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Abstract

By the Riesz representation theorem for the dual of C[0; 1], for every continuous linear operator
F : C[0; 1] → R there is a function g : [0; 1] → R of bounded variation such that

F (f) =

Z
f dg (f ∈ C[0; 1]) .

The function g can be normalized such that V (g) = ‖F‖. In this paper we prove a computable
version of this theorem. We use the framework of TTE, the representation approach to computable
analysis, which allows to define natural computability for a variety of operators. We show that
there are a computable operator S mapping g and an upper bound of its variation to F and a
computable operator S′ mapping F and its norm to some appropriate g.
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1 Introduction

The Riesz representation theorem is one of the fundamental theorems in Func-
tional Analysis and General Topology.

Theorem 1.1 (Riesz representation theorem[2]) For every continuous

linear operator F : C[a, b] → R there is a function g : [a, b] → R of bounded

variation such that

F (f) =

∫
f dg (f ∈ C[a, b])

and

V (g) = ‖F‖ .

As usual, C[a, b] is the set of continuous functions h : [a, b] → R on the
real interval [a, b], equipped with the norm ‖h‖ = maxa≤x≤b |h(x)|. Its dual
C ′[a, b] is the set of continuous linear functions F : C[a, b] → R. The norm of
F ∈ C ′[a, b] is defined by ‖F‖ = sup{|F (h)| | h ∈ C[a, b], ‖h‖ = 1}.

∫
f dg is

the Riemann-Stieltjes integral and V (g) is the total variation of g : [a, b] → R.
Let BV[a, b] be the set of functions g : [a; b] → R of bounded variation.

On the other hand, for every function g : [a, b] → R of bounded variation
the operator f �→

∫
f dg is linear and continuous on C[a, b]. Therefore, the

dual space of the space C ′[a, b] can be identified with a space of (appropriately
normalized) functions of bounded variation on [a, b].

There are more abstract versions of the Riesz representation theorem, for
example, for complex valued continuous functions with compact support on a
locally compact Hausdorff space instead of C[a, b] and linear positive operators
F [6]. In this article we study aspects of computability of the above simple
version which can be found e.g. in [2]. We prove a computable version of
this theorem in the framework of TTE. For given natural representations of
the spaces we prove that there are computable operators mapping F to g and
mapping g to F . For formulating and proving we use the concepts of Type-2
Theory of Effectivity, the representation approach to Computable Analysis [9].
Some aspects of computability of functions of bounded variation have been
already studied in [5,11]

For convenience we consider only functions on the unit interval [0; 1]. The
generalization to arbitrary intervals is straightforward.

In Section 2 we estimate the rate of convergence of a sequence of finite
sums approximating the Riemann-Stieltjes integral. Section 3 contains the
construction of a function g of bounded variation from F . In Section 4 we
outline shortly some concepts of TTE and define the (multi-)representations
of the sets we will use. The last section contains the main theorems. Because
of the detailed preparations their proofs ar short.
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2 Riemann-Stieltjes Integral

In this section we consider the definition of the Riemann-Stieltjes Integral
(see for example [7]) and estimate the rate of convergence of a sequence of
finite sums converging to the integral. We will need this rate for proving
computability.

Let a, b be real numbers such that a < b. A partition of the interval [a; b]
is a sequence Z = (x0, x1, . . . , xn) such that a = x0 < x1 < . . . < xn = b. The
partition Z has precision k, if xi − xi−1 ≤ 2−k for 1 ≤ i ≤ n. A partition
Z ′ = (x′

0, x
′
1, . . . , x

′
m) is finer than Z, if {x0, x1, . . . , xn}⊆{x′

0, x
′
1, . . . , x

′
m}. A

selection for Z is a sequence T = (t1, . . . , tn) such that xi−1 ≤ ti ≤ xi. For a
real function g : [a; b] → R define

S(g, Z) :=

n∑
i=1

|g(xi) − g(xi−1)|. (1)

The variation of g is defined by

V (g) := sup{S(g, Z)|Z is a partition of [a; b]}. (2)

A function g : [a; b] → R is of bounded variation if its variation V (g) is finite.

In the following let f : [a; b] → R be continuous function and let g : [a; b] →
R be a function of bounded variation. For any partition Z = (x0, x1, . . . , xn)
of [a; b] and any selection T for Z define

S(g, f, Z, T ) :=

n∑
i=1

f(ti)(g(xi) − g(xi−1)). (3)

Every continuous function f : [a; b] → R has a (uniform) modulus of

continuity, i.e., a function m : N → N such that |f(x) − f(y)| ≤ 2−k if
|x − y| ≤ 2−m(k).

Lemma 2.1 Let f : [a; b] → R be continuous function with modulus of conti-

nuity m : N → N. Let g : [a; b] → R be a function of bounded variation. Then

there is a number I ∈ R such that

|I − S(g, f, Z, T )| ≤ 2−kV (g)

for each partition Z of [a; b] with precision m(k + 1) and each selection T for

Z.

