electronic Notes in Theoretical Computer Science 167 (2007) 157–177

www.elsevier.com/locate/entcs

Computable Riesz Representation for the Dual of C[0; 1]

Hong Lu^{1,2}

Department of Mathematics Nanjing University Nanjing 21009, PR. China

Klaus Weihrauch^{1,3}

Department of Mathematics and Computer Science University of Hagen Hagen, Germany

Abstract

By the Riesz representation theorem for the dual of $C[0, 1]$, for every continuous linear operator $\tilde{F}: C[0;1] \to \mathbb{R}$ there is a function $g:[0;1] \to \mathbb{R}$ of bounded variation such that

$$
F(f) = \int f \, dg \quad (f \in C[0; 1]).
$$

The function g can be normalized such that $V(g) = ||F||$. In this paper we prove a computable version of this theorem. We use the framework of TTE, the representation approach to computable analysis, which allows to define natural computability for a variety of operators. We show that there are a computable operator S mapping g and an upper bound of its variation to F and a computable operator S' mapping F and its norm to some appropriate g .

Keywords: Computable analysis, integration, Riesz representation theorem

 $^{\rm 1}$ The author has been partially supported by the National Natural Science Foundation of China, NSFC 10 420 130 638 and the Deutsche Forschungsgemeinschaft, DFG: CHV 113/240/0-1.

² Email: luhong@nju.edu.cn

³ Email: klaus.weihrauch@fernuni-hagen.de

1 Introduction

The Riesz representation theorem is one of the fundamental theorems in Functional Analysis and General Topology.

Theorem 1.1 (Riesz representation theorem[\[2\]](#page-19-0)) For every continuous linear operator $F: C[a, b] \to \mathbb{R}$ there is a function $q: [a, b] \to \mathbb{R}$ of bounded variation such that

$$
F(f) = \int f \, dg \quad (f \in C[a, b])
$$

and

 $V(q) = ||F||$.

As usual, $C[a, b]$ is the set of continuous functions $h : [a, b] \to \mathbb{R}$ on the real interval [a, b], equipped with the norm $||h|| = \max_{a \leq x \leq b} |h(x)|$. Its dual $C'[a, b]$ is the set of continuous linear functions $F: C[a, b] \to \mathbb{R}$. The norm of $F \in C'[a, b]$ is defined by $||F|| = \sup{||F(h)|| \mid h \in C[a, b], ||h|| = 1}$. $\int f dg$ is the Riemann-Stieltjes integral and $V(g)$ is the total variation of $g : [a, b] \to \mathbb{R}$. Let BV[a, b] be the set of functions $g: [a; b] \to \mathbb{R}$ of bounded variation.

On the other hand, for every function $g : [a, b] \to \mathbb{R}$ of bounded variation the operator $f \mapsto \int f \, dg$ is linear and continuous on $C[a, b]$. Therefore, the dual space of the space $C'[a, b]$ can be identified with a space of (appropriately normalized) functions of bounded variation on $[a, b]$.

There are more abstract versions of the Riesz representation theorem, for example, for complex valued continuous functions with compact support on a locally compact Hausdorff space instead of $C[a, b]$ and linear positive operators F [\[6\]](#page-19-0). In this article we study aspects of computability of the above simple version which can be found e.g. in [\[2\]](#page-19-0). We prove a computable version of this theorem in the framework of TTE. For given natural representations of the spaces we prove that there are computable operators mapping F to q and mapping q to F . For formulating and proving we use the concepts of Type-2 Theory of Effectivity, the representation approach to Computable Analysis [\[9\]](#page-20-0). Some aspects of computability of functions of bounded variation have been already studied in [\[5](#page-19-0)[,11\]](#page-20-0)

For convenience we consider only functions on the unit interval [0; 1]. The generalization to arbitrary intervals is straightforward.

In Section [2](#page-2-0) we estimate the rate of convergence of a sequence of finite sums approximating the Riemann-Stieltjes integral. Section [3](#page-4-0) contains the construction of a function q of bounded variation from F . In Section [4](#page-15-0) we outline shortly some concepts of TTE and define the (multi-)representations of the sets we will use. The last section contains the main theorems. Because of the detailed preparations their proofs ar short.

2 Riemann-Stieltjes Integral

In this section we consider the definition of the Riemann-Stieltjes Integral (see for example [\[7\]](#page-20-0)) and estimate the rate of convergence of a sequence of finite sums converging to the integral. We will need this rate for proving computability.

Let a, b be real numbers such that $a < b$. A partition of the interval [a; b] is a sequence $Z = (x_0, x_1, \ldots, x_n)$ such that $a = x_0 < x_1 < \ldots < x_n = b$. The partition Z has precision k, if $x_i - x_{i-1} \leq 2^{-k}$ for $1 \leq i \leq n$. A partition $Z' = (x'_0, x'_1, \ldots, x'_m)$ is finer than Z , if $\{x_0, x_1, \ldots, x_n\} \subseteq \{x'_0, x'_1, \ldots, x'_m\}$. A
selection for Z is a socurated $T = (t, t)$ such that $x_0 \leq t \leq x$. For a selection for Z is a sequence $T = (t_1, \ldots, t_n)$ such that $x_{i-1} \le t_i \le x_i$. For a real function $g : [a; b] \to \mathbb{R}$ define

$$
S(g, Z) := \sum_{i=1}^{n} |g(x_i) - g(x_{i-1})|.
$$
 (1)

The *variation* of g is defined by

 $V(q) := \sup\{S(q, Z)|Z \text{ is a partition of } [a; b]\}.$ (2)

A function $g : [a; b] \to \mathbb{R}$ is of *bounded variation* if its variation $V(g)$ is finite.

In the following let $f : [a; b] \to \mathbb{R}$ be continuous function and let $g : [a; b] \to$ R be a function of bounded variation. For any partition $Z = (x_0, x_1, \ldots, x_n)$ of $[a; b]$ and any selection T for Z define

$$
S(g, f, Z, T) := \sum_{i=1}^{n} f(t_i) (g(x_i) - g(x_{i-1})).
$$
\n(3)

Every continuous function $f : [a; b] \rightarrow \mathbb{R}$ has a (uniform) modulus of continuity, i.e., a function $m : \mathbb{N} \to \mathbb{N}$ such that $|f(x) - f(y)| \leq 2^{-k}$ if $|x - y| \leq 2^{-m(k)}$.

Lemma 2.1 Let $f : [a, b] \to \mathbb{R}$ be continuous function with modulus of continuity $m : \mathbb{N} \to \mathbb{N}$. Let $q : [a, b] \to \mathbb{R}$ be a function of bounded variation. Then there is a number $I \in \mathbb{R}$ such that

$$
|I - S(g, f, Z, T)| \le 2^{-k} V(g)
$$

for each partition Z of $[a, b]$ with precision $m(k + 1)$ and each selection T for Z.

