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KEYWORDS Abstract In this paper, we propose a numerical scheme to solve space fractional order diffusion
Space fractional order diffu- equ.ation. .Our. scheme uses shifte.d Chebyshev polynomials of the third kind. The fractional dift.‘er-
sion equation; ential derivatives are expressed in terms of the Caputo sense. Moreover, Chebyshev collocation
Caputo derivative; method together with the finite difference method are used to reduce these types of differential
Chebyshev collocation equations to a system of algebraic equations which can be solved numerically. Numerical approx-
method; imations performed by the proposed method are presented and compared with the results obtained
Finite difference method; by other numerical methods. The results reveal that our method is a simple and effective numerical
Chebyshev polynomials of method.
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1. Introduction applications in numerous seemingly diverse and widespread
fields of science and engineering, chemistry and other sciences
(Dalir and Bashour, 2010; Kilbas et al., 2006). It does indeed
provide several potentially useful tools for solving differential
and integral equations, and various other problems involving
special functions of mathematical physics as well as their
extensions and generalizations in one and more variables (see
mponding author. for instance, Boyd (2001), Bhrawy et al. (2013, 2014a.,b),
E-mail addresses: nsweilam@sci.cu.edu.eg (N.H. Sweilam), abdelha- Kilbas et al. (2006), Miller and Ross (1993), Oldham and
meed_nagy@yahoo.com (A.M. Nagy), aaal8@fayoum.edu.eg (A.A. Spanier (1974), Podlubny (1999), Rossikhin and Shitikova
El-Sayed). (1997)).
Peer review under responsibility of King Saud University. In recent decades, the Chebyshev polynomials are one of
the most useful polynomials which are suitable in numerical
analysis including polynomial approximation, integral and dif-
PR ferential equations and spectral methods for partial differential
FLSEVIER Production and hosting by Elsevier equations and fractional order differential equations (see,

The subject of fractional calculus (that is, calculus of integrals
and derivatives of any arbitrary real or complex order) has
gained considerable popularity and importance during the past
four decades or so, due mainly to its demonstrated
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Canuto et al., 2006; Dalir and Bashour, 2010; Mason and
Handscomb, 2003; Scalas et al., 2003; Su et al., 2010; Sousa,
2011; Tadjeran et al., 20006).

In recent years, one of the attractive concepts in the initial
and boundary value problems is the fractional order diffusion
equation, it has found its extensive applications in many fields
such as, physics, chemistry, engineering, mathematics, it
included in a wide variety of practical situations and has
emerged as an important area of investigation. For the general
theory and applications of fractional diffusion equations see
(Canuto et al., 2006; Dalir and Bashour, 2010; Oldham and
Spanier, 1974; Podlubny, 1999; Scalas et al., 2003; Su et al.,
2010; Sousa, 2011; Tadjeran et al., 2006). The fractional order
differential equations have been much studied and many
aspects of these equations are explored. For some recent work
on fractional diffusion equations, we can refer to different
publications (see for instance, Azizi and Loghmani (2013,
2014), Meerschaert and Tadjeran (2004, 2006), Saadatmandi
and Dehghan (2007, 2006), Sweilam and Khader (2010),
Sweilam et al. (2011, 2012, 2015)) and the references therein.

The fractional order (time—space) diffusion equation makes
a great role in the mathematical modeling of several phenom-
ena. It is well known that most of fractional differential equa-
tions cannot be solved exactly. Therefore, numerical methods
would be proposed and investigated to get approximate solu-
tions of these equations. The Chebyshev finite difference
method and a semi-discrete scheme with Chebyshev colloca-
tion method have been introduced by Azizi and Loghmani
(2013, 2014), for approximating the solution of the space frac-
tional diffusion equations (FDEs). Also, Khader (2011) inves-
tigated the Chebyshev collocation method together with the
finite difference method for solving FDEs. Moreover,
Bhrawy et al. (2014b) introduced efficient generalized
Laguerre-spectral methods for solving multi-term fractional
differential equations on the half line. The authors in
Saadatmandi and Dehghan (2006, 2011) have constructed
new operational matrix and tau approach for solution of the
space fractional diffusion equation. On the other side many
researchers used the finite difference method (FDM) for solv-
ing FDEs (see, Elbarbary, 2003; Dehghan and Saadatmandi,
2008; Meerschaert and Tadjeran, 2004, 2006). Second kind
shifted Chebyshev polynomials and Crank-Nicolson FDM
are applied for solving fractional order diffusion equation in
Sweilam et al. (2012, 2015).