Proof: First, we prove that for any two partitions Z1, Z2 of [a; b] with precision
m(k + 1) and selections T1 and T2, respectively,

|S(g, f, Z1, T1) − S(g, f, Z2, T2)| ≤ 2−kV (g) .
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Let Z1 = (x0, x1, . . . , xn) with selection T1 = (t1, . . . , tn) and let Z ′ be a
refinement of Z1 with selection T ′. Then Z ′ can be written as

x0 = y1
0, y

1
1, . . . , y

1
j1

= x1 = y2
0, y

2
1, . . . , y

2
j2

= x2 . . . . . . = yn
0 , yn

1 , . . . , yn
jn

= xn

(j1, . . . , jn ≥ 1) and T ′ as

t11, t
1
2, . . . , t

1
j1

, t21, t
2
2, . . . , t

2
j2

, . . . . . . t1n, t1n, . . . , tnjn
.

such that yi
l−1 ≤ til ≤ yi

l . Then

|S(g, f, Z1, T1) − S(g, f, Z ′, T ′)|

=

∣∣∣∣∣
n∑

i=1

f(ti)
(
g(xi) − g(xi−1)

)
−

n∑
i=1

ji∑
l=1

f(til)
(
g(yi

l) − g(yi
l−1)

)∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

f(ti)

ji∑
l=1

(
g(yi

l) − g(yi
l−1)

)
−

n∑
i=1

ji∑
l=1

f(til)
(
g(yi

l) − g(yi
l−1)

)∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

ji∑
l=1

(
f(ti) − f(til)

)(
g(yi

l) − g(yi
l−1)

)∣∣∣∣∣
≤

n∑
i=1

ji∑
l=1

∣∣f(ti) − f(til)
∣∣ ∣∣g(yi

l) − g(yi
l−1)

∣∣
≤ 2−k−1

n∑
i=1

ji∑
l=1

∣∣g(yi
l) − g(yi

l−1)
∣∣ since |ti − til| ≤ 2−m(k+1)

≤ 2−k−1V (g)

Now let Z ′ be a common refinement of Z1 and Z2 and let T ′ be a selection for
Z ′. Then

|S(g, f, Z1, T1) − S(g, f, Z2, T2)|

≤ |S(g, f, Z1, T1) − S(g, f, Z ′, T ′)| + |S(g, f, Z2, T2) − S(g, f, Z ′, T ′)|

≤ 2−kV (g)

Next, for each i ∈ N let Zi be a partition of [a; b] with precision m(i + 1) and
a selection Ti. Then for i > j,

|S(g, f, Zi, Ti) − S(g, f, Zj, Tj)| ≤ 2−jV (g) .

Therefore, the sequence (S(g, f, Zi, Ti))i is a Cauchy sequence converging to
some I ∈ R. If Z is a partition with precision m(k + 1) and selection T , then
for each i > k
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|I − S(g, f, Z, T )|≤ |I − S(g, f, Zi, Ti)| + |S(g, f, Zi, Ti) − S(g, f, Z, T )|

≤ 2−iV (g) + 2−kV (g) ,

hence |I − S(g, f, Z, T )| ≤ 2−kV (g). �

Definition 2.2 [Riemann-Stieltjes integral]∫
f dg := I (the real number defined in Lemma 2.1)

3 Construction of a Function of Bounded Variation

In this section for a given continuous linear operator F : C[0; 1] → R we
construct a function g′ : ⊆[0; 1] → R of variation ‖F‖ such that F (h) =

∫
h dg

for every h ∈ C[0; 1] and every extension g : [0; 1] → R of g′ of bounded
variation.

Let F : C[0; 1] → R be a linear continuous operator on the set C[0; 1]
of continuous functions f : [0; 1] → R. For a function h ∈ C[0, 1], and
0 ≤ a < b ≤ 1 define the function hab ∈ C[0, 1] as follows. The graph of hab

is the union of the graph of h from 0 to a, the line from the point (a, h(a)) to
(a + (b − a)/3, 0), the line from this point to the point (b − (b − a)/3, 0), the
line from this point to (b, h(b)) and the graph of h from b to 1 (see Figure 1).

�

� �

�0

1

1a bc d

h

hab
������ �
�

�
���

�
�
�
��	













�

Fig. 1. The (a, b)-cut hab of h

Lemma 3.1 Suppose h ∈ C[0, 1], ε > 0 and 0 ≤ c < d ≤ 1. Then there are

a, b ∈ Q such that c < a < b < d and |F (h − hab)| < ε.

Proof: Suppose this is false. Then there are infinitely many pairwise disjoint
intervals (ai; bi) in the interval (c; d) such that |F (h − haibi

)| ≥ ε. For each
i ≤ N define

hi :=

⎧⎨
⎩h − haibi

if F (h − haibi
) ≥ 0

−(h − haibi
) otherwise.
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Since ‖haibi
‖ ≤ ‖h‖, ‖hi‖ ≤ 2‖h‖. Choose N > 2‖F‖ ‖h‖/ε. Since

‖
∑N

i=0 hi‖ = maxN
i=0 ‖hi‖ ≤ 2‖h‖, |F (

∑N

i=0 hi)| ≤ ‖F‖‖
∑N

i=0 hi‖ ≤ 2‖F‖‖h‖.

On the other hand, since F (hi) ≥ ε, |F (
∑N

i=0 hi)| = |
∑N

i=0 F (hi)| =∑N

i=0 F (hi) ≥ N · ε > 2‖F‖ ‖h‖. Contradiction. �

The function dab := h−hab has a support in [a; b] and a very small “weight”
|F (dab)|. It cuts the function h into two pices ha and hb with disjoint supports
such that F (h) and F (ha + hb) are almost the same. Such a cut is possible
eveywhere in the interval [0; 1].

Let an approximate partition be a sequence π = (a1, b1, . . . , an, bn) (n ≥ 1)
of rational numbers such that 0 < a1 < b1 < . . . < an < bn < 1. Let
b0 := 0 and an+1 := 1. An approximate partition π induces an approximate
decomposition of the function 1I, 1I(x) = 1 for 0 ≤ x ≤ 1, into continuous
functions f0, . . . , fn ∈ C[0, 1], which are polygons defined by the vertices of
their graphs as follows (see Figure 2).