Proof: First, we prove that for any two partitions Z_1 , Z_2 of [a; b] with precision $m(k+1)$ and selections T_1 and T_2 , respectively,

$$
|S(g, f, Z_1, T_1) - S(g, f, Z_2, T_2)| \le 2^{-k} V(g).
$$

Let $Z_1 = (x_0, x_1, \ldots, x_n)$ with selection $T_1 = (t_1, \ldots, t_n)$ and let Z' be a refinement of Z_1 with selection T'. Then Z' can be written as

$$
x_0 = y_0^1, y_1^1, \dots, y_{j_1}^1 = x_1 = y_0^2, y_1^2, \dots, y_{j_2}^2 = x_2 \dots \dots = y_0^n, y_1^n, \dots, y_{j_n}^n = x_n
$$

 $(j_1,\ldots,j_n\geq 1)$ and T' as

$$
t_1^1, t_2^1, \ldots, t_{j_1}^1, t_1^2, t_2^2, \ldots, t_{j_2}^2, \ldots \ldots, t_n^1, t_n^1, \ldots, t_{j_n}^n
$$
.

such that $y_{l-1}^i \leq t_l^i \leq y_l^i$. Then

$$
|S(g, f, Z_1, T_1) - S(g, f, Z', T')|
$$
\n
$$
= \left| \sum_{i=1}^n f(t_i) (g(x_i) - g(x_{i-1})) - \sum_{i=1}^n \sum_{l=1}^{j_i} f(t_l^i) (g(y_l^i) - g(y_{l-1}^i)) \right|
$$
\n
$$
= \left| \sum_{i=1}^n f(t_i) \sum_{l=1}^{j_i} (g(y_l^i) - g(y_{l-1}^i)) - \sum_{i=1}^n \sum_{l=1}^{j_i} f(t_l^i) (g(y_l^i) - g(y_{l-1}^i)) \right|
$$
\n
$$
= \left| \sum_{i=1}^n \sum_{l=1}^{j_i} (f(t_i) - f(t_l^i)) (g(y_l^i) - g(y_{l-1}^i)) \right|
$$
\n
$$
\leq \sum_{i=1}^n \sum_{l=1}^{j_i} |f(t_i) - f(t_l^i)| |g(y_l^i) - g(y_{l-1}^i)|
$$
\n
$$
\leq 2^{-k-1} \sum_{i=1}^n \sum_{l=1}^{j_i} |g(y_l^i) - g(y_{l-1}^i)| \qquad \text{since } |t^i - t_l^i| \leq 2^{-m(k+1)}
$$
\n
$$
\leq 2^{-k-1} V(g)
$$

Now let Z' be a common refinement of Z_1 and Z_2 and let T' be a selection for Z . Then

$$
|S(g, f, Z_1, T_1) - S(g, f, Z_2, T_2)|
$$

\n
$$
\leq |S(g, f, Z_1, T_1) - S(g, f, Z', T')| + |S(g, f, Z_2, T_2) - S(g, f, Z', T')|
$$

\n
$$
\leq 2^{-k} V(g)
$$

Next, for each $i \in \mathbb{N}$ let Z_i be a partition of $[a; b]$ with precision $m(i + 1)$ and a selection T_i . Then for $i>j$,

$$
|S(g, f, Z_i, T_i) - S(g, f, Z_j, T_j)| \leq 2^{-j} V(g) .
$$

Therefore, the sequence $(S(g, f, Z_i, T_i))_i$ is a Cauchy sequence converging to some $I \in \mathbb{R}$. If Z is a partition with precision $m(k+1)$ and selection T, then for each $i>k$

$$
|I - S(g, f, Z, T)| \le |I - S(g, f, Z_i, T_i)| + |S(g, f, Z_i, T_i) - S(g, f, Z, T)|
$$

$$
\le 2^{-i}V(g) + 2^{-k}V(g),
$$

hence $|I - S(q, f, Z, T)| < 2^{-k} V(q)$. □

Definition 2.2 [Riemann-Stieltjes integral]

$$
\int f \, dg := I \text{ (the real number defined in Lemma 2.1)}
$$

3 Construction of a Function of Bounded Variation

In this section for a given continuous linear operator $F : C[0,1] \to \mathbb{R}$ we construct a function $g' : \subseteq [0; 1] \to \mathbb{R}$ of variation $||F||$ such that $F(h) = \int h \, dg$ for every $h \in C[0,1]$ and every extension $g : [0,1] \to \mathbb{R}$ of g' of bounded variation.

Let $F: C[0;1] \to \mathbb{R}$ be a linear continuous operator on the set $C[0;1]$ of continuous functions $f : [0; 1] \rightarrow \mathbb{R}$. For a function $h \in C[0, 1]$, and $0 \leq a < b \leq 1$ define the function $h_{ab} \in C[0, 1]$ as follows. The graph of h_{ab} is the union of the graph of h from 0 to a, the line from the point $(a, h(a))$ to $(a+(b-a)/3,0)$, the line from this point to the point $(b-(b-a)/3,0)$, the line from this point to $(b, h(b))$ and the graph of h from b to 1 (see Figure 1).

Fig. 1. The (a, b) -cut h_{ab} of h

Lemma 3.1 Suppose $h \in C[0,1], \varepsilon > 0$ and $0 \leq c < d \leq 1$. Then there are $a, b \in \mathbb{Q}$ such that $c < a < b < d$ and $|F(h - h_{ab})| < \varepsilon$.

Proof: Suppose this is false. Then there are infinitely many pairwise disjoint intervals $(a_i; b_i)$ in the interval $(c; d)$ such that $|F(h - h_{a_i b_i})| \geq \varepsilon$. For each $i \leq N$ define

$$
h_i := \begin{cases} h - h_{a_i b_i} & \text{if } F(h - h_{a_i b_i}) \ge 0 \\ -(h - h_{a_i b_i}) & \text{otherwise.} \end{cases}
$$

 $\text{Since } \|h_{a_i b_i}\| \le \|h\|, \|h_i\| \le 2\|h\|.$ Choose $N > 2\|F\| \|h\|/\varepsilon$. Since $\|\sum_{i=0}^N h_i\| = \max_{i=0}^N \|h_i\| \le 2\|h\|, |F(\sum_{i=0}^N h_i)| \le \|F\| \|\sum_{i=0}^N h_i\| \le 2\|F\| \|h\|.$
On the sther hand since $F(h) \ge c, |F(\sum_{i=0}^N h_i)| = |\sum_{i=0}^N F(h)| =$ On the other hand, since $F(h_i) \geq \varepsilon$, $|F(\sum_{i=0}^N h_i)| = |\sum_{i=0}^N F(h_i)| = \sum_{i=0}^N F(h_i)| \geq N \cdot \varepsilon > 2||F|| ||h||$. Contradiction. $\sum_{i=0}^{N} F(h_i) \geq N \cdot \varepsilon > 2||F|| ||h||.$ Contradiction. \square

The function $d_{ab} := h - h_{ab}$ has a support in [a; b] and a very small "weight" $|F(d_{ab})|$. It cuts the function h into two pices h_a and h_b with disjoint supports such that $F(h)$ and $F(h_a + h_b)$ are almost the same. Such a cut is possible eveywhere in the interval [0; 1].

Let an approximate partition be a sequence $\pi = (a_1, b_1, \ldots, a_n, b_n)$ $(n \geq 1)$ of rational numbers such that $0 < a_1 < b_1 < \ldots < a_n < b_n < 1$. Let $b_0 := 0$ and $a_{n+1} := 1$. An approximate partition π induces an approximate decomposition of the function 1I, $\mathbb{I}(x) = 1$ for $0 \le x \le 1$, into continuous functions $f_0, \ldots, f_n \in C[0,1]$, which are polygons defined by the vertices of their graphs as follows (see Figure 2).

Fig. 2. Decomposition of II by a partition $(a_1, b_1, \ldots, a_n, b_n)$

For $1 \leq i \leq n$,

$$
f_0: (0, 1), (a_1, 1), (a_1 + \frac{b_1 - a_1}{3}), (1, 0),
$$

\n
$$
f_i: (0, 0), (b_i - \frac{b_i - a_i}{3}, 0), (b_i, 1), (a_{i+1}, 1), (a_{i+1} + \frac{b_{i+1} - a_{i+1}}{3}, 0), (1, 0),
$$

\n
$$
f_n: (0, 0), (b_n - \frac{b_n - a_n}{3}), (b_n, 1), (1, 1).
$$

By the next lemma the function 1I can be partitioned into finitly many functions f_i of Norm 1 with disjoint support, such that $\sum |F(f_i)|$ is arbitrarily close to $||F||$, and, in addition, for a given interval $J \in L$ there is some i such that $(a_i; b_i) \subseteq J$.

