
Journal of Symbolic Computation 46 (2011) 183–206

Contents lists available at ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

Verifying the consistency of web-based
technical documentations✩

Christian Schönberg a,1, Franz Weitl b, Burkhard Freitag a

a University of Passau, Department of Informatics and Mathematics, 94030 Passau, Germany
b National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

a r t i c l e i n f o

Article history:
Received 9 June 2010
Accepted 2 August 2010
Available online 27 August 2010

Keywords:
Document verification
Model checking
Information extraction
Document modeling
Temporal description logics

a b s t r a c t

A new framework for document verification is presented which
covers the entire process from document analysis through
information extraction, document modeling, representation of
background knowledge about the domain of discourse, user level
and formal representation of consistency criteria, verification by
model checking, counterexample generation, and error reporting.
Emphasis is placed on employing background knowledge to reduce
the complexity and to increase the quality of results in each step.
A rule-based approach to information extraction supports the
concise definition of extraction rules for document formats based
on XML or HTML. The expressiveness of the existing extraction
methods is exceeded by supporting rule specialization, integration
of external tools, and access to background knowledge represented
in ontologies. As a formal basis for representing consistency
criteria, the new temporal description logic ALCCTL is proposed.
In contrast to the existing formalisms, criteria related to the
coherence of content along individual paths of reading can be
represented and verified efficiently. The adequacy, performance,
and effectiveness of the proposed framework is demonstrated on
a case study in technical documentation.

© 2010 Published by Elsevier Ltd

✩ This work is partially funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under grant
number FR 1021/7-2, and by the German Academic Exchange Service (DAAD) under the program ‘‘Research at International
Science and Technology Centers’’.

E-mail addresses: Christian.Schoenberg@uni-passau.de (C. Schönberg), weitl@nii.ac.jp (F. Weitl),
Burkhard.Freitag@uni-passau.de (B. Freitag).

URLs: http://www.im.uni-passau.de (C. Schönberg), http://researchmap.jp/weitl (F. Weitl), http://www.im.uni-passau.de
(B. Freitag).
1 Tel.: +49 0 851 509 3182.

0747-7171/$ – see front matter© 2010 Published by Elsevier Ltd
doi:10.1016/j.jsc.2010.08.007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81969689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jsc.2010.08.007
http://www.elsevier.com/locate/jsc
http://www.elsevier.com/locate/jsc
mailto:Christian.Schoenberg@uni-passau.de
mailto:weitl@nii.ac.jp
mailto:Burkhard.Freitag@uni-passau.de
http://www.im.uni-passau.de
http://www.im.uni-passau.de
http://www.im.uni-passau.de
http://www.im.uni-passau.de
http://www.im.uni-passau.de
http://researchmap.jp/weitl
http://researchmap.jp/weitl
http://researchmap.jp/weitl
http://researchmap.jp/weitl
http://www.im.uni-passau.de
http://www.im.uni-passau.de
http://www.im.uni-passau.de
http://www.im.uni-passau.de
http://www.im.uni-passau.de
http://dx.doi.org/10.1016/j.jsc.2010.08.007

184 C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206

1. Introduction

Keeping technical documentations in a consistent state – w.r.t. both structure and content –
is challenging. Many documentations today are compiled from a number of separate resources
and text fragments, depending on current requirements and priorities. Online documentations
complicate matters further because they usually offer more than one (linear) path through the
document, rendering content consistency almost impossible to check manually. At the same time,
online documents are steadily gaining in importance. Most manufacturers publish their technical
documentations on the web, while reusing content common to more than one product. This further
increases the impact and relevancy of automatic document verification.

There is a variety of approaches to document verification either based on XML methods like XSLT
and XPath such as Schematron (Jelliffe, 2002), on first order logic, e.g., xlinkit (Nentwich et al., 2002)
and CDET (Scheffczyk, 2004), or on propositional temporal logic and model checking (Stotts et al.,
1998; Sciascio et al., 2005; Flores et al., 2008). Methods based on XML processing or on first order
logics are suitable for checking semantic dependencies in the content of a document. However, they
are not efficient for checking properties along individual browsing paths, the number of which usually
grows exponentially in the size of the document. Propositional temporal logics and model checking
are efficient tools for verifying properties on browsing paths. However, propositional formalisms
are insufficiently expressive to account for semantic interrelationships among parts and topics of a
document.

In this paper, we propose a framework that employs information extraction, temporal description
logics, and model checking to verify content- and path-related consistency criteria on a multitude of
document types. In contrast to the existing approaches, various sources of background knowledge
about the document and its domain of discourse, like ontologies of important terms and their
semantic relationships, are exploited to reduce the complexity and to enhance the precision of both
the information extraction and the verification process. Moreover, criteria related to the coherence
of content along individual paths of reading can be represented concisely by the new temporal
description logicALCCTL and verified efficiently bymodel checking, both ofwhichwere not possible
previously. To the best of our knowledge, the presented approach constitutes the first application of
a temporal description logic for verification by model checking.

The verification of content- and structure-related properties has to be based on nontrivial
methods, because the specification formalism needs to be sufficiently expressive to capture both
semantic interrelationships and paths, while remaining tractable, i.e., verifiable in polynomial
time. As another dimension of complexity, the verification process strongly depends on both the
correctness and completeness of the metadata extracted from the documents to be checked and on
the appropriateness of the generated internal representation of the documents. The latter, in turn, is
often dependent on application-specific verification goals. These challenging requirements aremet by
making use of various sources of background knowledge in the information extraction process and by
proposing a new temporal description logic that offers a better compromise between expressiveness
and computational complexity than the existing formalisms.

The goals and general architecture of our approach have been presented in Weitl et al. (2009) and
the system has been demonstrated in Schönberg et al. (2009). This article is an extended version
of Schönberg et al. (2009) that provides further conceptual and technical details. Its major new
contributions are

• The information extraction process is presented in detail. It is shown how production rules and
different types of background knowledge about a document and its domain of discourse are used to
generate an RDF-representation of the document.
• It is demonstrated how verification models suited for efficiently checking document properties are

generated from RDF descriptions. To this end, we propose the use of SPARQL query templates that
can be adapted by the user.
• The description of ALCCTL in Weitl et al. (2009) is completed by defining the full syntax and

semantics of ALCCTL and by illustrating its use for representing the content and properties of a
user manual.

C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206 185

Fig. 1. Use case document: schematic view.

• It is illustrated how error reports are generated from model checking results and how errors are
located in the document source files.

The rest of this paper is organized as follows. Section 2 introduces the case that has been used for
evaluating the adequacy, performance, and effectiveness of the proposed methods and which serves,
in a simplified form, as a running example throughout this paper. In addition, Section 2 outlines
the major research problems addressed in this paper. Section 3 sketches our approach to solve the
problems stated. Section 4 through 7 contain detailed descriptions of the major components of our
approach and exemplify the overall processing based on our use case. Section 8 presents results
obtained in experiments, Section 9 discusses related work, and Section 10 concludes the paper with
a summary of achievements and an outlook on future research issues.

2. Problem definition and motivation

2.1. Use case and sample scenario

As a running example, we will use an HTML version of a technical documentation for a fictional
digital camera VDK1109. The document has been created using several genuine documentations for
digital cameras as guidelines. It represents their features and characteristics in condensed form. It is
also anonymized in the sense that it does not contain any company or brand names. It consists of 15
chapters and subchapters, each located in a separate HTML file.

Fig. 1 shows a schematic view of the document. Each ellipse represents a chapter or a subchapter
of the documentation (chapters are indicated in bold face and with a grey background color). The
document begins with a title page (Start) and ends with a Glossary. There are links from each
(sub)chapter to both its successor and its predecessor, as well as to the Table of Contents (most links to
the Table of Contents are not depicted in Fig. 1 for reasons of clarity). The Table of Contents links to each
chapter, but not to their subchapters (e.g., there is a link to Photography, but not to Viewing Photos). The
Photography chapter contains a side note on Flash, an extension that can be read optionally. There are
also cross references from two subchapters in the Videos chapter back to corresponding subchapters
in the Photography chapter. It is possible to traverse the document from start to finish on different
paths. There is one path that visits each (sub)chapter exactly once, but there are also paths that skip
subchapters or chapters, and there are paths that visit (sub)chaptersmore than once. As the document
structure contains cycles, not all paths are finite, and the number of paths is infinite.

The manual contains errors and inconsistencies that are typical for documents of this kind. Each
type of error has been observed in real-world documentations on at least one occasion. One frequent
problem is that not all technical terms and abbreviations are explained in the document (e.g., in the
Glossary). Another problem is that critical warnings (or other critical sections) must not be bypassed
by the reader. This means that there must not be any path through the document that skips chapters

186 C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206

containing suchwarnings. Specifically, side notes should only containwarnings that are also available
in the main content of the document. A third kind of problem is related to the sequence of content
on paths: no concept should be discussed before it has been introduced, and some chapters (like the
Safety Notes) should be read before other chapters (like the subchapter on using the Flash). Finally,
there is the problem of incorrect references. Links that point to an inappropriate target may confuse
the reader even more than links whose targets do not exist. Links whose targets have no relation to
at least one of the topics discussed in the referring chapter, are considered inconsistent. In the course
of this article, we will discuss ways to detected these problems.