�

� �

�

� � � � � � � � � � � � � �� � � � � � �

0

1

1

b0a1 b1 ai bi
ai+1 bi+1 an bn

an+1

f0 fi fn

Fig. 2. Decomposition of 1I by a partition (a1, b1, . . . , an, bn)

For 1 ≤ i < n,

f0 : (0, 1), (a1, 1), (a1 +
b1 − a1

3
), (1, 0),

fi : (0, 0), (bi −
bi − ai

3
, 0), (bi, 1), (ai+1, 1), (ai+1 +

bi+1 − ai+1

3
, 0), (1, 0),

fn : (0, 0), (bn −
bn − an

3
), (bn, 1), (1, 1).

By the next lemma the function 1I can be partitioned into finitly many
functions fi of Norm 1 with disjoint support, such that

∑
|F (fi)| is arbitrarily

close to ‖F‖, and, in addition, for a given interval J ∈ L there is some i such
that (ai; bi)⊆J .

Lemma 3.2 Let F : C[0; 1] → R be continuous. For every ε > 0
and every open interval in J⊆[0; 1] there is an approximate partion π =
(a1, b1, . . . , an, bn) such that
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‖F‖ − ε <
n∑

i=0

|F (fi)| ≤ ‖F‖ , (4)

(∀ i, 1 ≤ i ≤ n) bi − ai < ε (5)

and (∃ i, 1 ≤ i ≤ n) [ai; bi]⊆J. (6)

Proof: Let ε′ := ε/(2 + ‖F‖). Since ‖F‖ = sup{F (h)| ‖h‖ = 1}, there is
some h ∈ C[0; 1] such that ‖h‖ = 1 and

‖F‖ − ε′ < F (h). (7)

Since h is uniformly continuous there is some ε1 > 0 such that

ε1 < ε′ and |h(x) − h(y)| < ε′ for |x − y| ≤ ε1. (8)

Divide the interval (0; 1) into consecutive intervals (cj ; dj) (j = 1, . . . , n) such
that c1 = 0, dj = cj+1 and dn = 1 of length ≤ min(ε1, length(J))/3. Ap-
ply Lemma 3.1 in turn to each of these intervals (cj ; dj) (j = 1, . . . , n) with
precision ε′/n. The result is a partition as shown in Figure 3.

�

� �

�0

1

1

�

�
A B

C D

FEai bi
ai+1 bi+1

< ε′

a1 bn

� � � � � � � � � � � � � �

h0

g0

hi

gi

hn

gn

Fig. 3. Approximate decomposition of 1I via h.

Notice that the ranges from ai to bi correspond to the range from a to b in
Figure 1 and that the distance from Ei to (bi, 0) is (bi−ai)/3 and the distance
from ai+1 to Fi is (bi+1−ai+1)/3. For 1 ≤ i ≤ n−1 define hi and gi as follows.
The graph of hi is the union of the line segments from (0, 0) to Ei, from Ei

to Ci, from Di to Fi and from Fi to (1, 0) and the section of graph(h) from
Ci to Di. The graph of gi is the union of the line segments from (0, 0) to Ei,
from Ei to Ai, from Ai to Bi, from Bi to Fi and from Fi to (1, 0), where the
ordinate of Ai and Bi is min{h(x) | bi ≤ x ≤ ai+1}. The functions h0, g0, hn

and gn are defined accordingly.

By the construction and Lemma 3.1 for the approximate partition π =
(a1, b1, . . . , an, bn),

(∃ i)[ai; bi] ∈ J, (9)

ai+1 − bi < ε1 for i = 1, . . . , n (10)

and |F (h) −
N∑

i=0

F (hi)| < ε′. (11)
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It remains to prove (4). By (10) and (8), ‖hi − gi‖ ≤ ε′ for 0 ≤ i ≤ n and
hence ‖

∑n

i=0(hi − gi)‖ ≤ ε′ (since the (hi − gi) have disjoint supports). We
obtain

|F (

n∑
i=0

(hi − gi))| ≤ ε′‖F‖ (12)

and

‖F‖ − F
∑

gi ≤F (h) − F
∑

gi + ε′ by (7)

≤ |F (h) − F (
∑

hi)| + |F (
∑

hi) − F
∑

gi| + ε′

< ε′ + |F (
n∑

i=0

(hi − gi))| + ε′ by (11)

≤ ε′(2 + ‖F‖) ≤ ε by (12).

For i = 0, . . . , n let fi be the function from the decomposition of 1I induced
by the approximate partition π = (a1, b1, . . . , an, bn). If gi = 0 then |F (gi)| =
0 ≤ |F (fi)|. Otherwise,

|F (gi)| = |F (|gi|)| = ‖gi‖ |F (
|gi|

‖gi‖
)|‖gi‖ |F (|fi|)| ≤ |F (fi)|

Since ‖F‖ − F
∑

gi < ε (see above),

‖F‖ − ε < F
∑

gi =
∑

F (gi) ≤
∑

|F (gi)| ≤
∑

|F (fi)| .

Finally, for each i there is some αi ∈ {−1, 1} such that |F (fi)| = F (αifi).
Since ‖

∑
αifi‖ = 1,∑

|F (fi)| =
∑

F (αifi) = F (
∑

αifi) ≤ ‖F‖ .

Thus we have proved (4).

Since the adjacent intervals (cj, dj) have length ≤ length(J)/3, there is
some i such that [ai; bi]⊆J . This proves (6). Finally bi − ai ≤ di − ci < ε1 <
ε′ < ε. �

In the proof the differences ai+1 − bi are made small in order to get
∑

hi close
to

∑
gi. Also the differences bi − ai are made small so that the errors by

cutting remain small according to Lemma 3.1.