Lemma 3.2 Let $F : C[0;1] \rightarrow \mathbb{R}$ be continuous. For every $\varepsilon > 0$ and every open interval in $J\subseteq [0;1]$ there is an approximate partion π = $(a_1, b_1, \ldots, a_n, b_n)$ such that

$$
||F|| - \varepsilon < \sum_{i=0}^{n} |F(f_i)| \le ||F|| \,, \tag{4}
$$

$$
(\forall i, 1 \le i \le n) b_i - a_i < \varepsilon \tag{5}
$$

$$
and \quad (\exists i, \ 1 \le i \le n) [a_i; b_i] \subseteq J. \tag{6}
$$

Proof: Let $\varepsilon' := \varepsilon/(2 + ||F||)$. Since $||F|| = \sup\{F(h) | ||h|| = 1\}$, there is some $h \in C[0; 1]$ such that $||h|| = 1$ and

$$
||F|| - \varepsilon' < F(h). \tag{7}
$$

Since h is uniformly continuous there is some $\varepsilon_1 > 0$ such that

$$
\varepsilon_1 < \varepsilon' \text{ and } |h(x) - h(y)| < \varepsilon' \text{ for } |x - y| \le \varepsilon_1. \tag{8}
$$

Divide the interval $(0; 1)$ into consecutive intervals $(c_i; d_i)$ $(j = 1, \ldots, n)$ such that $c_1 = 0$, $d_j = c_{j+1}$ and $d_n = 1$ of length $\leq \min(\varepsilon_1, \text{length}(J))/3$. Ap-ply Lemma [3.1](#page-4-0) in turn to each of these intervals $(c_i; d_i)$ $(j = 1, \ldots, n)$ with precision ε'/n . The result is a partition as shown in Figure 3.

Fig. 3. Approximate decomposition of $\mathbb I$ via h.

Notice that the ranges from a_i to b_i correspond to the range from a to b in Figure [1](#page-4-0) and that the distance from E_i to $(b_i, 0)$ is $(b_i - a_i)/3$ and the distance from a_{i+1} to F_i is $(b_{i+1} - a_{i+1})/3$. For $1 \leq i \leq n-1$ define h_i and g_i as follows. The graph of h_i is the union of the line segments from $(0, 0)$ to E_i , from E_i to C_i , from D_i to F_i and from F_i to $(1,0)$ and the section of graph (h) from C_i to D_i . The graph of g_i is the union of the line segments from $(0,0)$ to E_i , from E_i to A_i , from A_i to B_i , from B_i to F_i and from F_i to $(1, 0)$, where the ordinate of A_i and B_i is $\min\{h(x) \mid b_i \leq x \leq a_{i+1}\}\$. The functions h_0, g_0, h_n and g_n are defined accordingly.

By the construction and Lemma [3.1](#page-4-0) for the approximate partition $\pi =$ $(a_1, b_1, \ldots, a_n, b_n),$

$$
(\exists i)[a_i; b_i] \in J,\tag{9}
$$

$$
a_{i+1} - b_i < \varepsilon_1 \qquad \text{for} \quad i = 1, \dots, n \tag{10}
$$

$$
\text{and } |F(h) - \sum_{i=0}^{N} F(h_i)| < \varepsilon'.\tag{11}
$$

It remains to prove [\(4\)](#page-5-0). By [\(10\)](#page-6-0) and [\(8\)](#page-5-0), $||h_i - g_i|| \leq \varepsilon'$ for $0 \leq i \leq n$ and hence $\|\sum_{i=0}^{n}(h_i-g_i)\| \leq \varepsilon'$ (since the (h_i-g_i) have disjoint supports). We obtain obtain

$$
|F(\sum_{i=0}^{n}(h_i - g_i))| \le \varepsilon' ||F|| \tag{12}
$$

and

$$
||F|| - F \sum g_i \le F(h) - F \sum g_i + \varepsilon' \quad \text{by (7)}
$$

\n
$$
\le |F(h) - F(\sum h_i)| + |F(\sum h_i) - F \sum g_i| + \varepsilon'
$$

\n
$$
< \varepsilon' + |F(\sum_{i=0}^n (h_i - g_i))| + \varepsilon' \quad \text{by (11)}
$$

\n
$$
\le \varepsilon'(2 + ||F||) \le \varepsilon \quad \text{by (12)}.
$$

For $i = 0, \ldots, n$ let f_i be the function from the decomposition of II induced by the approximate partition $\pi = (a_1, b_1, \ldots, a_n, b_n)$. If $g_i = 0$ then $|F(g_i)| =$ $0 \leq |F(f_i)|$. Otherwise,

$$
|F(g_i)| = |F(|g_i|)| = ||g_i|| |F(\frac{|g_i|}{||g_i||})||g_i|| |F(|f_i|)| \leq |F(f_i)|
$$

Since $||F|| - F \sum g_i < \varepsilon$ (see above),

$$
||F|| - \varepsilon < F \sum g_i = \sum F(g_i) \le \sum |F(g_i)| \le \sum |F(f_i)|.
$$

Finally, for each i there is some $\alpha_i \in \{-1,1\}$ such that $|F(f_i)| = F(\alpha_i f_i)$. Since $\|\sum \alpha_i f_i\| = 1$,

$$
\sum |F(f_i)| = \sum F(\alpha_i f_i) = F(\sum \alpha_i f_i) \leq ||F||.
$$

Thus we have proved [\(4\)](#page-5-0).

Since the adjacent intervals (c_i, d_i) have length \leq length $(J)/3$, there is some *i* such that $[a_i; b_i] \subseteq J$. This proves [\(6\)](#page-5-0). Finally $b_i - a_i \leq d_i - c_i < \varepsilon_1 < \varepsilon' < \varepsilon$. $\varepsilon' < \varepsilon$.

In the proof the differences $a_{i+1} - b_i$ are made small in order to get $\sum h_i$ close to $\sum g_i$. Also the differences $b_i - a_i$ are made small so that the errors by cutting remain small according to Lemma [3.1.](#page-4-0)

We introduce some terminology. For $d \in C[0,1]$ let supp(d) (the support of d) be the closure of the set $\{x \mid d(x) \neq 0\}$. For $0 \leq a \leq b \leq 1$ let $(a;b)/3 := (a + (b - a)/3; b - (b - a)/3)$. The *slanted step* at (a, b) is the function $s \in C[0;1]$ the graph of of which is a polygon with the vertices $(0, 1), (a, 1), (b, 0), (1, 0).$ Let $v(s) := (a, b) \subseteq [0, 1].$

In Lemma [3.2](#page-5-0) the operator F has small values for every function the support of which does not intersect the supports of the functions f_i , see also Figure [2.](#page-5-0)

Corollary 3.3 Let π be the approximate partition from Lemma [3.2.](#page-5-0)

- (i) If $d \in C[0; 1]$ such that $\text{supp}(d) \subseteq \bigcup_{i=1}^n (a_i; b_i)/3$ then $|F(d)| \leq \varepsilon ||d||$.
- (ii) If s, s' are slanted steps s.th. $v(s), v(s') \subseteq (a_i; b_i)/3$ for some $1 \le i \le n$,
then $|E(s) E(s')| \le \varepsilon$ then $|F(s) - F(s')| \leq \varepsilon$.