2.2. Problem statement

Consider the following consistency criteria:

C1 Any referred chapter covers topics related to those of the referring chapter.
C2 Safety-related topics are not skipped on any path through the document.
C3 Components in an overview are described later on every path through the document.

To verify criteria C1 and C2, it is necessary to have (background) knowledge about which topics are
related to each other and which topics are related to ‘‘safety’’. For checking C2 and C3, it is necessary
to consider all possible paths of reading through the document. C3 is a requirement on the coherence
of content along paths. It expresses a semantic relationship between overview sections and detailed
descriptions on paths through the content. The following research questions arise:

Q1 How can information relevant to verifying criteria be extracted from the document as completely
and precisely as possible, and how can it be combinedwith background knowledge to support the
verification of criteria such as C1 and C2?

Q2 How can the user be supported in setting up a generator of abstract yet sufficiently precise
document models that can be verified efficiently?

Q3 How can a possibly infinite number of paths through a document be examined efficiently?
Q4 Which specification formalism is suitable to represent coherence criteria, i.e., requirements on

semantic relations between objects on paths through the content?
Q5 How can the user be supported in formalizing path- and content-related criteria on documents?

In the course of this article, we will address questions Q1 through Q4, with emphasis on Q1 and Q2.
In Weitl et al. (2009), our model for representing knowledge about documents has been defined. In
this article, we rather focus on the process of generating knowledge representations and discuss how
this process can be customized to the use case at hand. Q3 and Q4 have been addressed inWeitl et al.
(2009), but are discussed in more detail in this article. Question Q5 is an important issue within our
approach, but will not be addressed in this paper because of space limitations. Instead, we refer the
reader to Weitl et al. (2009), Jakšić and Freitag (2008, 2009).

2.3. Assumptions and prerequisites

In the context of this paper, a document is a set of one or more files that presents coherent
information on a specific matter. A document can, for example, be a book, a documentation, a
manual, a specification, lecture notes, or an e-learning script. A document consists of a set of one or
more fragments. Fig. 2 shows a more detailed view of the Photography chapter, revealing its internal
structure.

Fragments are the result of a sensible partitioning of a document into smaller parts, usually along
structural lines (e.g., each file or each chapter becomes a fragment). A fragment can be broken
down into (sub)fragments, which in turn can be fragmented again. We assume that each fragment
is annotated with metadata describing it. Possible metadata annotations include topic, structuralType
(the structural level of the fragment, e.g., chapter, section, etc.), functionType (the function of the
fragment for the document, e.g., definition, example, introduction, hint, etc.), author, and intended
audience. Fig. 3 shows a detailed view of the side note on Flash, how it is composed of subfragments,
and what metadata is annotated to each fragment.

C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206 187

Fig. 2. Fragments of the Photography Chapter

Fig. 3. Fragments of the Subchapter Side Note: Flash

There are three types of relationships between fragments of a document:
(1) Subfragments are part of their parent fragments.
(2) A fragment can cross-reference other fragments.
(3) Each fragment can have one or more successors.

Both Fig. 2 and Fig. 3 show examples of these connectives. The parent fragment (e.g., Photography
or Side Note: Flash) is linked via part relations to its subfragments. Fragments can reference other
fragments (e.g., Photography (program mode) references Side Note: Flash). And fragments have one
or more successors as indicated, for instance, by a ‘‘next page’’ link on a page. The successor relations
between fragments from the same file (HTML page) are defined implicitly by the document order.
Successors define a not necessarily linear structure that a reader is encouraged to follow (Schönberg
and Freitag, 2009).

For the proposed framework to be applicable, documentsmust fulfill fiveminimum requirements:
D1 The document needs to be fragmentable, i.e., it must be divisible into fragments.
D2 The set of these fragments needs to cover the entire document.
D3 The fragments must not overlap, but a fragment may be completely contained in another

fragment, i.e., as a subfragment.
D4 The fragmentation must be defined by a set of rules or criteria, so that it can be automatically

detected during information extraction.
D5 The document must either contain semantic annotations, or background knowledge about the

document and its domain of discourse must be available.

The requirements D1 through D3 are met by semi-structured document formats such as XML or
HTML, so that effective information extraction processes can be applied in these cases. For instance,
the XML-based standards for technical documentations DocBook (Walsh et al., 2005) and DITA
(Priestley and Hackos, 2005) are well supported. In addition, we applied our framework successfully
to LATEX and Microsoft Word documents, by converting them into XML files in a preprocessing step.

3. Overall verification framework

In the context of the Verdikt research project, a general framework for document verification has
been developed (Weitl et al., 2009). The major components of the framework are 1⃝ information

188 C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206

Fig. 4. Overview of the verification framework.

extraction (Fig. 4 rhs bottom), 2⃝ model generation (rhs top), 3⃝ specification generation (lhs top),
4⃝model checking (center top), 5⃝ result interpretation (center), and 6⃝ error tracing (rhs bottom).

The first component (information extraction) reads all relevant data from the source document and
stores it for further processing (→Q1 in Section 2.2: Problem Statement). Themodel generator creates
a verification model suitable for model checking (→ Q2). The specification generation component
supports the user in specifying criteria to be applied to the input document (→Q5) and translates user
level specifications into logic level specifications based on a temporal description logic (TDL) (→ Q4).
The TDL model checker checks verification models against TDL formulae (→ Q3). The result interpreter
generates meaningful error reports from counterexamples returned by the model checker in the case
of violated formulae. Error tracing highlights the discovered errors in the source documents.

We propose TDL as a fundamental formalism for representing consistency criteria on documents
because TDL allows for the concise representation of consistency criteria evaluated along some or
all paths through the document the reader can follow (→ Q4). These paths are subsequently called
reading paths. For instance, Start→ Safety Notes→ TOC→ Camera Overview is the prefix of a reading
path in the document depicted in Fig. 1. Since formalizing criteria in TDL is difficult, we added a user
level specification method based on specification patterns, examples, and visualizations (Jakšić and
Freitag, 2008;Weiß, 2009). The user is guided by an incremental specification process in constructing
a specification that is both intuitive to understand and unambiguous (→ Q5).

The general approach and the proposed data structures for knowledge representation and property
specification have been presented in Weitl et al. (2009). In this article, we detail the components 1⃝
and 2⃝, and sketch the components 5⃝ and 6⃝ of Fig. 4.

A typical use case of the framework runs as depicted in Fig. 4. First, a set of consistency criteria to be
applied to a document is constructed (top left corner). These user level specifications are converted
into logical formulae for the model checker (top center). From a document (bottom right corner),
data is extracted and stored as RDF metadata statements, which can be combined with background
knowledge about the domain of discourse. The user chooses whatmetadata is relevant for the current
specification and should therefore be transferred to the verificationmodel (top right corner), which is
then passed on to the model checker. The model checking component verifies the verification model

C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206 189

against the logic level specification and returns verification results, from which an error report is
distilled and presented to the user (bottom center). The error report refers to the original user level
specification and to the source document rather than to the logic level verification and verification
model. Source references added to the document metadata enable the re-mapping of model checking
results onto user level data.

4. Information extraction

Extracting the relevant data from a document and preparing it for model checking is done in two
stages: first, the document structure and content data is extracted from the source files. The resulting
document model represents the data and structure that can be used for verifying criteria. This model
has a graph structure and includes properties for nodes that represent fragments. It is represented in
RDF (Klyne and Carroll, 2004), and it can be stored in RDF-capable database systems for future reuse.

The second step is to define a view on the documentmodel that is most advantageous for verifying
a selected specification, and to materialize the view to obtain a verification model. The latter step is
described in more detail in Section 5. Technical details about the document model can be found in
Schönberg and Freitag (2009). Question Q1 (cf. Section 2.2) is addressed in this section, while Q2 is
addressed in the next section.

The information extraction process (cf. Fig. 4 rhs bottom) makes use of the internal representation
of a document’s source files. For XML-based formats, the DOM tree is processed, starting at the root
DOM object and traversing through the tree structure down to its leaves. Using pattern matching,
the DOM objects are selected according to conditions based on their name and context, executing
predefined actions that have two main objectives: to insert new DOM objects (usually the object’s
child elements) into the process, and to successively construct the annotated graph structure that
represents the document model. For the latter objective, background knowledge is employed to
support metadata recognition, to control the mapping of metadata and structural data onto the RDF
graph of the document model, to cope with imprecise terminology, and to deal with circumstances
that depend on the application or content domain. Both the extraction process and the usage of
background knowledge will be described in more detail below.