We introduce some terminology. For d ∈ C[0; 1] let supp(d) (the support

of d) be the closure of the set {x | d(x) �= 0}. For 0 ≤ a < b ≤ 1 let
(a; b)/3 := (a + (b − a)/3; b − (b − a)/3). The slanted step at (a, b) is the
function s ∈ C[0; 1] the graph of of which is a polygon with the vertices
(0, 1), (a, 1), (b, 0), (1, 0). Let v(s) := (a; b)⊆[0, 1].
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In Lemma 3.2 the operator F has small values for every function the sup-
port of which does not intersect the supports of the functions fi, see also
Figure 2.

Corollary 3.3 Let π be the approximate partition from Lemma 3.2.

(i) If d ∈ C[0; 1] such that supp(d)⊆
⋃n

i=1(ai; bi)/3 then |F (d)| ≤ ε‖d‖.

(ii) If s, s′ are slanted steps s.th. v(s), v(s′)⊆(ai; bi)/3 for some 1 ≤ i ≤ n,

then |F (s) − F (s′)| ≤ ε.

Proof: i. This is true for d = 0. Assume ‖d‖ = 1. There are signs
σ, σi ∈ {−1, 1} such that |F (fi)| = F (σifi) and F (σd) = |F (d)|. Since
‖σd +

∑n

i=0(σifi)‖ = 1,

|F (d)|+
n∑

i=0

|F (fi)|= F (σd) +

n∑
i=0

F (σifi))

= F

(
σd +

n∑
i=0

(σifi)

)

≤‖F‖ .

Since ‖F‖ − ε ≤
∑n

i=0 |F (fi)| by (4), |F (d)| ≤ ε. If ‖d‖ > 0, consider
d′ := d/‖d‖.

ii. Apply i. to d := (s − s′). �

Lemma 3.4 For every linear and continuous F : C[0; 1] → R and

every open interval J⊆[0; 1] there are a sequence (πk)k∈N , πk =
(ak

1, b
k
1, a

k
2, b

k
2, . . . , a

k
nk

, bk
nk

), of approximate partitions, a sequence (ik)k∈N, 1 ≤
ik ≤ nk, of indices and a sequence (sk)k∈N of slanted steps such that for all k,

‖F‖ − 2−k <

nk∑
i=0

|F (fk
i )| ≤ ‖F‖ , (13)

(∀ i) bk
i − ak

i < 2−k , (14)

(a0
i0
; b0

i0
)⊆J , (15)

[ak+1
ik+1

; bk+1
ik+1

] ⊆ (ak
ik

; bk
ik

)/3 (16)

v(sk)⊆(ak
ik

; bk
ik

)/3 . (17)

Proof: For π0 and i0 apply Lemma 3.2 to ε = 2−0 = 1 and J . For πk+1 and
ik+1 apply Lemma 3.2 to ε = 2−k−1 and J ′ := (ak

ik
; bk

ik
)/3. The slanted steps

sk can be chosen appropriately. �
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Lemma 3.5 For the slanted steps sk in Lemma 3.4, |F (sm) − F (sl)| ≤ 2−k

if k ≤ l ≤ m.

Proof: This follows from Corollary 3.3.i and (16,17). �

Definition 3.6 For the operator F and the interval J let (πk)k∈N, (ik)k∈N and
(sk)k∈N be the sequences from Lemma 3.4. Define

xJ :=
⋂

[ak
ik

; bk
ik

], yJ := lim
k→∞

F (sk) . (18)

By (16) and Lemma 3.5, the numbers xJ and yJ are well-defined and

(∀ k) |yJ − F (sk)| ≤ 2−k . (19)

Let (Ki)i∈N be a canonical numbering of the set of all open subintervals
(c, d)⊆[0; 1] with c, d ∈ Q. For each i let xKi

and yKi
be real numbers defined

via sequences (πk)k∈N and (ik)k∈N according to Lemma 3.4 and (18). Then the
set of all xKi

is dense in [0; 1]. Let

G0 := {(xKi
, yKi

) | i ∈ N} , (20)

G′ :=G0 ∪ {(0, 0), (1, F (1I))} . (21)

Lemma 3.7 (i) The set G0 is the graph of a continuous function g0.

(ii) The function g′ with graph G′ has variation V (g′) = ‖F‖.

Here, as a generalization of (2), we define the variation V (g′) of the function
g′ with dom(g′)⊆[0; 1] by

V (g′) := sup{S(g′, Z)|(∃ x0, . . . , xn ∈ dom(g′))

Z = (x0, . . . , xn) is a partition of [0; 1]} .

Proof: First we show:

lim
i→∞

yi = y if (x, y), (x0, y0), (x1, y1), . . . ∈ G0 and lim
i→∞

xi = x (22)

Let ε > 0. The pair (x, y) is determined by some sequence of approximate
partitions (πk)k according to Lemma 3.4 and Definition 3.6. Therefore, there
some number k and a slanted step sk such that

(x − ε; x + ε)⊆(ak
ik

; bk
ik

)/3 for some ε > 0 , (23)

|y − F (sk)| ≤ 2−k and v(sk)⊆(ak
ik

; bk
ik

)/3 . (24)

There is some j such that |x − xj | < ε/2. Let (π̄m)m be the sequence of ap-
proximate partitions defining (xj , yj) and let s̄m be the slanted steps according
to Lemma 3.4. Let i be a number such that i > k and 2−i < ε/2. By (19)

|yj − F (s̄i)| ≤ 2−i and v(s̄i)⊆(x − ε; x + ε) . (25)
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By (23,24,25),

v(sk), v̄(si)⊆(ak
ik

; bk
ik

)/3 .

By Corollary 3.3, |F (sk) − F (s̄i)| ≤ 2−k Therefore,

|y − yj| ≤ |y − F (sk)| + |F (sk) − F (s̄i)| + |F (s̄i) − yj|

≤ 2−k + 2−k + 2−i

≤ 2−k+2 .

This proves (22).

Suppose (x, y), (x, y′) ∈ G0. Apply (22) to (x, y) and the sequence

(x, y), (x, y′), (x, y), (x, y′), . . . .