Proof: i. This is true for $d = 0$. Assume $||d|| = 1$. There are signs $\sigma, \sigma_i \in \{-1, 1\}$ such that $|F(f_i)| = F(\sigma_i f_i)$ and $F(\sigma d) = |F(d)|$. Since $\|\sigma d + \sum_{i=0}^{n} (\sigma_i f_i)\| = 1,$

$$
|F(d)| + \sum_{i=0}^{n} |F(f_i)| = F(\sigma d) + \sum_{i=0}^{n} F(\sigma_i f_i))
$$

$$
= F\left(\sigma d + \sum_{i=0}^{n} (\sigma_i f_i)\right)
$$

$$
\leq ||F||.
$$

Since $||F|| - \varepsilon \le \sum_{i=0}^n |F(f_i)|$ by [\(4\)](#page-5-0), $|F(d)| \le \varepsilon$. If $||d|| > 0$, consider $d' := d/||d||$ $d' := d/||d||.$). \Box

ii. Apply i. to $d := (s - s')$.

Lemma 3.4 For every linear and continuous $F : C[0;1] \rightarrow \mathbb{R}$ and every open interval $J\subseteq [0,1]$ there are a sequence $(\pi^k)_{k\in\mathbb{N}}$, $\pi^k = (e^{k} k e^{k} e^{k} + e^{k} k e^{k})$ of connecting to partitions a sequence (i) , $\pi^k =$ $(a_1^k, b_1^k, a_2^k, b_2^k, \ldots, a_{n_k}^k, b_{n_k}^k),$ of approximate partitions, a sequence $(i_k)_{k \in \mathbb{N}}, 1 \leq$ $i_k \leq n_k$, of indices and a sequence $(s^k)_{k \in \mathbb{N}}$ of slanted steps such that for all k,

$$
||F|| - 2^{-k} < \sum_{i=0}^{n_k} |F(f_i^k)| \le ||F||,
$$
\n(13)

$$
(\forall i) b_i^k - a_i^k < 2^{-k} \tag{14}
$$
\n
$$
(a^0 \cdot b^0) \subset I \tag{15}
$$

$$
(a_{i_0}^0; b_{i_0}^0) \subseteq J,
$$
\n
$$
(15)
$$
\n
$$
k+1, k+1, k+2, k+3, k \in \mathbb{Z}
$$

$$
[a_{i_{k+1}}^{k+1}; b_{i_{k+1}}^{k+1}] \subseteq (a_{i_k}^k; b_{i_k}^k)/3
$$
\n
$$
(16)
$$

$$
v(s^k) \subseteq (a_{i_k}^k; b_{i_k}^k)/3 \,. \tag{17}
$$

Proof: For π^0 and i_0 apply Lemma [3.2](#page-5-0) to $\varepsilon = 2^{-0} = 1$ and J. For π^{k+1} and i_{k+1} apply Lemma [3.2](#page-5-0) to $\varepsilon = 2^{-k-1}$ and $J' := (a_{i_k}^k; b_{i_k}^k)/3$. The slanted steps \mathbb{R}^k can be chosen appropriately s^k can be chosen appropriately.

$$
\Box
$$

Lemma 3.5 For the slanted steps s^k in Lemma [3.4,](#page-8-0) $|F(s^m) - F(s^l)| \leq 2^{-k}$ if $k \leq l \leq m$.

Proof: This follows from Corollary [3.3.i](#page-8-0) and $(16,17)$. \Box

Definition 3.6 For the operator F and the interval J let $(\pi^k)_{k \in \mathbb{N}}$, $(i_k)_{k \in \mathbb{N}}$ and $(s^k)_{k∈N}$ be the sequences from Lemma [3.4.](#page-8-0) Define

$$
x_J := \bigcap [a_{i_k}^k; b_{i_k}^k], \quad y_J := \lim_{k \to \infty} F(s^k).
$$
\n(18)

By (16) and Lemma [3.5,](#page-8-0) the numbers x_j and y_j are well-defined and

$$
(\forall k) |y_J - F(s^k)| \le 2^{-k} \,. \tag{19}
$$

Let $(K_i)_{i\in\mathbb{N}}$ be a canonical numbering of the set of all open subintervals $(c, d) \subseteq [0, 1]$ with $c, d \in \mathbb{Q}$. For each i let x_{K_i} and y_{K_i} be real numbers defined via sequences $(\pi^k)_{k\in\mathbb{N}}$ and $(i_k)_{k\in\mathbb{N}}$ according to Lemma [3.4](#page-8-0) and (18). Then the set of all x_{K_i} is dense in [0; 1]. Let

$$
G_0 := \{ (x_{K_i}, y_{K_i}) \mid i \in \mathbb{N} \},\tag{20}
$$

$$
G' := G_0 \cup \{ (0, 0), (1, F(\mathbb{I})) \}.
$$
\n
$$
(21)
$$

Lemma 3.7 (i) The set G_0 is the graph of a continuous function q_0 . (ii) The function g' with graph G' has variation $V(g') = ||F||$.

Here, as a generalization of (2) , we define the variation $V(g')$ of the function g' with $\text{dom}(g') \subseteq [0;1]$ by

$$
V(g') := \sup \{ S(g', Z) | (\exists x_0, \dots, x_n \in \text{dom}(g')) \ \ \, Z = (x_0, \dots, x_n) \text{ is a partition of } [0; 1] \}.
$$

Proof: First we show:

$$
\lim_{i \to \infty} y_i = y \quad \text{if} \quad (x, y), (x_0, y_0), (x_1, y_1), \dots \in G_0 \quad \text{and} \quad \lim_{i \to \infty} x_i = x \tag{22}
$$

Let $\varepsilon > 0$. The pair (x, y) is determined by some sequence of approximate partitions $(\pi^k)_k$ according to Lemma [3.4](#page-8-0) and Definition 3.6. Therefore, there some number k and a slanted step s^k such that

$$
(x - \varepsilon; x + \varepsilon) \subseteq (a_{i_k}^k; b_{i_k}^k)/3 \text{ for some } \varepsilon > 0,
$$
\n
$$
(23)
$$

$$
|y - F(s^k)| \le 2^{-k} \text{ and } v(s^k) \subseteq (a_{i_k}^k; b_{i_k}^k)/3. \tag{24}
$$

There is some j such that $|x - x_j| < \varepsilon/2$. Let $(\bar{\pi}^m)_m$ be the sequence of approximate pertitions defining (x, y) and let $\bar{\pi}^m$ be the slapted stage association proximate partitions defining (x_i, y_i) and let \bar{s}^m be the slanted steps according to Lemma [3.4.](#page-8-0) Let i be a number such that $i > k$ and $2^{-i} < \varepsilon/2$. By (19)

$$
|y_j - F(\bar{s}^i)| \le 2^{-i} \quad \text{and} \quad v(\bar{s}^i) \subseteq (x - \varepsilon; x + \varepsilon). \tag{25}
$$

By [\(23,24,25\)](#page-9-0),

$$
v(s^k), \overline{v}(s^i) \subseteq (a_{i_k}^k; b_{i_k}^k)/3.
$$

By Corollary [3.3,](#page-8-0) $|F(s^k) - F(\bar{s}^i)| \leq 2^{-k}$ Therefore,

$$
|y - y_j| \le |y - F(s^k)| + |F(s^k) - F(\bar{s}^i)| + |F(\bar{s}^i) - y_j|
$$

\n
$$
\le 2^{-k} + 2^{-k} + 2^{-i}
$$

\n
$$
\le 2^{-k+2}.
$$

This proves [\(22\)](#page-9-0).

Suppose $(x, y), (x, y') \in G_0$. Apply [\(22\)](#page-9-0) to (x, y) and the sequence

$$
(x,y),(x,y'),(x,y),(x,y'),\ldots.
$$

Then the sequence y, y', y, y', \ldots converges, hence $y = y'$. Therefore, G_0 is the graph of a function g_0 which is continuous by (22) .