Our fundamental goal of this work is to develop a suitable
way to approximate the space fractional order diffusion equa-
tion using the shifted Chebyshev polynomials of the third kind
with finite difference method together with Chebyshev
collocation method. In what follows, we give some necessary
definitions and mathematical relations which are used in this

paper.

Definition 1. The Caputo fractional derivative operator D* of
order p is defined as the following form:

1 /,\’ f(m)(t)
D'f(x) = : dt, u>0, 1
f( ) F(Wl*ﬂ) o (X— Z);tfmﬁ»l Iz ( )
where m — 1 < pu < m, m € N, x > 0. The linear property of
the Caputo fractional derivative exists similar to the integer
order differentiation:

D*(4f(x) + 7g(x)) = AD"f(x) + yD"g(x), 2
where A and y are constants.

For the Caputo derivative we can obtain the following
result:

D'k =0, kisa constant, 3)

for n € Ny and n < [p],
forne Ngand n > [pu].

4

n 0’
Dix" = [(n+1) x(n—u)

C(n+1—p)

The function [u] is used to denote the smallest integer
greater than or equal to u. Also Ny = {0, 1,2,...}. Recall that,
for 4 € N the Caputo differential operator coincides with the
usual differential operator of integer order. For more details
on fractional derivatives definitions, theorems and its proper-
ties see Podlubny (1999).

The main aim of this work is to find approximate solution
of space fractional order diffusion equation using the shifted
Chebyshev polynomials of the third kind. Consider the one-
dimensional space fractional order diffusion equation of the
form:

PT) _ ) 0 4 g, 5

on a finite domain 0 < x < L, 0 < ¢ < T and the parameter u
refers to the fractional order of spatial derivative with
1 < p < 2. The function ¢(x, 1) is the source term. We also
assume an initial condition:

u(x,0) = flx), 0<x<L, (6)

and the boundary conditions:

u(0, 1) = vo(1),

u(L,t) = (1),

In case of u =2, Eq. (5) is the classical second order diffusion
equation:

0<t<T (7)

0<t< T (8)

O0) _ g THSD g, o)

In this paper, we use shifted Chebyshev polynomials of
third kind and recall some important properties and its analyt-
ical form. Next we use these polynomials to approximate the
numerical solution of (FDE) with the aid of the Chebyshev
collocation method together with the finite difference method
to convert the system of equations in algebraic equations that
can be solved numerically.

For this purpose, organization of paper is expressed as fol-
lows. In Section 2, we give some properties of Chebyshev poly-
nomials of the third kind which are of fundamental
importance in what follows. In Section 3, we introduce main
theorem of our technique for solving space fractional order
diffusion equation subject to homogeneous and nonhomoge-
neous boundary conditions using a shifted Chebyshev polyno-
mials of the third kind. Numerical scheme is given in Section 4.
In Section 5, we present numerical examples to exhibit the
accuracy and the efficiency of our proposed method where
our numerical results are computed by Matlab program.
Conclusions are presented in Section 6.
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2. Some properties of Chebyshev polynomials of the thirdkind

2.1. Chebyshev polynomials of the thirdkind

Definition 2. The Chebyshev polynomials V,(x) of the third
kind are orthogonal polynomials of degree » in x defined on
the [—1, 1] (see, Mason and Handscomb (2003))

cos (n+1)0
vy = 22 7 ),
cosd
where x = cos 0 and 0 € [0, n]. They can be obtained explicitly
using the Jacobi polynomials Pﬁ“"} ) (x), for the special case
f = —o =1 These are given by:

Vi) = 2 p ()

( 2k ) k
k
Also, these polynomials V,(x) are orthogonal on [—1, 1] with
respect to the inner product:

(10)

o, vy = [ (A gax={ "7
(1)

where /1= is weight function corresponding to V,(x). The

polynomials V,(x) may be generated by using the recurrence
relations

Vn+l(x):2~XI/n(x)_ anfl(x)v n= 1727"'a
with
Vo(x) =1, Vi(x)=2x-1.

Using Eq. (10) and properties of Jacobi polynomials to
obtain the analytical form of the Chebyshev polynomials of
the third kind V,(x) of degree n, they are given as:

P
_ k n—k (27’[“" 1)F(2I’l—k+ 1) n—k
Valx) = ; U rer ran ks Y
neZzZ", (12)

where [2£1] denotes the integral part of (2n+ 1)/2.