Then the sequence y, y′, y, y′, . . . converges, hence y = y′. Therefore, G0 is the
graph of a function g0 which is continuous by (22).

ii. First we show S(g′, Z) ≤ ‖F‖ for any partition Z = (x0, x1, . . . , xn) in
dom(g′). Let yi := g′(xi) and ε > 0. Let c < (xi − xi−1)/2 for i = 1, . . . , n.
For every i there is some slanted steps si such that

v(si)⊆(xi − c; xi + c) and |F (si) − yi| ≤
ε

2n
. (26)

Then

|y1 − y0| = |F (s1)| + |F (s1) − y1| ≤ |F (s1)| +
ε

2n
,

|yn − yn−1| = |F (1I) − F (sn)| + |F (sn) − yn−1| ≤ |F (1I − sn)| +
ε

2n

and for 1 < i < n,

|yi − yi−1| ≤ |yi − F (si)| + |F (si) − F (si−1)| + |F (si−1) − yi−1|

≤ |F (si − si−1)| + 2
ε

2n
.

Therefore,

n∑
i=1

|yi − yi−1| ≤ |F (s1)| +
n−1∑
i=2

|F (si − si−1)| + |F (1I − sn)| + ε

There are signs αi ∈ {−1, 1} such that |F (s1)| = F (α1s1), |F (1I − sn)| =
F (αn(1I − sn)) and |F (si − si−1)| = F (αi(si − si−1)) for 1 < i < n. Since
‖α1s1 +

∑n−1
i=2 (αi(si − si−1)) + αn(1I − sn)‖ = 1,
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S(g′, Z) =
n∑

i=1

|g′(xi) − g′(xi−1)|

= |F (s1)| +
n−1∑
i=2

|F (si − si−1)| + |F (1I − sn)| + ε

= F (α1s1) +

n−1∑
i=2

F (αi(si − si−1)) + F (αn(1I − sn)) + ε

= F

(
α1s1 +

n−1∑
i=2

(αi(si − si−1)) + αn(1I − sn)

)
+ ε

≤‖F‖ + ε .

Since this is true for all ε > 0 and all Z, V (g′) ≤ ‖F‖.

For the other direction it suffices to show that (∀ε > 0)(∃Z)‖F‖ −
ε ≤ S(g′, Z). By Lemma 3.2 there is an approximate partition π =
(a1, b1, . . . , an, bn) such that ‖F‖ − ε/3 ≤

∑n

i=0 |F (fi)| (Figure 2). For
1 ≤ i ≤ n define slanted steps ui and vi by the vertices of their graphs as
follows:

ui : (0, 1), (ai, 1), (ai + (bi − ai)/3, 0), (1, 0)

vi : (0, 1), (bi − (bi − ai)/3, 1), (bi, 0), (1, 0) .

Then

f0 = u1, fi = ui+1 − vi (for 1 ≤ i < n) and fn = 1I − vn (27)

Since the first projection of G0 is dense in (0; 1) (20), for 1 ≤ i ≤ n there are
pairs (xi, yi) ∈ G0 and slanted steps si such that

xi ∈ (ai; bi)/3, v(si)⊆(ai; bi)/3 and |F (si) − yi| ≤ ε′ (28)

for ε′ := ε/(6n). We consider the partition Z := (0 = x0, x1, . . . , xn, xn+1 = 1).
Let αi, βi, γi ∈ {−1, 1} be signs and let

h := β0u1 + γ1(s1 − u1)

+

n−1∑
i=1

(αi(vi − si) + βi(ui+1 − vi) + γi(si+1 − ui+1))

+αn(vn − sn) + βn(1I − vn)

Choose the signs such that F (β0u1) ≥ 0, F (γ1(s1 − u1)) ≥ 0, ...,
F (βn(1I − vn)) ≥ 0. It is seen easily that ‖h‖ = 1. Since |F (fi)| = F (βifi),
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F (h) := |F (f0)| + |F (s1 − u1)|

+
n−1∑
i=1

(|F (vi − si)| + |F (fi)| + |F (si+1 − ui+1)|)

+|F (vn − sn)| + |F (fn)| .

We obtain

‖F‖ − ε/3 ≤
n∑

i=0

|F (fi)| ≤ F (h) ≤ ‖F‖ ,

and therefore,

|F (s1 − u1)| +
n−1∑
i=1

(|F (vi − si)| + |F (si+1 − ui+1)|) + |F (vn − sn)| ≤ ε/3 .(29)

Finally,

‖F‖ − ε/3≤
n∑

i=0

|F (fi)

= |F (u1)| +
n−1∑
i=1

|F (ui+1 − vi)| + |F (1I − vn)| by (27)

≤ |y1| + |F (s1) − y1| + |F (u1) − F (s1)|

+

n−1∑
i=1

(|F (ui+1 − si+1)| + |F (si+1) − yi+1| + |yi+1 − yi|

+|yi − F (si)| + F (si − vi)|)

+|F (1I) − yn| + |yn − F (sn)| + |F (sn) − F (vn)|

≤
n+1∑
i=1

|yi − yi−1| + 2nε′ + ε/3 by (28, 29)

= S(g′, Z) + 2nε′ + ε/3 .

We obtain ‖F‖ − ε ≤ S(g′, Z). �

Let g : [0, 1] → R be a function of bounded variation which extends g′.

Lemma 3.8 For every continuous function h : [0, 1] → R, F (h) =
∫

h dg.