[ii.](#page-9-0) First we show $S(g', Z) \leq ||F||$ for any partition $Z = (x_0, x_1, \ldots, x_n)$ in dom(g'). Let $y_i := g'(x_i)$ and $\varepsilon > 0$. Let $c < (x_i - x_{i-1})/2$ for $i = 1, ..., n$. For every i there is some slanted steps s_i such that

$$
v(s_i) \subseteq (x_i - c; x_i + c) \quad \text{and} \quad |F(s_i) - y_i| \le \frac{\varepsilon}{2n} \,. \tag{26}
$$

Then

$$
|y_1 - y_0| = |F(s_1)| + |F(s_1) - y_1| \le |F(s_1)| + \frac{\varepsilon}{2n},
$$

$$
|y_n - y_{n-1}| = |F(\mathbf{I}) - F(s_n)| + |F(s_n) - y_{n-1}| \le |F(\mathbf{I} - s_n)| + \frac{\varepsilon}{2n}
$$

and for $1 < i < n$,

$$
|y_i - y_{i-1}| \le |y_i - F(s_i)| + |F(s_i) - F(s_{i-1})| + |F(s_{i-1}) - y_{i-1}|
$$

\n
$$
\le |F(s_i - s_{i-1})| + 2\frac{\varepsilon}{2n}.
$$

Therefore,

$$
\sum_{i=1}^{n} |y_i - y_{i-1}| \le |F(s_1)| + \sum_{i=2}^{n-1} |F(s_i - s_{i-1})| + |F(\mathbb{I} - s_n)| + \varepsilon
$$

There are signs $\alpha_i \in \{-1,1\}$ such that $|F(s_1)| = F(\alpha_1 s_1), |F(\mathbb{I} - s_n)| =$ $F(\alpha_n(1-s_n))$ and $|F(s_i-s_{i-1})| = F(\alpha_i(s_i-s_{i-1}))$ for $1 < i < n$. Since $\|\alpha_1 s_1 + \sum_{i=2}^{n-1} (\alpha_i (s_i - s_{i-1})) + \alpha_n (\mathbb{I} - s_n)\| = 1,$

$$
S(g', Z) = \sum_{i=1}^{n} |g'(x_i) - g'(x_{i-1})|
$$

= $|F(s_1)| + \sum_{i=2}^{n-1} |F(s_i - s_{i-1})| + |F(\mathbb{I} - s_n)| + \varepsilon$
= $F(\alpha_1 s_1) + \sum_{i=2}^{n-1} F(\alpha_i (s_i - s_{i-1})) + F(\alpha_n (\mathbb{I} - s_n)) + \varepsilon$
= $F\left(\alpha_1 s_1 + \sum_{i=2}^{n-1} (\alpha_i (s_i - s_{i-1})) + \alpha_n (\mathbb{I} - s_n)\right) + \varepsilon$
 $\leq ||F|| + \varepsilon.$

Since this is true for all $\varepsilon > 0$ and all Z, $V(g') \leq ||F||$.

For the other direction it suffices to show that $(\forall \varepsilon > 0)(\exists Z)\|F\|$ – $\varepsilon \leq S(g', Z)$. By Lemma [3.2](#page-5-0) there is an approximate partition $\pi =$ $(a_1, b_1, \ldots, a_n, b_n)$ such that $||F|| - \varepsilon/3 \le \sum_{i=0}^n |F(f_i)|$ (Figure [2\)](#page-5-0). For $1 \le i \le n$ define slanted steps u_i and v_j by the vertices of their graphs as $1 \leq i \leq n$ define slanted steps u_i and v_i by the vertices of their graphs as follows:

$$
u_i:(0,1), (a_i,1), (a_i+(b_i-a_i)/3,0), (1,0)
$$

$$
v_i:(0,1), (b_i-(b_i-a_i)/3,1), (b_i,0), (1,0).
$$

Then

$$
f_0 = u_1
$$
, $f_i = u_{i+1} - v_i$ (for $1 \le i < n$) and $f_n = 1 - v_n$ (27)

Since the first projection of G_0 is dense in $(0, 1)$ (20) , for $1 \leq i \leq n$ there are pairs $(x_i, y_i) \in G_0$ and slanted steps s_i such that

$$
x_i \in (a_i; b_i)/3, \quad v(s_i) \subseteq (a_i; b_i)/3 \quad \text{and} \quad |F(s_i) - y_i| \le \varepsilon' \tag{28}
$$

for $\varepsilon' := \varepsilon/(6n)$. We consider the partition $Z := (0 = x_0, x_1, \ldots, x_n, x_{n+1} = 1)$. Let $\alpha_i, \beta_i, \gamma_i \in \{-1, 1\}$ be signs and let

$$
h := \beta_0 u_1 + \gamma_1 (s_1 - u_1)
$$

+
$$
\sum_{i=1}^{n-1} (\alpha_i (v_i - s_i) + \beta_i (u_{i+1} - v_i) + \gamma_i (s_{i+1} - u_{i+1}))
$$

+
$$
\alpha_n (v_n - s_n) + \beta_n (\mathbb{I} - v_n)
$$

Choose the signs such that $F(\beta_0 u_1) \geq 0$, $F(\gamma_1 (s_1 - u_1)) \geq 0$, ..., $F(\beta_n(\mathbb{I} - v_n)) \ge 0$. It is seen easily that $||h|| = 1$. Since $|F(f_i)| = F(\beta_i f_i)$,

$$
F(h) := |F(f_0)| + |F(s_1 - u_1)|
$$

+
$$
\sum_{i=1}^{n-1} (|F(v_i - s_i)| + |F(f_i)| + |F(s_{i+1} - u_{i+1})|)
$$

+
$$
|F(v_n - s_n)| + |F(f_n)|.
$$

We obtain

$$
||F|| - \varepsilon/3 \le \sum_{i=0}^{n} |F(f_i)| \le F(h) \le ||F||,
$$

and therefore,

$$
|F(s_1 - u_1)| + \sum_{i=1}^{n-1} (|F(v_i - s_i)| + |F(s_{i+1} - u_{i+1})|) + |F(v_n - s_n)| \le \varepsilon/3 \tag{29}
$$

Finally,

$$
||F|| - \varepsilon/3 \le \sum_{i=0}^{n} |F(f_i)|
$$

\n
$$
= |F(u_1)| + \sum_{i=1}^{n-1} |F(u_{i+1} - v_i)| + |F(\mathbb{I} - v_n)| \text{ by (27)}
$$

\n
$$
\le |y_1| + |F(s_1) - y_1| + |F(u_1) - F(s_1)|
$$

\n
$$
+ \sum_{i=1}^{n-1} (|F(u_{i+1} - s_{i+1})| + |F(s_{i+1}) - y_{i+1}| + |y_{i+1} - y_i| + |y_i - F(s_i)| + |y_i - F(s_i)| + |y_n - F(s_n)| + |F(s_n) - F(v_n)|
$$

\n
$$
+ |F(\mathbb{I} - y_n| + |y_n - F(s_n)| + |F(s_n) - F(v_n)| + |F(s_n) - F(s_n)|
$$

\n
$$
\le \sum_{i=1}^{n+1} |y_i - y_{i-1}| + 2n\varepsilon' + \varepsilon/3 \text{ by (28, 29)}
$$

\n
$$
= S(g', Z) + 2n\varepsilon' + \varepsilon/3.
$$

We obtain $||F|| - \varepsilon \le S(g', Z)$.

Let $g: [0,1] \to \mathbb{R}$ be a function of bounded variation which extends g' . **Lemma 3.8** For every continuous function $h : [0, 1] \to \mathbb{R}$, $F(h) = \int h \, dg$.

Proof: Let $K \in \mathbb{N}$. There is some $a \in \mathbb{N}$ such that $V(g) \leq 2^a$. Let $m : \mathbb{N} \to \mathbb{N}$ be an increasing modulus of continuity of the function h . We construct a partition Z of precision $m(K + 2 + a)$ and a selection T for Z such that

$$
|F(h) - S(g, h, Z, T)| \le 2^{-K - 1}.
$$
\n(30)

Then by Lemma [2.1,](#page-2-0) $|F(h) - \int h \, dg| \leq |F(h) - S(g, h, Z, T)| + |S(g, h, Z, T) -$

 $\int h \, dg \leq 2^{-K-1} + 2^{-K-1-a} V(g) \leq 2^{-K}$. Since this is true for all K, $F(h) =$ $\int h \, dq$.