2.2. The shifted Chebyshev polynomials of the third kind

Since the range [0, 1] is quite often more convenient to use than
the range [—1, 1], we sometimes map the independent variable
x € [0,1] to the variable s in [—1,1] by the transformation
s=2x—1lorx= @ , and this leads to a shifted Chebyshev
polynomials of the third kind V7 (x) of degree n in x on [0, 1]

given by
Vi(x) =V,2x —1).

n

These polynomials are orthogonal on the support interval [0, 1]
as the following inner product:

Wi v = [ v an={]

n# m,

n=m,

(13)

where /7% is weight function corresponding to V7 (x) and
normalized by the requirement that V(1) =1. Also, V}(x)
may be generated by using the recurrence relations

Vi(x)=22x-1)Vix)—-V,_(x), n=12,...,

n+1
with starting values
Vi) =1, Vi(x) =4x—3.

The analytical form of the shifted Chebyshev polynomials
of the third kind ¥} (x) of degree n in x is given by

RN ok Cn+1DI2n—k+1)
V't(")*;(_l)k(z) AF(k+1)F(2n72k+2)x g

nezt. (14)

In a spectral method, in contrast, the function g(x),
square integrable in [0,1], is represented by an infinite
expansion of the shifted Chebyshev polynomials of the third
kind as follows:

g(x) = bV (x), (15)
=0

where b; is a chosen sequence of prescribed basis functions.

One then proceeds somehow to estimate as many as possible

of the coefficients b;, thus approximating g(x) by a finite sum
of (m+ 1)-terms such as:

&m=§ﬁmw (16)

where the coefficients b;, (i =0, 1,...) are given by

bi:%[:g(“”; 1) \/gv,(x)dx (17)

2 ! X
b= [ ety TEVi (1)

3. Main results

The main approximate formula for the function g,,(x) given in
(16) is presented in the following theorem.

Theorem 1. Let g,,(x) be approximated function in terms of
shifted Chebyshev polynomials of the third kind as given in (16),
suppose > 0 then, we obtain:

=[]

=

bi N xi==, (19)

v

D"(g,,(x)) =

T
=3

l§

u
where
Cn+DIQi—k+DI(i—k+1)
(k+1DTQi—2k+2)T(i—k+1—p)
(20)

M;t) — (1 k 2(21’—2/()
ik ( ) T

Proof. Using definition of approximated function g,,(x) given
in Eq. (16) and the Caputo fractional differentiation properties
given in Eq. (2) we obtain:
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m

(g, (x Zb DH(V: (21)

The properties of linearity of the Caputo derivative together
with Egs. (3) and (4) are used to claim that:

DAVI(6)) =0, i=0,1,..., [l 1, u>0, (22)
Also, we obtain:
DH(VT(X)) :Z(_l)k 2(2[—2k) (2l+l)r(217k+l) D“xi_k.

T(k+ 1) (2i— 2k +2)

k=0

(23)

The above Eq. (23) can be rewritten with the aid of Egs. (3)
and (4) as follows:

i— [M
21 2k)

k=

<

Qi+ DL QRi—k+ D(i—k+1)

i—k—p

Ik+ )T (2i—2k+2)T'(i—k+1—p)
(24)
By combinations Egs. (21), (22) and (24) we obtain:
m i—[u] .
g"’l Z Zb ( a )
=[u] k=0
Qi+ NI'Ri—k+1DI(i—k+1) ke
Tk+1)TQ2i—2k+2)T(i—k+1—p) " ’
(25)

the above Eq. (25) can be rewritten as the following form:

m_i—[u]
(g (x ZZ by NY X (26)
=[u] k=0
where
NW (- ) 2(2i-2%) Qi+ DIrRi—k+1)Ii—-k+1)

T+ DIQi—2k+2)T(i—k+1-p)

(27)

Simple test example 1. Consider g(x) = x> with m =3 and
1= 1.5. Using Eq. (4) we obtain:
2

F@+1) o5 _ TQ)
(VO R S R R

-

Dl.5x2 —

Then, using the proposed method given in Theorem 1
together with Egs. (17) we obtain:

DL 2222;) N[i{S) —k—1.5)

=2 k=0
= by Niy X+ by Nig ¥+ by N}, o, (28)
where,
3 32 3 256 3 —224
Ni,o = ) N§,0 = ) %.1 = .
) () SR AC)

The constants b, and by are computed by using Eq. (17)
or (18) and then substituting in Eq. (28) we get:

1
DX = ok,

4. Numerical scheme

Consider the space fractional order diffusion equation of the
type given in Eq. (5) with initial condition as in Eq. (6) and
boundary conditions given in Egs. (7) and (8)
respectively. In order to use the Chebyshev collocation
method, let us approximate u(x, t) as follows:

m

(x,1) Zu, (29)