A rule language is used to specify the extraction logic in terms of patterns and actions, which are
then processed by a rule engine. Such a language needs to meet the following requirements:

• It must be possible to cover differently structured documents as well as multiple file formats with
a single set of rules, like HTML with embedded SVG images.
• Access to external tools and resources like preprocessors to clean up HTML code, dictionaries

of important terms, ontologies of the domain of discourse, or reasoners for deriving implicit
knowledge about the document must be possible.
• Rule specialization must be supported to extend generic rules for specific cases.

We define the information extraction logic using the JBoss Drools language (Proctor, 2007), which
is an object-oriented extension of production rules. Production rules are pairs of condition and action
definitions, matched against a set of Java objects – the so-called fact base – by the Drools rule engine.
For objects thatmeet the condition, the actionwill be performed,whichmay insert, remove, ormodify
objects in the fact base. To identify objects that match to one or more rules, the Drools engine adopts
the Rete algorithm (Doorenbos, 1995). When more than one rule matches a given object, or when
more than one object matches to rules, it uses a strategy based on rule priority and LIFO ordering to
resolve the conflict by creating a custom execution order (Bost et al., 2007).

The Drools rules meet the first two requirements because they are built upon the Java object
model, and because they allow access to external Javamethods and libraries in both the condition and
the action part of rules. They satisfy the third requirement by allowing multiple rules with different
conditions to match the same object.

Example 1 (Rule Specialization). Consider a JBoss rule R1 whose condition matches Java objects of
class C1. Then a rule R2 can be seen as an extension to rule R1 if the condition of R2 entails the condition
of rule R1, for instance if R2 matches objects of a subclass C2 of C1. Then objects that are instances of

190 C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206

class C1 but not of class C2 only match rule R1, while objects of the more specific class C2 will match
both rules. Thus, the action of rule R2 will be performed in addition to the action of rule R1 for objects
of class C2, i.e., both rules are executed.

4.1. Background knowledge

The quality of the verification results depends on the precision and recall of the information
extraction process. In our context, recall is the percentage of discovered constructs (e.g., definitions,
successor relations, or terms) of a certain type relative to their actual number in the document.
Precision is the percentage of constructs whose type has been detected correctly relative to the total
number of detected constructs of a certain type (cf. Remark 1). Both values can be used to evaluate the
quality of the verificationmodel used in the verification process. Background knowledge can enhance
the recall of information extraction by providing additional ‘clues’ to the extraction process, and it can
help to improve precision by reducing best-guess approaches.
Example 2 (Impact of Precision and Recall on the Verification Process). The criterion ‘‘For every defini-
tion, there has to be amatching example’’ cannot be checked reliably if some definitions have not been
detected (poor recall). In this case, matching examples that are missing may go unnoticed, which re-
sults in false positives. False negatives may arise from paragraphs being recognized as definitions by
mistake (poor precision).
We distinguish three kinds of background knowledge:
B1 Knowledge about the document format. This is used to define the general outline of the extraction

rules.
B2 Knowledge about specific customizations or parameterizations of the document format. Examples

are predefined templates in Microsoft Word, stylesheet classes in HTML, and keywords like
‘definition’ or ‘example’. These templates, style classes, and keywords are syntactical indicators
of semantic information about fragments, such as structure or function type (cf. Section 2.3:
Assumptions and Prerequisites). Their meaning is represented by a mapping onto a controlled
vocabulary (cf. Example 3). This mapping helps to increase the recall of extraction rules. The
use and meaning of syntactical indicators depend on the application domain, i.e., the document’s
context.

B3 Knowledge about the content of the document, such as important terms or relations between
terms. This knowledge is dependent on the document’s domain of discourse. Extraction rules
query this domain knowledge at runtime to detect relevant topics and content relations between
document fragments.

Remark 1 (Computing Precision and Recall). Factors that can introduce errors into the extraction
results are incomplete detection of relevant resources, and erroneous detection of resources that
should have been ignored. In our case, precision and recall are computed by comparing the extraction
results of the document in its regular formwith the extraction results from a version of the document
with a manually applied complete tagging of all relevant resources.2 For instance, the recall for our
use case before the introduction of domain knowledge can be calculated as

|{all relevant resources} ∩ {resources found}|
|{all relevant resources}|

=
77
104
= 0.74

Example 3 (Syntactical Indicators). Fig. 5 shows an example of a mapping between syntactical
indicators and controlled vocabulary. On the left, a set of indicators like keywords or CSS class names
is listed. On the right, a controlled vocabulary in the form of a taxonomy is given. The dotted arrows
between the two define the mapping. For example, if the keyword ‘‘illustration:’’ is detected in the

2 These results are obtained without using background knowledge, which is not required since all relevant resources have
already been tagged and thus do not need to be inferred. The manual tagging ensures that no resources remain undetected,
while the exclusion of background knowledge which might contain errors ensures that no superfluous resources are included
in the result.

C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206 191

Fig. 5.Mapping between syntactical indicators and controlled vocabulary.

Fig. 6. Content domain ontology.

title of a paragraph, this paragraph is annotated with the function type ‘‘Example’’. The keywords
can easily be extended to regular expressions to match phrases like ‘‘illustration 6.2’’. The knowledge
about warnings is used as data for the role safety-related in criterion C2. In the presented use case, the
mapping was represented as a set of indicator/vocable pairs in an XML file.

Remark 2 (Obtaining Background Knowledge). If formalized knowledge does not exist for a domain
or topic, obtaining it can introduce additional overhead. This overhead can be reduced as follows:
Knowledge about the document format and about its customizations can be derived from format
specifications. Domain knowledge is obtained from ontologies that cover the topic domains, from
dictionaries of specialized terms like abbreviations, from lexical databases such as WordNet (Miller,
2006), or fromontologies extracted from social collaboration projects (Schönberg et al., 2010). Domain
knowledge can also be extended during the extraction process, for example by dynamically adding
terms extracted from documents in the domain to a dictionary of terms.

Example 4 (Domain Knowledge). Fig. 6 shows an example of knowledge about the domain of
discourse. It represents the interrelationships of some topics about Flash. This knowledge is used
as data for the role related to in C1. In the presented use case, it was sufficient to represent
this information by means of three XML files, one for each of the relations is-a, related term, and
abbreviation. In more complex settings, OWL is preferable since it enables inference services such
as classification and consistency checks.

Remark 3 (Word Forms). When matching terms in a document with a controlled vocabulary, stem-
ming algorithms and dictionaries help recognize terms that are not in their basic form (e.g., an occur-
rence of ‘Photo Flashes’ in the text should still be recognized as an instance of the term ‘Photo Flash’).

4.2. Information extraction process

The general rule-based information extraction process using JBoss Drools works as follows. First,
objects are inserted into the fact base of the Drools rule engine. Then, the pattern matching algorithm
(Rete) of the engine determines the set of rule/object pairs thatmatch (i.e.,where the object satisfies all
conditions of the rule), and that have not yet been processed. These pairs are called activations. If there

192 C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206

Fig. 7. Information extraction: example.

is more than one activation, a conflict resolution algorithm is triggered that selects a single activation.
Finally, the selected activation is processed: the actions associated with its rule are performed. After
that, the matching algorithm continues to detect new activations, until no activations remain (Bost
et al., 2007).

(Meta-)information is extracted by processing the DOM tree of the XML source files of the
documents to be processed. The objects being inserted into the fact base of the rule engine are
instances of the processing context, representing the status of the currently processed DOM element.

Example 5 (Information Extraction). Fig. 7 shows an example of how the structure and content of a
clipping of a source file (lhs) is represented in the document model (rhs). Each node (n1 through n3)
on the rhs represents a fragment of the file.

To start the extraction process, a new context object containing the root element of the file
(<html>) and the file’s URI is inserted into the fact base, triggering one or more rules that match
this context object. The actions of the selected rule for contexts of root elements create a new node
n1 in the document graph (Fig. 7 center top). Node n1 is annotated with a ‘StructuralType’ property
‘File’, and with the ‘URI’ property of the current context object. Finally, the rule creates a new context
objects for each of the child elements (<head> and <body>) and inserts them into the fact base.
These context objects also contain a reference to their parent fragment n1 in the document model.

Inserting new context objects into the fact base of the engine triggers new rules,which successively
process the respective elements of the DOM tree. A rulematching contexts of<body> elements does
nothing but insert contexts of its child elements (<div>) into the engine. Different rules are used for
processing <div> elements, depending on the values of their class attributes. The rule processing
<div> elements of class ‘‘subchapter’’ creates node n2 and annotates it with both a URI property
and with the respective structural type (rhs center). It also creates the ‘‘Part’’ connection between n1
and n2, knowing from the context that n1 is the current parent fragment. It then inserts the context
objects of the element’s children into the fact base, each containing a reference to parent node n2.