Let $\varepsilon := 2^{-K-1}/((2n+1)\|h\|+\|F\|)$. Since h is unifomly continuous there is some $\varepsilon' > 0$ such that $|h(x) - h(x')| \leq \varepsilon$ if $|x - x'| \leq \varepsilon'$. By Corollary [3.3,](#page-8-0) Lemma [3.4](#page-8-0) and [\(19\)](#page-9-0) there are

– (x0, y0),(x1, y1),...,(xn+1, yn+1) [∈] ^G , – rational numbers $c_i < d_i$ $(1 \leq i \leq n)$ – and slanted steps u_i, v_i $(1 \leq i \leq n)$ such that $Z = (0 = x_0, x_1, ..., x_{n+1} = 1)$ is a partition with

$$
x_i - x_{i-1} < \varepsilon'/2 \quad \text{for} \quad i = 1, \dots, n+1 \tag{31}
$$

and for $i = 1, \ldots, n$,

$$
c_i < x_i < d_i, \quad d_i - c_i < (x_j - x_{j-1})/2 \quad \text{for} \quad 1 \leq j \leq n+1,\tag{32}
$$

- $v(u_i), v(v_i) \in (c_i; d_i), v(u_i) < v(v_i),$ (33)
- $|F(u_i) u_i| < \varepsilon$, $|F(v_i) v_i| < \varepsilon$, (34)

$$
|F(d)| < \varepsilon ||d|| \quad \text{if} \quad \text{supp}(d) \subseteq [c_i; d_i]. \tag{35}
$$

In Figure 4 the slanted step v_{i-1} is given by the line segments via the points $(0, 1), A, E, (1, 0)$ and u_i by $(0, 1), C, F, (1, 0)$. Let

 $f_1 := u_1, f_i := u_i - v_{i-1}$ $(2 \le i \le n), f_{n+1} := 1 - v_n$. (36) For example, f_i is given by the points $(0, 0), D, B, C, F, (1, 0)$.

In each interval $(c_{i-1}; d_{i-1})$ $(i = 2, \ldots, n+1)$ we "pull" the function h down as shown in the lower part of Figure 4 where the arc from L to G is pulled down to L, M, D, G. Let e_{i-1} be the continuous function such that $e_{i-1}(x)=0$ for x left to L and right to G and $e_{i-1}(x) = 0$ is the length the function h has been pulled down at x otherwise. Then

$$
\text{supp}(e_i) \subseteq (c_i; d_i) \quad \text{and} \quad ||e_i|| \le ||h|| \quad \text{for} \quad 1 \le i \le n. \tag{37}
$$

The function $h - \sum_{i=1}^{n} e_i$ can be written as $\sum_{i=0}^{n+1} h_i$ with pairwise disjoint supports. In Figure 4 the function h_i is given by the sequence of vertices supports. In Figure [4](#page-13-0) the function h_i is given by the sequence of vertices $(0, 0), D, G, H, F, (1, 0).$

Let
$$
T = (t_1, \ldots, t_{n+1})
$$
 be a selection for Z. Define

$$
g_i := h(t_i) f_i \quad [0 \le i \le n+1]. \tag{38}
$$

In Figure [4](#page-13-0) the function g_i is given by the sequence of vertices $(0, 0), D, I, J, F, (1, 0).$

By (35,37),
$$
|F(e_i)| \le \varepsilon ||h||
$$
. Since $h = \sum_{i=1}^n e_i + \sum_{i=1}^{n+1} h_i$
\n
$$
\left| F(h) - F\left(\sum_{i=1}^{n+1} h_i\right) \right| = \left| \sum_{i=1}^n F(e_i) \right| \le \sum_{i=1}^n |F(e_i)| \le n\varepsilon ||h||.
$$
\n(39)

Since $|x_i - x_{i-1}| \leq \varepsilon'/2$, $||h_i - g_i|| \leq \varepsilon$, hence $||\sum_{i=1}^{n+1} h_i - \sum_{i=1}^{n+1} g_i|| \leq \varepsilon$. Therefore,

$$
\left\| F\left(\sum_{i=1}^{n+1} h_i\right) - F\left(\sum_{i=1}^{n+1} g_i\right) \right\| \le \|F\| \,\varepsilon \,.
$$
\n⁽⁴⁰⁾

By [\(36,38\)](#page-13-0),

$$
F(g_1) = h(t_1)F(u_1),
$$

\n
$$
F(g_i) = h(t_i)(F(u_i) - F(v_{i-1})) \quad (2 \le i \le n),
$$

\n
$$
F(g_{n+1}) = h(t_{n+1})F(\mathbb{I} - v_n).
$$

By [\(34\)](#page-12-0),

$$
\left| F\left(\sum_{i=1}^{n+1} g_i\right) - S(g, h, Z, T) \right| = \left| \sum_{i=1}^{n+1} F(g_i) - \sum_{i=1}^{n+1} h(t_i)(y_i - y_{i-1}) \right|
$$

\n
$$
= |h(t_1)(F(u_1) - y_1)
$$

\n
$$
+ \sum_{i=2}^{n} h(t_i)(F(u_i) - F(v_{i-1}) - (y_i - y_{i-1}))
$$

\n
$$
+ h(t_{n+1})(F(\mathbb{I} - v_n) - (F(\mathbb{I} - y_n)))
$$

\n
$$
\leq |h(t_1)|\varepsilon + \sum_{i=2}^{n} 2|h(t_i)|\varepsilon + |h(t_{n+1})|\varepsilon
$$

\n
$$
\leq (n+1) \|h\| \varepsilon.
$$

As a summary,

$$
|F(h) - S(g, h, Z, T)| \le n\varepsilon ||h|| + ||F|| \varepsilon + (n+1)||h||\varepsilon = 2^{-K-1}.
$$

 \Box

4 The Computability Background

For studying computability we use the representation approach (TTE) to Computable Analysis [\[9\]](#page-20-0). Let Σ be a finite alphabet. Computable functions on Σ^* (the set of finite sequences over Σ) and Σ^{ω} (the set of infinite sequences over Σ) are defined by Turing machines which map sequences to sequences (finite or infinite). On Σ^{ω} finite or countable tupling will be denoted by $\langle \ \rangle$ [\[9\]](#page-20-0). Sequences are used as "names" of abstract objects. We generalize the concept of representations in [\[9\]](#page-20-0) to multi-representations and consider computability of multi-functions w.r.t. multi-representations (see [\[10\]](#page-20-0) for the definition, which differs from that in [\[8\]](#page-20-0), and [\[3\]](#page-19-0) for an application).

A multi-function is a triple $f = (A, B, R_f)$ such that $R_f \subset A \times B$, which we will denote by $f: \subseteq A \rightrightarrows B$. For $X \subseteq A$ let $f[X] := \{b \in B \mid (\exists a \in X)(a, b) \in$ R} and for $a \in A$ define $f(a) := f[\{a\}]$. Notice that f is well-defined by the values $f(a) \subseteq B$ for all $a \in A$. We define $dom(f) := \{a \in A \mid f(a) \neq \emptyset\}.$ For muli-functions $f : \subseteq A \implies B$ and $q : \subseteq C \implies D$ we define the composition $g \circ f : \subseteq A \rightrightarrows D$ by

$$
a \in \text{dom}(g \circ f) : \iff a \in \text{dom}(f) \text{ and } f(a) \subseteq \text{dom}(g),
$$

\n
$$
g \circ f(a) := g[f(a)].
$$
\n(42)

Notice that (42) without (41) corresponds to ordinary relational composition of R_f and R_g . For a multi-function $f \subseteq M_1 \implies M_0$ we will usually interpret $f(x) \subseteq B$ as the set of "acceptable" values for the argument $x \in M_1$.