Proof: Let K ∈ N. There is some a ∈ N such that V (g) ≤ 2a. Let m : N → N

be an increasing modulus of continuity of the function h. We construct a
partition Z of precision m(K + 2 + a) and a selection T for Z such that

|F (h) − S(g, h, Z, T )| ≤ 2−K−1 . (30)

Then by Lemma 2.1, |F (h)−
∫

h dg| ≤ |F (h)−S(g, h, Z, T )|+ |S(g, h, Z, T )−
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∫
h dg| ≤ 2−K−1 + 2−K−1−aV (g) ≤ 2−K . Since this is true for all K, F (h) =∫
h dg.

Let ε := 2−K−1/((2n+1)‖h‖+ ‖F‖). Since h is unifomly continuous there
is some ε′ > 0 such that |h(x) − h(x′)| ≤ ε if |x − x′| ≤ ε′. By Corollary 3.3,
Lemma 3.4 and (19) there are
– (x0, y0), (x1, y1), . . . , (xn+1, yn+1) ∈ G′,
– rational numbers ci < di (1 ≤ i ≤ n)
– and slanted steps ui, vi (1 ≤ i ≤ n)
such that Z = (0 = x0, x1, . . . , xn+1 = 1) is a partition with

xi − xi−1 < ε′/2 for i = 1, . . . , n + 1 (31)

and for i = 1, . . . , n,

ci < xi < di, di − ci < (xj − xj−1)/2 for 1 ≤ j ≤ n + 1, (32)

v(ui), v(vi) ∈ (ci; di), v(ui) < v(vi), (33)

|F (ui) − yi| < ε, |F (vi) − yi| < ε, (34)

|F (d)| < ε‖d‖ if supp(d)⊆[ci; di] . (35)
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Fig. 4. Approximate decomposition of 1I via h.

In Figure 4 the slanted step vi−1 is given by the line segments via the points
(0, 1), A, E, (1, 0) and ui by (0, 1), C, F, (1, 0). Let

f1 := u1, fi := ui − vi−1 (2 ≤ i ≤ n), fn+1 := 1I − vn . (36)

For example, fi is given by the points (0, 0), D, B, C, F, (1, 0).

In each interval (ci−1; di−1) (i = 2, . . . , n+1) we “pull” the function h down
as shown in the lower part of Figure 4 where the arc from L to G is pulled
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down to L, M, D, G. Let ei−1 be the continuous function such that ei−1(x) = 0
for x left to L and right to G and ei−1(x) = 0 is the length the function h has
been pulled down at x otherwise. Then

supp(ei)⊆(ci; di) and ‖ei‖ ≤ ‖h‖ for 1 ≤ i ≤ n . (37)

The function h −
∑n

i=1 ei can be written as
∑n+1

i=0 hi with pairwise disjoint
supports. In Figure 4 the function hi is given by the sequence of vertices
(0, 0), D, G, H, F, (1, 0).

Let T = (t1, . . . , tn+1) be a selection for Z. Define

gi := h(ti)fi [0 ≤ i ≤ n + 1] . (38)

In Figure 4 the function gi is given by the sequence of vertices
(0, 0), D, I, J, F, (1, 0).

By (35,37), |F (ei)| ≤ ε‖h‖. Since h =
∑n

i=1 ei +
∑n+1

i=1 hi∣∣∣∣∣F (h) − F

(
n+1∑
i=1

hi

)∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

F (ei)

∣∣∣∣∣ ≤
n∑

i=1

|F (ei)| ≤ nε‖h‖ . (39)

Since |xi − xi−1| ≤ ε′/2, ‖hi − gi‖ ≤ ε, hence ‖
∑n+1

i=1 hi −
∑n+1

i=1 gi‖ ≤ ε.
Therefore,∥∥∥∥∥F

(
n+1∑
i=1

hi

)
− F

(
n+1∑
i=1

gi

)∥∥∥∥∥ ≤ ‖F‖ ε . (40)

By (36,38),

F (g1) =h(t1)F (u1),

F (gi) =h(ti)(F (ui) − F (vi−1)) (2 ≤ i ≤ n),

F (gn+1) =h(tn+1)F (1I − vn) .

By (34),∣∣∣∣∣F
(

n+1∑
i=1

gi

)
− S(g, h, Z, T )

∣∣∣∣∣=
∣∣∣∣∣
n+1∑
i=1

F (gi) −
n+1∑
i=1

h(ti)(yi − yi−1)

∣∣∣∣∣
= |h(t1)(F (u1) − y1)

+

n∑
i=2

h(ti)(F (ui) − F (vi−1) − (yi − yi−1))

+h(tn+1)(F (1I − vn) − (F (1I) − yn))|

≤ |h(t1)|ε +
n∑

i=2

2|h(ti)|ε + |h(tn+1)|ε

≤ (n + 1)‖h‖ε .

As a summary,
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|F (h) − S(g, h, Z, T )| ≤ nε‖h‖ + ‖F‖ ε + (n + 1)‖h‖ε = 2−K−1 .

�

4 The Computability Background

For studying computability we use the representation approach (TTE) to
Computable Analysis [9]. Let Σ be a finite alphabet. Computable functions
on Σ∗ (the set of finite sequences over Σ) and Σω (the set of infinite sequences
over Σ) are defined by Turing machines which map sequences to sequences (fi-
nite or infinite). On Σω finite or countable tupling will be denoted by 〈 〉 [9].
Sequences are used as “names” of abstract objects. We generalize the concept
of representations in [9] to multi-representations and consider computability of
multi-functions w.r.t. multi-representations (see [10] for the definition, which
differs from that in [8], and [3] for an application).