The rule matching context objects of <div> elements whose class is ‘‘title’’ processes the title
of the parent fragment, which is n2 in the given example. First, it checks the title against the list
of syntactical indicators (cf. Fig. 5) and detects, in this case, the key phrase ‘‘side note:’’, which
corresponds to the function type ‘‘SideNote’’ in the controlled vocabulary. As a result, the current
fragment is annotated with this function type and the remaining part of the title ‘‘Flash’’ is annotated
as a ‘‘topic’’ property to n2. Now, the content domain ontology (Fig. 6) is checked for terms related to
the topic ‘‘Flash’’. The term ‘‘Exposure’’ is found and annotated as a related topic to n2 (rhs center).

Yet another rule matches context objects of <div> elements whose class is ‘‘warning’’. This rule
creates a new node n3 and annotates it with the function type property ‘‘Warning’’ (rhs bottom)
according to the mapping of syntactical indicators in Fig. 5. Similar to n1 and n2, n3 is also annotated
with a structural type and a ‘URI’ property, and inserted as a part of n2 into the document model.

C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206 193

The following clipping shows sample code whose general structure is common to many of the
extraction rules:

1 rule ‘‘traverse document’’
2 when $context : Context(element.tagName == ‘‘div’’ && some attributes. . .)
3 $backgroundknowledge : Knowledgebase(name == ‘‘terms’’)
4 then Fragment $frag← new Fragment($context);
5 $context .parentFragment.addPart($frag);
6 $frag .structuralType = ‘‘Subchapter’’;
7 $frag .addTerms($backgroundknowledge.match($context .element.text));
8 ✄ wrap child elements into context objects and insert them into fact base
9 end

The rule condition (line 2) contains the tag name of an XML element and optionally one or more
attribute values. $context is a variable that is instantiated with an object from the fact base matching
the condition pattern after the colon. ‘‘Context(. . .)’’ indicates that only objects of typeContext can be
matched, while the expression within parentheses defines conditions on the attributes of the context
object, e.g., to check the tag name of the DOMelement. Line 3matches a background knowledge object
that is used in the conclusion of the rule.

Lines 4 through 8 contain the actions of the rule that are executed for the matching $context
object. First, rule-dependent actions like creating nodes for fragments in the documentmodel (line 4),
defining the part-of hierarchy of fragments (line 5), or annotating properties such as the structural
type to nodes (line 6, cf. Example 5) are performed. Then, the text content of the current element is
matched against the known terms in the background knowledge, and all detected terms are assigned
to the fragment node (line 7). Finally, all child elements of the current element are wrapped in
individual context objects and inserted into the Drools fact base (line 8). Rules that match the pattern
for link elements (<a> tags in HTML) add a new context object to the fact base that contains the root
element of the referenced file. By keeping track of already processed files in a global list it is ensured
that a source file is not processed more than once.

Remark 4 (Termination of the Information Extraction Process). The information extraction process
terminates if the extraction rules adhere to the following conditions:

(1) rules only insert new context objects of elements that are either children of the current element,
or that are root elements of other files.

(2) rules matching root elements of files that have already been processed do not write to the fact
base.

Advantages of using rules to specify and control the extraction process include a decreased
complexity of the extraction logic, because a rule language promotes a clear separation between
condition and action, and a concise and explicit notation for both. This also reduces the effort required
for maintenance and for adapting the extraction logic to new scenarios. This is a distinct advantage
over the Java-based approach presented in Schönberg and Freitag (2009), while maintaining its
flexibility. A rule-based specification also removes the need tomanually define the control flow, while
maintaining the possibility to do so when appropriate. This, combined with improved runtime results,
is an advantage over the XQuery-based approach presented in Schönberg et al. (2009).

5. Model generation

The information extraction process as described in Section 4 generates a graph consisting of RDF
statements (Fig. 4 rhs center). The RDF-representation describes the content and structure of the
document as detailed and complete as possible to support the verification of awide variety of possible
specifications.

In themodel generation process, themetadata relevant for verifying a given specification is selected
and a verification model is constructed that fits to the semantics of the temporal logic ALCCTL— the
logic level specification formalism of our approach (Fig. 4 rhs top). Hence, the verification model can

194 C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206

Fig. 8. Generated verification model (role annotations omitted).

be regarded as a specific view on the RDF graph of the document to enable the efficient verification of
a given set of criteria.

5.1. Verification model

Fig. 8 shows a simplified version of the verification model of our sample scenario.
The verification model is an annotated directed graph whose nodes represent fragments of the

document at a distinct structural level (e.g., subchapters). An edge between node a and node b in
the verification model expresses that after having read a it is sensible to go to b. Hence, paths in the
verification model represent sensible ways of reading the document (cf. Fig. 1). Note that not all links
in a document must be represented as edges in the verification model. For instance, links back to the
table of contents in Fig. 1 are omitted in the verification model of Fig. 8, since they are not interpreted
as a recommendation of how to continue reading.

Remark 5 (Types of References). Apart from the references between chapters that describe the main
reading path, there are other types of references such as cross references (e.g., from viewing_
videos.htm to viewing_photos.htm), references to side notes such as from photography_program.htm
to side_note_flash.htm, or references to the table of contents. These types are distinguished during
information extractionbyusing backgroundknowledge about thedocuments, e.g., all references to the
table of contents are labeled ‘‘Content’’ in the source document, or references along the main reading
path are labeled ‘‘Next’’. Types are represented in the RDF graph as specializations of references,
making use of the RDF Schema ‘‘subPropertyOf’’ feature: for example, the reference types ‘‘Successor’’,
indicating a successor along themain reading path, and ‘‘TocReference’’ are both specializations of the
general ‘‘Reference’’ role. An RDF Schema definition of the roles used in the RDF graph is provided for
querying the graph.

Within the proposed framework of temporal description logic, the nodes of the verification model
are interpreted as states and the edges as transitions of a temporal structure (cf. Definition 2). States
of the verification model are annotated with representations of the content of the corresponding
document fragments. There are two different kinds of annotations: concept annotations and role
annotations.

Concept annotations represent local properties of states by assigning sets of instances to concepts.
For example, the state side_note_flash.htm in Fig. 8 has the annotation

WarningTopic = {DoNotFlashIntoEyes,DoNotCoverFlash}

This expresses thatDoNotFlashIntoEyes andDoNotCoverFlash are instances of the conceptWarningTopic
and represents that the respective fragment (here: Side Note: Flash) containswarnings on ‘‘do not flash
into eyes’’ and on ‘‘do not cover the flash’’.

C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206 195

Role annotations (omitted in Fig. 8 for clarity) represent semantic relations of objects in certain
states. For instance, the following is a role annotation of the state side_note_flash.htm representing
that the corresponding fragment covers both the topics DoNotFlashIntoEyes and DoNotCoverFlash.

hasTopic = {(side_note_flash.htm,DoNotFlashIntoEyes),
(side_note_flash.htm,DoNotCoverFlash)}

Remark 6 (Concept and Role Annotations). Concepts and roles such asWarningTopic or hasTopic form
the basic terms upon which formal specifications are built (see Section 6.1). To be sufficient for
verifying a given specification S, the verification model must contain annotations of each concept
and role occurring in S. For reasons of efficiency, it should not contain annotations of concepts and
roles that do not occur in S.

5.2. Model generation process

To generate a verification model for the verification of a given specification, it needs to be decided
which fragments in the document model form the set of states, which relations between fragments
form the transitions between states, and which concept and role annotations are constructed from the
document model. These decisions have a large impact on the type of criteria that can be verified, on
the precision and usefulness of error reports obtained from model checking, and on the performance
of the verification process. To support the construction of verification models tailored to a wide range
of different application scenarios and specifications, verification models are generated by executing
a set of interrelated SPARQL queries (Prud’hommeaux and Seaborne, 2008), which can be adapted
flexibly to the verification scenario at hand. However, the model designer does not have to write
SPARQL queries directly. Instead, a graphical user interface provides available options for generating
the transition relations based on the extracted information andbackgroundknowledge about different
types of references in the document (cf. Remark 8).

The subsequent sample queries illustrate the general model generation process based on SPARQL.
They are, for the sake of clarity, simplified variants of the queries used to generate the verification
model of Fig. 8. The role names used in the queries are defined in RDF Schema for the RDF graph.

5.2.1. States
Fragments that represent states are determined by a SPARQL query on the RDF graph.

Example 6 (State Query). The query ‘‘Select all objects that are part of files and whose structural type
is ‘Subchapter’ ’’ is expressed as a SPARQL query as follows. The result is the set of subchapters of the
document as a set of states of the verification model.

SELECT ?p WHERE {
?f StructuralType ‘File’. ?f Part ?p. ?p StructuralType ‘Subchapter’}

Remark 7 (State Query). As SPARQL does not support recursive queries (Prud’hommeaux and
Seaborne, 2008), following deeper part-of structures is usually more verbose than depicted here.