Definition 4.1 [multi-representation]

A multi-representation of a set M is a surjective multi-function $\delta : \mathbb{C}\Sigma^{\omega} \rightrightarrows M$.

A multi-representation $\delta : \mathbb{C}\Sigma^{\omega} \implies M$ can be considered as a naming system for the points of a set M , where each name can encode many points. Therefore, $x \in \delta(p)$ is interpreted as "p is a name of x". We generalize the concept of realization of a function or multi-function w.r.t. (single-valued) representations $[9]$ to multi-representations as follows $[10]$:

Definition 4.2 | realization

For multi-representations $\gamma_i : \subseteq Y_i \implies M_i$ $(i = 0, \ldots, k)$, abbreviate $Y :=$ $Y_1 \times \ldots \times Y_k$, $M := M_1 \times \ldots \times M_k$, and $\gamma(y_1, \ldots, y_k) : \gamma_1(y_1) \times \ldots \times \gamma_k(y_k)$. Then a function $h : \subseteq Y \to Y_0$ is a (γ, γ_0) -realization of a multi-function $f: \subseteq M \rightrightarrows M_0$, iff for all $p \in Y$ and $x \in M$,

$$
x \in \gamma(p) \cap \text{dom}(f) \Longrightarrow f(x) \cap \gamma_0 \circ h(p) \neq \emptyset. \tag{43}
$$

The multi-function f is called (γ, γ_0) -computable, if it has a computable (γ, γ_0) -realization.

(We will say $(\gamma_1,\ldots\gamma_k,\gamma_0)$ -computable instead of (γ,γ_0) -computable, etc.)

Fig. 5 illustrates the definition. Whenever p is a γ -name of $x \in \text{dom}(f)$, then $h(p)$ (the sequence of symbols computed by a machine for h) is a γ_0 -name of some $y \in f(x)$.

Fig. 5. $h(p)$ is a name of some $y \in f(x)$, if p is a name of $x \in \text{dom}(f)$.

For two multi-representations $\delta_i \subseteq \Sigma^\omega \implies M_i$ $(i = 1, 2), \delta_1 \leq \delta_2$ ("reducible to") iff $(\forall p \in \text{dom}(\delta_1))$ $\delta_1(p) \subseteq \delta_2 h(p)$ for some computable function $h : \subseteq \Sigma^\omega \to$ Σ^{ω}

If multi-functions on represented sets have realizations, then their composition is realized by the composition of the realizations. In particular, the computable multi-functions on represented sets are closed under composition. Much more generally, the computable multi-functions on multi-represented sets are closed under flowchart programming with indirect addressing [\[10\]](#page-20-0). This result allows convenient informal construction of new computable functions on multi-represented sets from given ones.

For the real numbers we use the Cauchy representation $\rho : \subseteq \Sigma^{\omega} \to \mathbb{R}$, for the set of continuous real functions on the unit interval the Cauchy representation $\delta_C : \subseteq \Sigma^{\omega} \to C[0; 1]$ defined via the dense set of rational polygons (Definitions 4.1.5 and 6.1.9 in [\[9\]](#page-20-0)). For the space \tilde{C} of continuous functions $F: C[0;1] \to \mathbb{R}$ there is a canonical representation $\delta_C \to \rho$ (Definitions 3.1.13) in [\[9\]](#page-20-0)). For this representation we have the type conversion lemma (Theorem $3.3.15$ in in [\[9\]](#page-20-0)).

Lemma 4.3 (type conversion) For every representation δ of the space C, the function eval : $(F, h) \mapsto F(h)$ is (δ, δ_C, ρ) -computable, iff $\delta \leq [\delta_C \to \rho]$.

Since the dulal $C'[0; 1]$ is a subset of \tilde{C} , we can use the representation $[\delta_C \rightarrow \infty]$ is $C'[0; 1] \rightarrow \mathbb{R}$ is $([S] \rightarrow \infty]$ computable (e.g. name ρ for it. The norm $\| \cdot C'[0; 1] \to \mathbb{R}$ is $([\delta_C \to \rho], \rho_<)$ -computable (a $\rho_<$ -name of $x \in \mathbb{R}$ is an (encoded) increasing sequence of rational numbers converging to x [\[9\]](#page-20-0)). The multi-function UB : $C'[0;1] \rightrightarrows \mathbb{R}, a \in \text{UB}(F) \iff ||F|| < a$, is $([\delta_C \to \rho], \rho)$ -computable. But the norm is not $([\delta_C \to \rho], \rho)$ -computable [\[1\]](#page-19-0) since the space $(C'[0; 1], || ||)$ is not separable [\[4\]](#page-19-0).

For the set $\mathbb{B} = \{m \mid m : \mathbb{N} \to \mathbb{N}\}\$ we consider the representation $\delta_{\mathbb{R}}$ defined by $\delta_{\mathbb{B}}(p) = m$, iff $p = 1^{m(0)} 01^{m(1)} 01^{m(2)} 0 \ldots$ By Lemma 6.2.7 in [\[9\]](#page-20-0), a modulus of continuity m can be computed for every function $h \in C[0, 1]$:

Lemma 4.4 The multi-function MC : $C[0;1] \rightrightarrows \mathbb{B}$ such that $m \in \text{MC}(h)$ iff $m : \mathbb{N} \to \mathbb{N}$ is a uniform modulus of continuity of $h : [0,1] \to \mathbb{R}$ is $(\delta_C, \delta_{\mathbb{B}})$. computable.

Finally, for the set BV[0;1] of functions $g : [0;1] \rightarrow \mathbb{R}$ of bounded variation we define a multi-representation $\delta_{\rm BV}$ by $g \in \delta_{\rm BV}(p)$ iff $p =$ $\langle r_0, r_1, p_0, q_0, p_1, q_1,... \rangle$ such that

$$
g(0) = \rho(r_0), \quad g(1) = \rho(r_1),
$$

$$
\{\rho(p_i) \mid i \in \mathbb{N}\} \text{ is dense in } [0; 1],
$$

$$
g\rho(p_i) = \rho(q_i) \text{ for } i \in \mathbb{N}.
$$

Remember that by Lemma [2.1](#page-2-0) the values of g on a dense set are sufficient to approximate $\int f \, dq$ for continuous f.

5 The Main Results

First, we show that Riemann-Stieltjes integration $\int h \, dg$ is computable in h and g. As an additional information for the computation we use some upper bound of $V(q)$, the variation of g.

Theorem 5.1 Define the operator $S : \subseteq BV[0;1] \times \mathbb{R} \to C'[0;1]$ by $dom(S) :=$ $\{(q, b) | V(q) < b\}$ and and $S(q, b)(h) = \int h \, dg$ for all $h \in C[0, 1]$. Then S is $(\delta_{\rm BV}, \rho, [\delta_C \rightarrow \rho])$ -computable.