From Egs. (5), (19) and Theorem 1 we can claim:

md’_() m i—[u]
DT i =r))

u;(t M“)x’ k=1 g(x, 1), (30)
i=0 i=[p] k=0

Now, we collocate Eq. (30) at (m+1— [u]) points x, as
follows:

m_i—[u]

. dul() 1) i—k—p
> =a Vit =p0i) 3 3 (NS a0 (1)

i=0 i=[u] k=0

Using the roots of shifted Chebyshev polynomials of the third
kinds V,, ., _(,1(x) to suitable the collocation points. Using Egs.
(18) and (29) in the initial condition, we obtain the constants
(u;) in the initial case at (1 = 0), moreover by substituting it
in the boundary conditions, we obtain [u] equations. For
example by substituting Eq. (29) in Egs. (7) and (8) respec-
tively, in case of 0 < x < 1 we obtain:

DN hu) = 09, Y =n. ()

Notice that: in case the boundary conditions are zeros
Dirichlet conditions Eq. (32) can be rewritten as:

i(q)“ (2i 4+ Du;(1) = 0, iui(t) =0. (33)

Eq. (31), together with [u] equations of the boundary con-
ditions (32), give (m + 1) ordinary differential equations which
can be solved numerically to get the unknown
u,i=0,1,....m

5. Numerical experiments and comparison

Example 1. Consider Eq. (5) with 4= 1.8 it is given in the
following form:

P52t
with the diffusion coefficient
p(x) =T(1.2) x'8

the source function

glx, 1) =3x* 2x—1) e

+q(x, 1), 0<x<l1, >0,

with the initial condition

u(x,0) = x*(1 — x),
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Table 1 The absolute error of the methods given in Khader
(2011), Saadatmandi and Dehghan (2011) and our method for
Example 1, at T = 2 with different values of At.

X In Khader In Saadatmandi Presented Presented
(2011) and Dehghan method method
(m = 5) (2011) (m = 5) (m=3) (m = 3)

0 274x107° 0 0 0
0.1 420x107° 447x10°° 3.77x 1077 3.79%x 1071
0.2 3.76x107° 2.78x 107 6.25x1077 6.26x10°1°
0.3 844x10~° 5.81x10°° 7.59% 1077 7.61x 107!
0.4 327x107° 1.02x107° 7.97x1077 7.99x 1071
0.5 3.61x107° 1.17x107° 7.58x 1077 7.60x 1071
0.6 1.94x107° 1.08x107° 6.58x 1077 6.59x 1071
0.7 295x10~° 8.54x10°° 5.14x 1077 5.16x1071°
0.8 492x107° 6.06x10°° 3.45x1077 3.46x1071°
0.9 2.83x107° 3.76x107° 1.68x 1077 1.68x107'°
1 773%x107° 0 0 0

and the boundary conditions

u(0,1) =u(l,r)=0, ¢>0.

The exact solution of this problem is given by:

u(x, t) = x*(1 — x)e™.

Let us consider m = 3 then, we have:

3
s, 0) = 3 u() Vi(x). (34)
i=0

Using Eq. (31), we claim:
3
— du,(t) 18) NS k 18

S0 ) = )T N g0,
i=0 =2 k=0

p=0,1, (35)

where x, are the roots of the shifted Chebyshev polynomial of
the third kind V;(x). Using Egs. (33) and (35) we obtain the
following system of ordinary differential equations:

uy(t) + Gr wy (1) + G uy (1) = Hy wa(1) + Ha us(1) + q(xo, 1),
(36)
0.06
O exact solution
—#— approximate solution
0.05F *El\ 4
0.04 - E
2 oo} ]
=
0.02+ B
0.01F E
Dé el § 1 1 1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 089
X axis
Fig. 1 The behavior of exact solution and approximation

solution at m =5and T = 1.

uy (1) + Gy 1, (1) + Gy (1) = Hyy up (1) + Hy us(1) +q(x1, 1),

(37)
u()(l) — 3“1([) + 5142([) — 7u3(t) =0, (38)
uo() +ur (1) + ua () + us(r) = 0, (39)
where
G =Vi(x), G =Vix), Gu="Vx),
G = V3(x1),
H, :P(XO)Ngl,og)Xg -, Hy = p(xo)| 30 ’C(B) " ]v(3118>“ }
Hy :P(xl)]\’(z%o8 i, sz:p(xl)Mos) . Msl,is)xf_l’g]-

Now, we use the finite difference method to solve the system
(36)-(39) with the following notations: T = T, 0 < t; < T

and suppose At =T/N,t; =jAt, for j=0,1,...,N. Also, we
define
u(ty) = uf,  q(t,) = 4.