5.2.2. Transitions
In a second step, the transition relation is constructed by querying the successor states of each state

returned by the state query.

Example 7 (Transition Query). The query ‘‘Select all fragments that are successors of the fragment whose
URI is x’’ is expressed as a SPARQL query as follows. The result is the set of successor nodes of the state
that is identified by URI x.

SELECT ?s WHERE { ?f URI x. ?f Successor ?s.}
The query is executed for each state returned by the state query in the first step. In each instance of
the query, the parameter x is replaced by a URI that has been generated in the information extraction
process and identifies a certain state. To obtain the transition relation of Fig. 8, the targets of cross
references are retrieved by an analogue query.

196 C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206

5.2.3. Concept and role annotations
For each concept and role to be included in the annotations of states, a SPARQL query is defined that

retrieves their instances and pairs of instances, respectively. Care must be taken that for each concept
and role occurring in a given specification, a suitable query is defined. Similar to generating the
transition relation, each concept and role query is instantiated and executed for each state returned
by the state query.

Example 8 (Concept Query). The query ‘‘Select all topics of warnings which are part of fragment x’’ is
expressed as a SPARQL query as follows. The result are the instances of the conceptWarningTopic for
the state that is identified by URI x.

SELECT ?t WHERE {
?f URI x. ?f Part ?p. ?p FunctionType ‘Warning’. ?p Topic ?t}

Example 9 (Role Query). The query ‘‘Select all pairs whose first component is a URI of a part of fragment
x and whose second component is a topic of the part ’’ is expressed as a SPARQL query as follows. The
result are the pairs of instances of the role hasTopic for the state that is identified by URI x:

SELECT ?u, ?t WHERE { ?f URI x. ?f Part ?p. ?p URI ?u. ?p Topic ?t.}

Remark 8 (State, Successor, Concept, and Role Queries). As already mentioned, the end user does not
need to define the SPARQL queries for generating the verification model directly, but can make use
of a GUI. This GUI ensures that only queries that conform to the given RDF model can be created,
and queries can be created without knowledge about the underlying selector language (SPARQL). The
corresponding SPARQL constructs are then generated automatically. This is achieved by configuring
the program with both the SPARQL syntax grammar and with the predicate vocabulary of the RDF
model.

End users can also make use of a pattern-based approach for specifying criteria (Jakšić and Freitag,
2010).

6. Formal specification

These criteria refer to semantic relationships in the content on paths through the document.
Since the number of paths to consider usually grows exponentially in the document size or is
even infinite, standard methods for document validation such as Schematron (Jelliffe, 2002) do
not scale to application-relevant problem sizes. Propositional temporal logics are well suited for
capturing and verifying path-based properties. Their expressiveness, however, is insufficient for
representing semantic relationships of objects on paths. We propose the temporal description logic
ALCCTL (Weitl, 2008) for representing content- and path-related consistency criteria. ALCCTL is a
combination of the description logic ALC (Baader and Nutt, 2003) and the branching time temporal
logic CTL (Emerson, 1990). ALC is expressive for representing relationships among document parts
and their topics. CTL is expressive for representing properties of paths through the document. The
combination of description logics and temporal logics provides high expressiveness for content-
related criteria w.r.t. reading paths.

6.1. Syntax and semantics of ALCCTL

ALCCTL is a language built upon the following application-dependent symbols which consists of

• a set of atomic concepts C. Each atomic concept C ∈ C represents a set of objects. For instance, the
conceptWarning ∈ C may represent the set of ‘‘warnings’’ contained in (a part of) the document.
• a set of atomic roles R. Each atomic role R ∈ R represents a binary relation. For instance, the atomic

role hasTopic ∈ Rmay represent the binary relation between document parts and their topics.

Definition 1 (Syntax of ALCCTL). Let C be a set of atomic concepts and R be a set of atomic roles.
The set of ALCCTL concepts on C,R is the minimal set of state concepts generated by the following
rules:

C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206 197

(SC0) ⊤ and⊥ are state concepts;
(SC1) each atomic concept A ∈ C is a state concept;
(SC2) if C,D are state concepts then so are C ⊓ D, C ⊔ D,¬C;
(SC3) if C is a state concept and R ∈ R an atomic role then ∀R.C and ∃R.C are state concepts;
(PC1) if C,D are state concepts then XC and C U D are path concepts;
(SC4) if C is a path concept then EC,AC are state concepts.

The set of ALCCTL formulae is the minimal set of state formulae generated by the following rules:
(SF0) true and false are state formulae;
(SF1) if C,D are ALCCTL concepts then C ⊑ D and C .

= D are state formulae;
(SF2) if p, q are state formulae then so are p ∧ q, p ∨ q, and ¬p;
(PF1) if p, q are state formulae then Xp and p U q are path formulae;
(SF3) if p is a path formula then Ep and Ap are state formulae.

Remark 9 (Syntax of ALCCTL).

• We use the following abbreviations as defined in Emerson (1990): Let α, β be either ALCCTL
concepts or formulae. Fα (‘‘eventually α’’) abbreviates ⊤ U α if α is a concept and true U α if
α is a formula; AGα (‘‘all paths globally α’’) abbreviates ¬EF¬α, EGα (‘‘some path globally α’’)
abbreviates ¬AF¬α, A(α B β) (‘‘all paths α before β ’’) abbreviates ¬E((¬α) U β), and E(α B β)
(‘‘some path α before β ’’) abbreviates ¬A((¬α) U β).
• The binding precedence of connectives introduced above is as follows: the connectives used as

concept constructors have higher binding power than the connectives used to build formulae.
The precedence of concept constructors from highest to lowest binding power is as follows: path
operators A, E, temporal operators F,G,X,U,B, non-temporal concept constructors ∀, ∃,¬,⊓,⊔.
The binding precedence of connectives in formulae is as follows: path operators A, E, temporal
operators F,G,X,U,B, non-temporal formula connectives⊑,

.
=,¬,∧,∨.

To get an intuition for the semantics of the connectives introduced in Definition 1, consider the
following consistency criterion: ‘‘Topics, which are subject to warnings, are included in the glossary
that is reachable on some path’’.
This criterion can be represented by the ALCCTL formula

WarningTopic ⊑ EF ∃topicOf .Glossary

‘‘Every topic of a warning (WarningTopic ⊑) is on some path eventually (EF) topic of a glossary
(∃topicOf .Glossary)’’

WarningTopic and Glossary are atomic concepts representing the sets of warnings and glossaries
contained in a unit of the document. topicOf is an atomic role representing a binary relation between
topics and document units. The quantified role expression ∃topicOf .Glossary (cf. (SC3) in Definition 1)
represents the set of topics which are topic of some glossary. The CTL operator EF p (some path
eventually p) expresses that property p holds eventually on some path. Thus, EF ∃topicOf .Glossary
represents the set of topics which are on some path eventually topic of some glossary, i.e., for which
a glossary entry is reachable from the current document unit. The ALC connective ⊑ expresses a
subsumption relationship: Each instance ofWarningTopic is an instance of EF ∃topicOf .Glossary.

Definition 2 (Temporal Structure). ALCCTL formulae are evaluated on temporal structures M =

(S, R, I) where

• S is a non-empty set of states.
• R ⊆ S × S is a left-total binary relation on S assigning to each state in S at least one successor in S.
• Let LI be the set of ALC interpretations (Baader and Nutt, 2003). Then I is a function S → LI :

I(s) = (∆I , ·I(s)) associating each state s ∈ S with a DL interpretation I(s) = (∆I , ·I(s)) where ∆I

is a (state independent) set of objects, the interpretation domain, and ·I(s) is a function assigning to
each atomic concept A ∈ C a set AI(s)

⊆ ∆I and to each atomic role R ∈ R a set RI(s)
⊆ ∆I

×∆I .

Verification models of documents are temporal structures as illustrated by the subsequent
example.

198 C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206

Example 10 (Temporal Structure). The verification model shown in Fig. 8 is a temporal structure
(S, R, I) where

S = {start.htm, safety_notes.htm, toc.htm, camera_overview.htm,

photography_auto.htm, . . . , glossary.htm}
R = {(start.htm, safety_notes.htm), (safety_notes.htm, toc.htm),

(toc.htm, camera_overview.htm), (toc.htm, photography_auto.htm), . . .}

∆I
= {WarmAfterExtendedUse,NotDirectlyAtSun,DoNotFlashIntoEyes,

DoNotCoverFlash,NoRecoveryForDeletedPictures, . . .}

and where ·I is a state-dependent interpretation of atomic terms such asWarningTopic with

WarningTopic I(safety_notes.htm)
= {WarmAfterExtendedUse,NotDirectlyAtSun, . . .}

WarningTopic I(side_note_flash.htm)
= {DoNotFlashIntoEyes,DoNotCoverFlash}

WarningTopic I(deleting_photos.htm)
= {NoRecoveryForDeletedPictures}

S is the set of nodes and R is the set of edges of the verification model as depicted in Fig. 8. (start.htm,
safety_notes.htm) ∈ R, for instance, represents that after having read start.htm it is recommended to
proceed to safety_notes.htm.