A multi-function is a triple f = (A, B, Rf) such that Rf⊆A×B, which we
will denote by f : ⊆A ⇒ B. For X⊆A let f [X] := {b ∈ B | (∃a ∈ X)(a, b) ∈
R} and for a ∈ A define f(a) := f [{a}]. Notice that f is well-defined by the
values f(a)⊆B for all a ∈ A. We define dom(f) := {a ∈ A | f(a) �= ∅}.
For muli-functions f : ⊆A ⇒ B and g : ⊆C ⇒ D we define the composition
g ◦ f : ⊆A ⇒ D by

a ∈ dom(g ◦ f) : ⇐⇒ a ∈ dom(f) and f(a)⊆dom(g) , (41)

g ◦ f(a) := g[f(a)] . (42)

Notice that (42) without (41) corresponds to ordinary relational composition
of Rf and Rg. For a multi-function f⊆M1 ⇒ M0 we will usually interpret
f(x)⊆B as the set of “acceptable” values for the argument x ∈ M1.

Definition 4.1 [multi-representation]
A multi-representation of a set M is a surjective multi-function δ : ⊆Σω

⇒ M .

A multi-representation δ : ⊆Σω
⇒ M can be considered as a naming

system for the points of a set M , where each name can encode many points.
Therefore, x ∈ δ(p) is interpreted as “p is a name of x”. We generalize the
concept of realization of a function or multi-function w.r.t. (single-valued)
representations [9] to multi-representations as follows [10]:

Definition 4.2 [realization]
For multi-representations γi : ⊆ Yi ⇒ Mi (i = 0, . . . , k), abbreviate Y :=
Y1 × . . . × Yk, M := M1 × . . . × Mk, and γ(y1, . . . , yk) : γ1(y1) × . . . × γk(yk).
Then a function h : ⊆ Y → Y0 is a (γ, γ0)-realization of a multi-function
f : ⊆M ⇒ M0, iff for all p ∈ Y and x ∈ M ,
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x ∈ γ(p) ∩ dom(f)=⇒ f(x) ∩ γ0 ◦ h(p) �= ∅ . (43)

The multi-function f is called (γ, γ0)-computable, if it has a computable
(γ, γ0)-realization.
(We will say (γ1, . . . γk, γ0)-computable instead of (γ, γ0)-computable, etc.)

Fig. 5 illustrates the definition. Whenever p is a γ-name of x ∈ dom(f),
then h(p) (the sequence of symbols computed by a machine for h) is a γ0-name
of some y ∈ f(x).
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Fig. 5. h(p) is a name of some y ∈ f(x), if p is a name of x ∈ dom(f).

For two multi-representations δi⊆Σω
⇒ Mi (i = 1, 2), δ1 ≤ δ2 (“reducible

to”) iff (∀ p ∈ dom(δ1)) δ1(p)⊆δ2h(p) for some computable function h : ⊆Σω →
Σω.

If multi-functions on represented sets have realizations, then their com-
position is realized by the composition of the realizations. In particular, the
computable multi-functions on represented sets are closed under composition.
Much more generally, the computable multi-functions on multi-represented
sets are closed under flowchart programming with indirect addressing [10].
This result allows convenient informal construction of new computable func-
tions on multi-represented sets from given ones.

For the real numbers we use the Cauchy representation ρ : ⊆Σω → R,
for the set of continuous real functions on the unit interval the Cauchy rep-
resentation δC : ⊆Σω → C[0; 1] defined via the dense set of rational polygons
(Definitions 4.1.5 and 6.1.9 in [9]). For the space C̃ of continuous functions
F : C[0; 1] → R there is a canonical representation [δC → ρ] (Definitions 3.1.13
in [9]). For this representation we have the type conversion lemma (Theorem
3.3.15 in in [9]).

Lemma 4.3 (type conversion) For every representation δ of the space C̃,

the function eval : (F, h) �→ F (h) is (δ, δC , ρ)-computable, iff δ ≤ [δC → ρ].
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Since the dulal C ′[0; 1] is a subset of C̃, we can use the representation [δC →
ρ] for it. The norm ‖ ‖ : C ′[0; 1] → R is ([δC → ρ], ρ<)-computable (a ρ<-name
of x ∈ R is an (encoded) increasing sequence of rational numbers converging
to x [9]). The multi-function UB : C ′[0; 1] ⇒ R, a ∈ UB(F ) ⇐⇒ ‖F‖ < a,
is ([δC → ρ], ρ)-computable. But the norm is not ([δC → ρ], ρ)-computable [1]
since the space (C ′[0; 1], ‖ ‖) is not separable [4].

For the set B = {m | m : N → N} we consider the representation δB

defined by δB(p) = m, iff p = 1m(0)01m(1)01m(2)0 . . . . By Lemma 6.2.7 in [9],
a modulus of continuity m can be computed for every function h ∈ C[0; 1]:

Lemma 4.4 The multi-function MC : C[0; 1] ⇒ B such that m ∈ MC(h) iff

m : N → N is a uniform modulus of continuity of h : [0; 1] → R is (δC , δB)-
computable.

Finally, for the set BV[0; 1] of functions g : [0; 1] → R of bounded
variation we define a multi-representation δBV by g ∈ δBV(p) iff p =
〈r0, r1, p0, q0, p1, q1, . . .〉 such that

g(0) = ρ(r0), g(1) = ρ(r1),

{ρ(pi) | i ∈ N} is dense in [0; 1],

gρ(pi) = ρ(qi) for i ∈ N .

Remember that by Lemma 2.1 the values of g on a dense set are sufficient to
approximate

∫
f dg for continuous f .

5 The Main Results

First, we show that Riemann-Stieltjes integration
∫

h dg is computable in h
and g. As an additional information for the computation we use some upper
bound of V (g), the variation of g.

Theorem 5.1 Define the operator S : ⊆BV[0; 1]×R → C ′[0; 1] by dom(S) :=
{(g, b) | V (g) < b} and and S(g, b)(h) =

∫
h dg for all h ∈ C[0; 1]. Then S is

(δBV, ρ, [δC → ρ])-computable.