Proof: First we show how $\int h \, dg$ can be computed from g, b and h. We assume that the function g is given by some δ_{BV} -name $p = \langle r_0, r_1, p_0, q_0, p_1, q_1, \ldots \rangle$, the bound b by some ρ -name and the continuous functionb h by some δ_C -name. For h we can compute some uniform modulus m of continuity (Theorem $6.2.7$) in [\[9\]](#page-20-0)). ¿From b we can compute some $l \in \mathbb{N}$ such that $b \leq 2^l$. ¿From g, k and l we can compute points

 $(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n) \in \text{graph}(g)$ such that $\pi = (x_0, x_1, \ldots, x_n)$ is a partition of precision $m(k + 1 + l)$. For the selection $T := (x_1, \ldots, x_n)$ for π according to [\(3\)](#page-2-0) we can compute

$$
S(g, h, Z, T) := \sum_{i=1}^{n} f(x_i)(y_i - y_{i-1}).
$$

By Lemma [2.1,](#page-2-0)

$$
\left| S(g, h, Z, T) - \int h \, dg \right| \le 2^{-k-l} V(g) \le 2^{-k-l} b \le 2^{-k}.
$$

Therefore, from g, b and h we can compute a sequence $(z_k)_{k\in\mathbb{N}}$ of real numbers such that $|z_k - \int h \, dg| \leq 2^{-k}$. Since the limit of such sequences is computable (Theorem 4.3.7 in [\[9\]](#page-20-0)) the function $(q, b, h) \mapsto \int h \, dg$ for $V(q) \leq b$ is $(\delta_{BV}, \rho, \delta_C, \rho)$ -computable. By type conversion, Theorem 3.3.15 in [\[9\]](#page-20-0), the operator *S* is $(\delta_{BV}, \rho, \delta_C, \rho)$ -computable operator S is $(\delta_{\rm BV}, \rho, [\delta_C \rightarrow \rho])$ -computable.

Theorem 5.2 Define the operator $S' : \subseteq C'[0; 1] \times \mathbb{R} \implies BV[0; 1]$ by $g \in S'(F,c)$, iff $c = ||F|| = V(g)$ and $F(h) = \int h \, dg$ for all $h \in C[0;1]$. Then S' is $([\delta_C \rightarrow \rho], \rho, \delta_{BV})$ -computable.

Proof: We assume that F is given by some $\delta_C \rightarrow \rho$ -name and c by some ρ -name. We want to compute some $\delta_{\rm BV}$ -name $p = \langle r_0, r_1, p_0, q_0, p_1, q_1, \ldots \rangle$ of some appropriate function g. Since by Lemma [4.3](#page-16-0) $(F, h) \rightarrow F(h)$ is computable, the function, mapping each approximate partition π = $(a_1, b_1, \ldots, a_n, b_n)$ to $\sum_{i=0}^n |F(f_i)|$, see Section [3,](#page-4-0) is computable. Since ex-
istance is guaranteed by Lomma 3.2, for each interval Luith rational and istence is guaranteed by Lemma 3.2 , for each interval J with rational end points and for each k by exhaustive search some approximate partition π can be computed such that

$$
||F|| - 2^{-k} < \sum_{i=0}^{n} |F(f_i)| \le ||F|| \,, \tag{44}
$$

$$
(\forall i, 1 \le i \le n) b_i - a_i < 2^{-k}
$$
\n
$$
(45)
$$
\n
$$
(10)
$$

and $(\exists i, 1 \le i \le n) [a_i; b_i] \subseteq J.$ (46)

Since existence is guaranteed by Lemma [3.4,](#page-8-0) For each m a sequence $(\pi^k)_{k\in\mathbb{N}}$, $\pi^k = (a_1^k, b_1^k, a_2^k, b_2^k, \dots, a_{n_k}^k, b_{n_k}^k),$ of approximate partitions, a sequence $(i_k)_{k \in \mathbb{N}},$
 $1 \leq i \leq n$, of indices and a sequence (a_1^k) , so figured stars can be computed $1 \leq i_k \leq n_k$, of indices and a sequence $(s^k)_{k\in\mathbb{N}}$ of slanted steps can be computed such that for all k ,

$$
||F|| - 2^{-k} < \sum_{i=0}^{n_k} |F(f_i^k)| \le ||F||,
$$

\n
$$
(\forall i) b_i^k - a_i^k < 2^{-k},
$$

\n
$$
(a_{i_0}^0; b_{i_0}^0) \subseteq K_m,
$$

\n
$$
[a_{i_{k+1}}^{k+1}; b_{i_{k+1}}^{k+1}] \subseteq (a_{i_k}^k; b_{i_k}^k)/3
$$

\n
$$
v(s^k) \subseteq (a_{i_k}^k; b_{i_k}^k)/3.
$$

Then according to Lemma [3.5](#page-8-0) and Definition [3.6](#page-9-0) numbers x_{K_i} and y_{K_i} can be computed computed.

Therefore, from F and $c = ||F||$ sets

$$
G_0 := \{ (x_{K_i}, y_{K_i}) \mid i \in \mathbb{N} \},
$$

\n
$$
G' := G_0 \cup \{ (0, F(0)), (1, F(1\)) \}
$$

can be computed such that Lemmas [3.7](#page-9-0) holds true. Computing means to find $r_0, r_1, p_i, q_i \in \Sigma^\omega$ such that $\rho(r_0) = 0$, $\rho(r_1) = F(\mathbb{I})$, $\rho(p_i) = x_{K_i}$ and $\rho(q_i) = y_{K_i}$. Then for any function $g : [0, 1] \to \mathbb{R}$ of bounded variation which extends g' ,

$$
g \in \delta_{\text{BV}}(p), \quad p := \langle r_0, r_1, p_0, q_0, p_1, q_1, \ldots \rangle
$$

There is an extension $g[0;1] \to \mathbb{R}$ of g' such that $V(g) = V(g') = ||F||$. For $x \in [0,1] \setminus \text{dom}(g')$ define $g(x) := \lim\{g'(x') \mid x' < x\}$. By Lemma [3.8,](#page-12-0) $F(h) = \int h \, dg$ for all $h \in C[0, 1]$.

Therefore, the operator S' is $([\delta_C \to \rho], \rho, \delta_{BV})$ -computable.

The above proof uses the norm of F explicitly. As we have already men-tioned in Section [4,](#page-15-0) $||F||$ cannot be computed from F.

References

- [1] Brattka, V., Computable versions of the uniform boundedness theorem, in: Z. Chatzidakis, P. Koepke and W. Pohlers, editors, Logic Colloquium 2002, Lecture Notes in Logic **27** (2006).
- [2] Goffman, C. and G. Pedrick, "First Course in Functional Analysis," Prentince-Hall, Englewood Cliffs, 1965.
- [3] Grubba, T. and K. Weihrauch, A computable version of Dini's theorem for topological spaces, in: P. Yolum, T. Güngör, F. Gürgen and C. Özturan, editors, *Computer and Information* Sciences - ISCIS 2005, Lecture Notes in Computer Science **3733** (2005), pp. 927–936, 20th International Symposium, ISCIS, Istanbul, Turkey, October 2005.
- [4] Heuser, H., "Funktionalanalysis," B.G. Teubner, Stuttgart, 1986, 2. edition.
- [5] Ko, K.-I., "Complexity Theory of Real Functions," Progress in Theoretical Computer Science, Birkhäuser, Boston, 1991.
- [6] Rudin, W., "Real and Complex Analysis," McGraw-Hill, New York, 1974, 2nd edition.
- [7] Schechter, E., "Handbook of Analysis and Its Foundations," Academic Press, San Diego, 1997.
- [8] Schröder, M., Admissible representations for continuous computations, Informatik Berichte 299, FernUniversität Hagen, Hagen (2003), dissertation.
- [9] Weihrauch, K., "Computable Analysis," Springer, Berlin, 2000.
- [10] Weihrauch, K., Multi-functions on multi-represented sets are closed under flowchart programming, in: T. Grubba, P. Hertling, H. Tsuiki and K. Weihrauch, editors, Computability and Complexity in Analysis, Informatik Berichte **326** (2005), pp. 267–300, proccedings, Second International Conference, CCA 2005, Kyoto, Japan, August 25–29, 2005.
- [11] Zheng, X. and R. Rettinger, Effective Jordan decomposition, Theory of Computing Systems **38** (2005), pp. 189–209.