The interpretation domain ∆I represents the set of objects such as document parts and their
topics, which appear in annotations of the verification model and which are constrained by ALCCTL
formulae. In the verification model of Fig. 8, these are the instances of concept WarningTopic in the
states safety_notes.htm, side_note_flash.htm, and deleting_photos.htm.

The interpretation function ·I represents the annotation of the states of the verificationmodel with
local properties such as the topics of warnings by assigning values to atomic terms likeWarningTopic.
The value of interpretationWarningTopic I(safety_notes.htm), for instance, corresponds to the annotation of
conceptWarningTopic in state safety_notes.htm of the verification model in Fig. 8.
Remark 10 (Temporal Structure). The semantics of temporal logics requires R to be left-total, i.e.,
each state s ∈ S has a successor s′ ∈ S such that (s, s′) ∈ R. To ensure that the successor
relation of verification models is left-total, reflexive edges may be added to the transition relation.
For instance, for the finial state glossary.htm of the verification model depicted in Fig. 8, we add
(glossary.htm, glossary.htm) to R.
ALCCTL path concepts and formulae are evaluated on fullpaths:
Definition 3 (Fullpath). Let (S, R, I) be a temporal structure and s ∈ S a state. Then FPs :=
{(s0, s1, . . .)|s0 = s ∧ ∀i ∈ N0 : (si, si+1) ∈ R} is the set of fullpaths starting in state s.
Example 11 (Fullpath). (start.htm, safety_notes.htm, toc.htm, camera_overview.htm, . . .) ∈ FPstart.htm
is the prefix of a fullpath starting in state start.htm in the temporal structure depicted in Fig. 8.
Definition 4 (Semantics of ALCCTL). Given is a temporal structure M = (S, R, I), I : S → LI :
I(s) = (∆I , ·I(s)) as defined above, a set of atomic concepts C and roles R, a state s ∈ S, and a fullpath
x = (s0, s1, s2, . . .). The interpretation of ALCCTL concepts w.r.t. M, s and w.r.t. M, x, in symbols
(M, s)(C), (M, x)(C) is as follows:

(SC0) (M, s)(⊤) = ⊤I(s)
=def ∆I

(M, s)(⊥) = ⊥I(s)
=def ∅;

(SC1) for A ∈ C: (M, s)(A) =def AI(s)

for R ∈ R: (M, s)(R) =def RI(s)

(SC2) (M, s)(C ⊓ D) = (C ⊓ D)I(s) =def C I(s)
∩ DI(s)

(M, s)(C ⊔ D) = (C ⊔ D)I(s) =def C I(s)
∪ DI(s)

(M, s)(¬C) = (¬C)I(s) =def ∆I
\C I(s)

(SC3) (M, s)(∀R.C) = (∀R.C)I(s) =def {a ∈ ∆I
|∀b ∈ ∆I

: (a, b) ∈ RI(s)
→ b ∈ C I(s)

}

(M, s)(∃R.C) = (∃R.C)I(s) =def {a ∈ ∆I
|∃b ∈ ∆I

: (a, b) ∈ RI(s)
∧ b ∈ C I(s))}

(PC1) (M, x)(XC) =def C I(s1)

(M, x)(C U D) =def {a ∈ ∆I
|∃i ∈ N0 [a ∈ DI(si) ∧ ∀j ∈ N0(j < i→ a ∈ C I(sj))]}

C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206 199

(SC4) (M, s)(EC) = (EC)I(s) =def {a ∈ ∆I
|∃x ∈ FPs: a ∈ (M, x)(C)} =

x∈FPs(M, x)(C),

(M, s)(AC) = (AC)I(s) =def {a ∈ ∆I
|∀x ∈ FPs: a ∈ (M, x)(C)} =

x∈FPs(M, x)(C)

The following rules determine when an ALCCTL formula p is true in a state s ∈ S, or in fullpath
x = (s0, s1, . . .), in symbolsM, s |= p and M, x |= p, respectively:

(SF0) M, s |= true
M, s |̸= false

(SF1) M, s |= C ⊑ D iff C I(s)
⊆ DI(s)

M, s |= C .
= D iff C I(s)

= DI(s)

(SF2) M, s |= p ∧ q iffM, s |= p and M, s |= q
M, s |= p ∨ q iffM, s |= p orM, s |= q
M, s |= ¬p iffM, s |̸= p

(PF1) M, x |= Xp iffM, s1 |= p
M, x |= p U q iff ∃i ∈ N0 [M, si |= q ∧ ∀j ∈ N0(j < i→ M, sj |= p)]

(SF3) M, s |= Ep iff ∃x ∈ FPs: M, x |= p,
M, s |= Ap iff ∀x ∈ FPs: M, x |= p

Example 12 (Semantics of ALCCTL). LetM = (S, R, I) be a temporal structure as of Example 10 and
as depicted in Fig. 8. Then

(M, start.htm)(EX WarningTopic) = (SC4) in Definition 4
x∈FPstart.htm

(M, x)(X WarningTopic) = explanation below...

(M, (start.htm, safety_notes.htm, . . .))(X WarningTopic) = (PC1) in Definition 4
(M, safety_notes.htm)(WarningTopic) = (SC1) in Definition 4
WarningTopic I(safety_notes.htm)

= ·
I in Example 10

{WarmAfterExtendedUse,NotDirectlyAtSun, . . .}

The second equation holds because (1) in the temporal structure of Fig. 8, all paths starting from
state start.htm have the form (start.htm, safety_notes.htm, . . .) and (2) for the semantics of the ‘‘next’’
operator X, just the state subsequent to the initial state start.htm is relevant (cf. (PC1) in Definition 4).

Note that the user does not interactwith the systemon the formal level described here. Instead, the
user browses an example base of specifications that is structured according to frequently occurring
types of specifications, the so-called specification patterns (Jakšić and Freitag, 2008;Weitl et al., 2009).
The user selects a suitable example-based specification and then incrementally refines and adapts
it to the specification problem at hand. In this process, the meaning of the current specification is
illustrated by showing conforming and violating paths in small sample document graphs which can
be adjusted to the current use case (Weiß, 2009).

6.2. Model checking ALCCTL

Specifications represented in ALCCTL are verified by model checking (Weitl, 2008; Weitl et al.,
2009). In the case of specification violations, counterexamples are generated that precisely pinpoint
the error locations within the document.

Definition 5 (Model Checking Problem of ALCCTL). Let M be a structure (S, R, I) as defined in
Definition 2 such that S and ∆I are finite. Let f be an ALCCTL formula. The model checking problem
of ALCCTL is to decide for all s ∈ S ifM, s |= f .

Example 13 (Model Checking Problem of ALCCTL). Consider the ALCCTL formula

EG (WarningTopic ⊑ ⊥)

expressing that there should be somepath onwhich it holds in every state (EG) that the set of ‘‘warning
topics’’ is empty (WarningTopic ⊑ ⊥), in short, that there is some path without any warnings.

200 C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206

Table 1
Error report of verifying formula AbbreviatedTerm ⊑ EF GlossaryTerm.
Error location Violating terms

photography_auto.htm ‘‘Gigabyte’’, ‘‘Auto Focus’’
connecting_pc.htm ‘‘Universal Serial Bus’’, ‘‘Motion Picture Export Group’’

Let M = (S, R, I) be the temporal structure as of Example 10 and as depicted in Fig. 8. Then it
holds:

M, start.htm |̸= EG (WarningTopic ⊑ ⊥)

M, safety_notes.htm |̸= EG (WarningTopic ⊑ ⊥)

This is because the only successor of state start.htm is safety_notes.htm in which the interpretation of
WarningTopic is not empty (cf. Fig. 8). Thus, in states start.html and safety_notes.htm, there is no such
path such thatWarningTopic ⊑ ⊥ holds in every state. However,

M, toc.htm |= EG (WarningTopic ⊑ ⊥)

because there is a path (toc.htm, glossary.htm, glossary.htm, glossary.htm, . . .) starting at state
toc.htm on which it holds for every state that the interpretation of WarningTopic is empty. This path
exists since we added a reflexive edge to the final state glossary.htm (cf. Remark 10).

Theorem 6 (Polynomial Runtime Complexity). Themodel checking problem ofALCCTL is in polynomial
time.