Then, the system in Egs. (36)—(39), is discretized in the time
and has the following form:

n—1 n—1 —1

up — ug u] — uf uy —uy
-4 G G,

YA VA At

=H, u) + H, uj + qp, (40)
Uy — Uy I—I—G u’l’—u’l”l+G ug’—ug”l

At AL 2 At

= H“ I/lgjLsz u§'+q’l’, (41)
uy — 3uy + Suy — Tuy =0, (42)
uy +u +us +uf =0. (43)

The above system of Egs. (40)—(43) can be rewritten as the fol-
lowing matrix form:

AU = BU™ + Atg", or U'=A"'BU"' + At4™!

(44)
0.025 .
G exact solution
—#— approximate solution
0.02f 4
0015 B
Z
>
0.01F b
0.005 B
D ¥ 1 1 1 1 i 3 1 1 1 1
0 01 02 03 04 05 06 07 08 09
X axis
Fig. 2 The behavior of exact solution and approximation

solution at m =7 and T = 2.
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Table 2 Comparison of maximum error of the method in
Sweilam et al. (2015) and our presented method for Example 2,
atm=3and T = 1.

Max error (Sweilam et al., 2015) Max error present method

8.3830x 107 1° 1.008 x 10710

where
1 G —-AtH, G,—AtH,

A _ 1 G11 7AZ‘H1| Gzz - AZHZZ

I I ] 3 —4 '

1 2 3 4
1 G 0 G,
1 G 0 G

B _ 11 22 7
0O 0 0 O
0O 0 0 O

n I " J J1 T 7 7 J1 T
U" = (uy, u},us,uy) and ¢" = (g5, 47,0,0)".

In order to obtain the initial solution U° of Eq. (44) we use
the initial condition of the problem, u(x,0) combining with Eq.
(17) or (18). Moreover, the approximation solution in Eq. (34)
is obtained by substituting analytical form series of the shifted
Chebyshev polynomials of the third kind V;(x) ,i=0,1,2,3
as well as the coefficients (u; , i = 0, 1,2, 3) which are computed
in (44).

Table 1, presents the numerical results of Example 1 at
T=2. The results obtained by our method with
At =0.25¢ —3 and Ar=0.25¢ — 6 are given in the fourth
and the fifth columns respectively. In this table, we have
computed the absolute error between the exact and the
approximate solutions. In order to validate the accuracy of
the proposed method, we have compared the results of the
presented method with the previously published data given in
Khader (2011) and Saadatmandi and Dehghan (2011). From
the results in Table 1, we can derive that the accuracy of the
presented method is better than other methods. Also, the

0.4 - T T T T T
C  exact solution

—#— approximate solution

0.35

03}

02F

ux t)

015+

01F

1 1 1 1 1
0 01 02 03 04 05 06 07 08 08 1
X axis

0 e 1

Fig. 3 The behavior of exact solution and approximation
solution for Example 2 at m =3 and T = 1.

computational cost (CPU time) seems for the proposed
method faster than other methods because we just need few
terms (i.e., m = 3) to obtain a solution with high accuracy. In
Figs. 1 and 2 we have plotted the exact and the numerical
solutions at m =5, T=1and m =7, T = 2 respectively.

Example 2. Consider Eq. (5) with u = 1.8 as follows:

ou(x,t) 9" u(x, 1)
ot =r) Ox!$
with the diffusion coefficient

2.2
22)

+q(x,0), 0<x<l1, >0,

P(X):T X,

the source function

glx,0) = —(14+x) x* ™,

with the initial condition
u(x,0) = x*,
and the boundary conditions

u(0,1)=0, u(l,r)=e"', 1>0.

The exact solution of this problem is given by:

u(x,t) = x’e".

From the results of Table 2 and Fig. 3, it is obvious that the
presented method gives more accurate results than the results
discussed in Sweilam et al. (2015).

6. Conclusions

In this paper, the shifted Chebyshev polynomials of the third
kind and its properties together with the Chebyshev colloca-
tion method are used to reduce the space fractional order dif-
fusion equation to a system of ordinary differential equations.
The fractional derivative is considered in the Caputo sense.
The validity and applicability of our presented method are
illustrated through some numerical results. These results are
compared with other published results in some papers. From
the numerical results, it is obvious that our proposed method
exhibits good accuracy and efficiency than the other methods.
All computed results are obtained using Matlab program.
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