Proof: First we show how
∫

h dg can be computed from g, b and h. We assume
that the function g is given by some δBV-name p = 〈r0, r1, p0, q0, p1, q1, . . .〉, the
bound b by some ρ-name and the continuous functionb h by some δC-name.
For h we can compute some uniform modulus m of continuity (Theorem 6.2.7
in [9]). ¿From b we can compute some l ∈ N such that b ≤ 2l. ¿From g, k and
l we can compute points
(x0, y0), (x1, y1), . . . , (xn, yn) ∈ graph(g) such that π = (x0, x1, . . . , xn) is a
partition of precision m(k + 1 + l). For the selection T := (x1, . . . , xn) for π
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according to (3) we can compute

S(g, h, Z, T ) :=

n∑
i=1

f(xi)(yi − yi−1).

By Lemma 2.1,

∣∣∣∣S(g, h, Z, T )−

∫
h dg

∣∣∣∣ ≤ 2−k−lV (g) ≤ 2−k−lb ≤ 2−k .

Therefore, from g, b and h we can compute a sequence (zk)k∈N of real
numbers such that |zk −

∫
h dg| ≤ 2−k. Since the limit of such sequences is

computable (Theorem 4.3.7 in [9]) the function (g, b, h) �→
∫

h dg for V (g) ≤ b
is (δBV, ρ, δC , ρ)-computable. By type conversion, Theorem 3.3.15 in [9], the
operator S is (δBV, ρ, [δC → ρ])-computable. �

Theorem 5.2 Define the operator S ′ : ⊆C ′[0; 1] × R ⇒ BV[0; 1] by

g ∈ S ′(F, c), iff c = ‖F‖ = V (g) and F (h) =
∫

h dg for all h ∈ C[0; 1]. Then

S ′ is ([δC → ρ], ρ, δBV)-computable.

Proof: We assume that F is given by some [δC → ρ]-name and c by some
ρ-name. We want to compute some δBV-name p = 〈r0, r1, p0, q0, p1, q1, . . .〉
of some appropriate function g. Since by Lemma 4.3 (F, h) �→ F (h)
is computable, the function, mapping each approximate partition π =
(a1, b1, . . . , an, bn) to

∑n

i=0 |F (fi)|, see Section 3, is computable. Since ex-
istence is guaranteed by Lemma 3.2, for each interval J with rational end
points and for each k by exhaustive search some approximate partiton π can
be computed such that

‖F‖ − 2−k <
n∑

i=0

|F (fi)| ≤ ‖F‖ , (44)

(∀ i, 1 ≤ i ≤ n) bi − ai < 2−k (45)

and (∃ i, 1 ≤ i ≤ n) [ai; bi]⊆J. (46)

Since existence is guaranteed by Lemma 3.4, For each m a sequence (πk)k∈N ,
πk = (ak

1, b
k
1, a

k
2, b

k
2, . . . , a

k
nk

, bk
nk

), of approximate partitions, a sequence (ik)k∈N,
1 ≤ ik ≤ nk, of indices and a sequence (sk)k∈N of slanted steps can be computed
such that for all k,
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‖F‖ − 2−k <

nk∑
i=0

|F (fk
i )| ≤ ‖F‖ ,

(∀ i) bk
i − ak

i < 2−k ,

(a0
i0
; b0

i0
)⊆Km ,

[ak+1
ik+1

; bk+1
ik+1

] ⊆ (ak
ik

; bk
ik

)/3

v(sk)⊆(ak
ik

; bk
ik

)/3 .

Then according to Lemma 3.5 and Definition 3.6 numbers xKi
and yKi

can be
computed.

Therefore, from F and c = ‖F‖ sets

G0 := {(xKi
, yKi

) | i ∈ N} ,

G′ :=G0 ∪ {(0, F (0)), (1, F (1I))}

can be computed such that Lemmas 3.7 holds true. Computing means to
find r0, r1, pi, qi ∈ Σω such that ρ(r0) = 0, ρ(r1) = F (1I), ρ(pi) = xKi

and
ρ(qi) = yKi

. Then for any function g : [0; 1] → R of bounded variation which
extends g′,

g ∈ δBV(p), p := 〈r0, r1, p0, q0, p1, q1, . . .〉

There is an extension g[0; 1] → R of g′ such that V (g) = V (g′) = ‖F‖. For
x ∈ [0; 1] \ dom(g′) define g(x) := lim{g′(x′) | x′ < x}. By Lemma 3.8,
F (h) =

∫
h dg for all h ∈ C[0; 1].

Therefore, the operator S ′ is ([δC → ρ], ρ, δBV)-computable. �

The above proof uses the norm of F explicitly. As we have already men-
tioned in Section 4, ‖F‖ cannot be computed from F .
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[8] Schröder, M., Admissible representations for continuous computations, Informatik Berichte 299,
FernUniversität Hagen, Hagen (2003), dissertation.

[9] Weihrauch, K., “Computable Analysis,” Springer, Berlin, 2000.

[10] Weihrauch, K., Multi-functions on multi-represented sets are closed under flowchart
programming, in: T. Grubba, P. Hertling, H. Tsuiki and K. Weihrauch, editors, Computability
and Complexity in Analysis, Informatik Berichte 326 (2005), pp. 267–300, proccedings, Second
International Conference, CCA 2005, Kyoto, Japan, August 25–29, 2005.

[11] Zheng, X. and R. Rettinger, Effective Jordan decomposition, Theory of Computing Systems
38 (2005), pp. 189–209.

H. Lu, K. Weihrauch / Electronic Notes in Theoretical Computer Science 167 (2007) 157–177 177


	Introduction
	Riemann-Stieltjes Integral
	Construction of a Function of Bounded Variation
	The Computability Background
	The Main Results
	References