For the proof we refer the reader toWeitl (2008). The polynomial runtime complexity is an important
prerequisite for ALCCTL model checking scaling up to relevant problem sizes (see also evaluation
results in Section 8 and inWeitl (2008), Weitl et al. (2009) and Schönberg et al. (2009)). A polynomial
model checking algorithmhas been proposed inWeitl (2008) and implemented in Java. It is integrated
into the demonstration software available on the Verdikt homepage.3

7. Error reporting

Definition 7 (Error State). LetM be a temporal structure (S, R, I) as defined in Definition 2 such that
S and ∆I are finite. Let f be an ALCCTL formula. Then

ESM,f := {s ∈ S |M, s |̸= f }

denotes the set of error states in M w.r.t. f .

Example 14 (Error State). Consider the ALCCTL formula f = EG (WarningTopic ⊑ ⊥) and the
temporal structure M = (S, R, I) as of Example 13. Then start.htm ∈ ESM,f and safety_notes.htm ∈
ESM,f but toc.htm ∉ ESM,f because f is satisfied in state toc.htm but not in states start.htm and
safety_notes.htm ofM (cf. Example 13).

The set of error states ESM,f of a verification model M and an ALCCTL formula f represent
error locations which correspond to fragments of the document that do not conform to the criterion
representedby formula f . By applying appropriate naming conventions, these states canbe re-mapped
onto the respective parts of the document. For instance, state photography_auto.htm represents the
part of the document that is contained in photography_auto.htm (cf. Table 1, first data row).

Based on the model checking results, an error report as sketched in Tables 1 and 2 is generated.
The first data row of Table 1 expresses that the terms ‘‘Gigabyte’’ and ‘‘Auto Focus’’ used in
abbreviated form on page photography_auto.htm are not satisfying the formula AbbreviatedTerm ⊑
EF GlossaryTerm.

In addition to the error report, a CSS file is generated that highlights the violating terms within an
error location of the document. For locating violating terms, a mapping of terms onto their locations

3 http://www.verdikt.uni-passau.de.

http://www.verdikt.uni-passau.de
http://www.verdikt.uni-passau.de
http://www.verdikt.uni-passau.de
http://www.verdikt.uni-passau.de
http://www.verdikt.uni-passau.de

C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206 201

Table 2
Error report of verifying formula ∃topicOf .Overview ⊑ AF ∃topicOf .
¬(Overview⊔Glossary).
Error location Violating terms

camera_overview.htm ‘‘Arrow Buttons’’, ‘‘Battery Cover’’, ‘‘Lens’’, . . .

in the document is built during the generation of the verification model and represented as a table.
This is possible since the metadata document model contains the information needed to locate terms
precisely in the document (cf. Section 4). The table consists of quadruples of state, concept/role, instance
value, and file location. This set of tuples is indexed first by state, then by concept/role.
Example 15 (Mapping Table). The tuple table of the use case contains entries like

(photography_auto.htm, AbbreviatedTerm, ‘‘Gigabyte’’,
photography_auto.htm#html/body/div[1]/div[2]/ol/li[3]/span[2])

and
(connecting_pc.htm, AbbreviatedTerm, ‘‘Universal Serial Bus’’,

connecting_pc.htm#html/body/div[2]/span[3]).
When tracing the errors from the report in Table 1 back to their source, a table lookup reveals the
locations of the violating terms. The state and term (instance value) are given in the error report,
and the relevant concept is obtained from the formula AbbreviatedTerm ⊑ EF GlossaryTerm because
violating terms are instances of conceptAbbreviatedTermbut not instances of conceptEF GlossaryTerm.

For further details on error analysis based on ALCCTL model checking, we refer the reader to
Weitl et al. (2010), Weitl and Nakajima (2010).

8. Experimental results

In previouswork,we established the applicability of our approach to large and complex documents
from the e-learning domain, which are in productive use in a university and a corporate setting (Weitl,
2008; Schönberg, 2006). In this section, we focus on the applicability of the approach to the domain
of technical documentation by examining the presented use case. The use case consists of a document
modeled after the existing documentations.

We checked the use case document against a total of eight criteria (C1–C8), each of which was
specified as a single formula. Two of these formulae were satisfied by the document model, but we
found violations for the other six. In particular, the formula representing C1 (cf. Section 2.2) was
satisfied, owing to the background knowledge inserted into the document model. In total, we found
31 violations in all pages of the document for all formulae. Fig. 9 shows the time required to check
each formula (in milliseconds). As can be seen, the largest portion of time is required for loading the
verification model from an XML file. The total of this time can be greatly reduced by checking all
formulae at once, instead of checking each separately. The total time of 3.5 s is then reduced to just
under 1 s.

The runtime results shown in Fig. 9 have been obtained on a notebook computerwith Intel Pentium
Mprocessor at 1.6GHz and 2GBRAMrunningWindowsXP and JavaVersion 6. The verification system
has been implemented in Java.

The entire verification process took about 16 s. Themajor portion of runtimewas consumed by the
information extraction and model generation process that analyze HTML markup, establish semantic
relations between content fragments, enrich these correlations by using background knowledge,
generate a graphmodel of the document, and finally generate a verificationmodel formodel checking
using a set of parameters. Extracting the graph model from the document took about 5.8 s, while
selecting and filtering this graph took under 10 s.
Remark 11 (Caching). The document model can be generated beforehand in a preprocessing step,
cached, and reused as long as the document itself remains unmodified. Only changing the original
documentmust trigger a new information extraction andmodel generation cycle. The JBoss Drools ex-
traction rules can also be pre-compiled, reducing the information extraction time to slightly under 1 s.

202 C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206

Fig. 9. Evaluation Results (times in ms).

Model checking the verification model against the ALCCTL-based specification and generating
an error report each took just 1% of the total runtime. This ensures a quick response of the system
when constructing and testing different specifications interactively against a verification model that
has already been loaded.

Background knowledge on syntactical indicators and on the content domain helped to increase
the number of recognized terms in the document (recall) from 77 to 104 (an increase of 35%). Since
no terms or concepts were falsely extracted without using background knowledge, no errors had to
be corrected, so the precision remain unchanged.
The application costs for our verification system arise from

Preparing the document Sometimes, the existing documents do not contain all the markup
required to correctly identify the meaning of their content. The extent of available semantic
markup often varies depending on the application domain: e-learning documents usually
contain a high amount of such metadata, while pure web documents contain little or none.
For our use case, we first created the HTML sources and added the semantically relevant
markup afterwards, which took about 1 h.

Preparing the background knowledge Available background knowledge can help balance missing
markup in the source document. Especially ontologies of relevant terms, and knowledge
about keywords that indicate some document function like ‘‘Definition’’ are important in
this regard. While this kind of background knowledge is often available for different content
domains (e.g., Rogers et al., 2001, ChefMoz,4 the UK Integrated Public Sector Vocabulary,5 or
the Getty Art and Architecture Thesaurus,6) it takes considerable time and effort to compile
them if they are not available. There are several approaches to compile ontologies from
public information sources like Wikipedia (Hepp et al., 2007; Wu and Weld, 2008; Nastase
and Strube, 2008) that might help to reduce the cost of obtaining new ontologies. Other
background knowledge like information about CSS classes can be created at small expense.
Creating the knowledge bases for our limited use case required about half an hour.

Preparing the specification Eight criteria for the content of the document have been expressed
in natural language and then formalized in terms of ALCCTL. Manually specifying the
formulae took about 2 h. Using the pattern-based specification approach to assist reduces
this time to approximately 15 min.

Configuring the system The knowledge extraction, model generation, and error reporting compo-
nents have been configured and parameterized according to the format and markup of the
document, which took about 2 h in total.

4 http://chefmoz.org/, visited 06/2010.
5 http://www.esd.org.uk/standards/ipsv_internalvocabulary/, visited 06/2010.
6 http://www.getty.edu/research/conducting_research/vocabularies/aat/, visited 06/2010.

http://chefmoz.org/
http://chefmoz.org/
http://chefmoz.org/
http://www.esd.org.uk/standards/ipsv_internalvocabulary/
http://www.esd.org.uk/standards/ipsv_internalvocabulary/
http://www.esd.org.uk/standards/ipsv_internalvocabulary/
http://www.esd.org.uk/standards/ipsv_internalvocabulary/
http://www.esd.org.uk/standards/ipsv_internalvocabulary/
http://www.esd.org.uk/standards/ipsv_internalvocabulary/
http://www.esd.org.uk/standards/ipsv_internalvocabulary/
http://www.esd.org.uk/standards/ipsv_internalvocabulary/
http://www.getty.edu/research/conducting_research/vocabularies/aat/
http://www.getty.edu/research/conducting_research/vocabularies/aat/
http://www.getty.edu/research/conducting_research/vocabularies/aat/
http://www.getty.edu/research/conducting_research/vocabularies/aat/
http://www.getty.edu/research/conducting_research/vocabularies/aat/
http://www.getty.edu/research/conducting_research/vocabularies/aat/
http://www.getty.edu/research/conducting_research/vocabularies/aat/
http://www.getty.edu/research/conducting_research/vocabularies/aat/
http://www.getty.edu/research/conducting_research/vocabularies/aat/

C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206 203

Altogether, the setup cost of our verification system amounts to about 4 h of manual effort. This
initial effort amortizes quickly when a document is changed frequently or when parts of it are reused
in different contexts, which is typically the case for technical documentations.

Employing background knowledge during the information extraction process has several
implications for the verification process.

• Some criteria can now be checked that were not available before, because the necessary data could
not be detected (e.g., abbreviations, or related topics).
• Some verification results are nowmore accurate than before, because of higher precision and recall

for some data (e.g., terms, or function types).
• By making knowledge about how information is encoded in a document explicit and external,

instead of mixing it with the extraction logic, the extraction rules can be specified more clearly.
This results in reduced effort for creation and maintenance.
• The runtime results for the extraction process are slightly increased in direct proportion to the

amount of background knowledge available. Efficient representations canhelp to reduce this effect.

Application scenarios and documents investigated so far have shown that the advantages to
using background knowledge clearly outweigh the drawbacks in most cases, including the cost for
obtaining the knowledge. Only for very simple documents and simple consistency criteria employing
background knowledge can be regarded as superfluous.

9. Related work

Schematron (Jelliffe, 2002) and xlinkit (Nentwich et al., 2002) are powerful tools for validating
the consistency of XML documents. Schematron is an ISO/IEC standard, based on XSLT and
XPath for the specification and validation of consistency requirements on XML documents. As for
xlinkit, consistency rules are expressed in a language based on first order logic with embedded
XPath predicates. Consistency rules may refer to external resources that can be mapped to XML
representations, such as relational databases. If rules are violated, suggestions for repairing the
detected errors are generated and presented to the user (Nentwich et al., 2003). The xlinkit engine
has been integrated into the commercial software ‘‘messageAUTOMATION validator’’ that offers a
graphical rule editor and means for rule testing and management (Message Automation Ltd , 2010).

Our approach is not targeted at the XML data model of ordered trees but at documents with a
graph (but not necessarily tree) structure such as hypertext or DITA (Priestley and Hackos, 2005)
documentations of interrelated topics. Properties of paths in such graph-structured documents are
hard to express and inefficient to check using XPath and first order logic, which are fundamental to
Schematron and xlinkit. This is because the number of paths to consider grows exponentially in the
size of the document or is infinite. In our approach, we do not track paths but calculate the set of
states satisfying an ALCCTL formula by fixed point iteration over a graph-based representation of
document models (Weitl, 2008); cf. also Huth and Ryan (2004). This way, the runtime complexity
of the algorithm remains polynomial. XML processing, however, is not well suited for efficiently
implementing such an approach (Weitl, 2008). Moreover, terminological background knowledge
about the domain of discourse is hard to encode in XML-based validation methods. A detailed study
of the expressiveness and performance of our approach as compared to methods based on XML
processing is presented in Weitl (2008).

There are several approaches, e.g. Stotts et al. (1998), Sciascio et al. (2005), Flores et al. (2008), using
some propositional temporal logics (CTL, LTL), which enable the specification of complex properties
along browsing paths in hypermedia structures. In the MCWeb project (de Alfaro, 2001), a restricted
version of the µ-calculus is applied to express and verify properties of web sites while (Fernandez
et al., 1999) suggests Prolog extended with path expressions for modeling and verifying the structure
and content of web sites. Although ALCCTL exceeds the expressive power of these formalisms
regarding semantic relationshipswithin themodeling domain, we achieve a better usability by adding
a user specification layer on top of the formal core. In addition, the higher expressiveness of ALCCTL
results in richer and more precise error reports that clearly pinpoint problems within the document.

204 C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206

In the Verdi project (Alpuente et al., 2004), a rule-based, formal specification language, has
been used to define syntactic/semantic properties of web sites. A verification facility based on term
rewriting computes the specifications not fulfilled by the web site and helps in repairing errors by
finding incomplete ormissingweb pages.While complex requirements for certain (sets of) web pages
can be checked, path-related properties are out of the scope of the approach.

A formal consistencymanagement component based on description logics is proposed in Egly et al.
(2005) as an extension to the content management system for technical documentation Schema ST4
(Gruppe, 2006). Extensive tool support ensures a good usability — at least for authors experienced in
technical documentation. However, description logics on their own are not sufficiently expressive for
representing criteria on reading paths through the document (cf. Weitl, 2008).

A powerful and flexible framework for checking the consistency of collections of interrelated
documents has been proposed by Scheffczyk (2004). The formal basis is full first order logics
interpreted over a language defined in terms of the functional programming language Haskell. While
the suggested formalisms are very expressive they are also very complex both in terms of computation
and application costs. Our approach offers a better compromise between high expressiveness and
formal precision on the one hand, and efficiency, usability, and low application costs on the other.

There are many information extraction and information retrieval tools available. Lapis relies on
text constraints to define patterns that are used to select data from web pages (Miller and Myers,
1999). The commercial toolkit Lixto uses a rule language based on constraints and path expressions
similar to XPath (Baumgartner et al., 2001, 2005). Both rely on graphical user interfaces to assist users
in specifying rules and constraints. Road Runner employs regular expressions to generate wrappers
for web pages (Crescenzi et al., 2002). It attempts to generate these wrappers semi-automatically by
examining a small number of pages and building the wrappers to conform to these samples, before
applying them to a larger set of similar pages. Our approach has several advantages for document
verification. We can use background knowledge in more ways and more flexibly, thus making better
use of its effects on extraction quality. It is also possible to employ a host of external tools and easily
include new ones, without being limited by the capabilities of the graphical interface currently in use.
In addition, our approach not only extracts the data but also records its source in the document, a
feature that is necessary for error tracing.

10. Conclusion

We have presented an approach to document verification that spans the entire verification cycle:
from the original document, a metadata model is extracted that represents the structure and the
content of the document, with special account for semantic relationships among document parts
and topics. With respect to that model, a set of consistency criteria is constructed in an incremental
process basedon specificationpatterns and examples. The example- andpattern-based specification is
translated into formulae of the temporal description logic ALCCTL. In addition, a verification model
is generated that is a view on the document model optimized for the verification of the given set
of ALCCTL formulae. The ALCCTL model checker produces a list of counterexamples which are
processed to generate an error report pinpointing all violations of the given criteria in the original
document. To this end, unique identifiers andmapping tables help to track objects in counterexamples
back through the document model to their precise locations in the original document. After users
correct the errors presented to them, the verification cycle begins anew.

We have shown that background knowledge about the document format, about the application
domain of the document, about the content domain in which the document is used, and about
the general linguistic correlations can help us to enhance the quality of the results of information
extraction and model generation as well as the precision and ease of application for users in the
specification process. We have demonstrated the expressiveness of ALCCTL for content- and path-
related criteria and have evaluated its adequacy and performance in typical application scenarios. In
combination with its low utilization costs, the presented framework constitutes a new step towards
closing the gap between the power of formal methods and their practical applicability.

In future work, we will extend the amount of automation that can be applied to the information
extraction and to locating the errors. Furthermore, there is a strong evidence that the runtime

C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206 205

efficiency of the model generation can be increased by caching and query optimization methods
known from relational databases. Another part of further research is devoted to an optimized
assistance for the specification of consistency criteria by supporting the extension of the pattern and
example base with user-defined scenarios, thus increasing both the flexibility of the specification
method and the user’s familiarity with the specification process.

Acknowledgements

We thank Shin Nakajima for many valuable comments.

References

Alpuente, M., Ballis, D., Falaschi, M., 2004. Verdi: An automated tool for web sites verification. In: Proc. of JELIA 2004. In: LNAI,
vol. 3299. Springer, pp. 726–729.

Baader, F., Nutt, W., 2003. Basic description logics. In: The Description Logic Handbook — Theory, Implementation and
Applications. Cambridge Univ. Press, pp. 47–100 (Chapter 2).

Baumgartner, R., Flesca, S., Gottlob, G., 2001. Visual web information extraction with lixto. In: Proceedings of the VLDB
Conference. pp. 119–128.

Baumgartner, R., Frölich, O., Gottlob, G., Harz, P., Herzog, M., Lehmann, P., 2005. Web data extraction for business intelligence:
the lixto approach. In: Vossen, G., Leymann, F., Lockemann, P., Stucky, W. (Eds.), Datenbanksyst. in Business, Technologie
und Web. LNI P-65. Bonner Köllen Verlag, pp. 30–47.

Bost, T., Bonnard, P., Proctor, M., 2007. Implementation of production rules for a rif dialect: A mismo proof-of-concept for loan
rates. In: Paschke, A., Biletskiy, Y. (Eds.), RuleML. In: Lecture Notes in Computer Science, vol. 4824. Springer, pp. 160–165.

Crescenzi, V., Mecca, G., Merialdo, P., 2002. Wrapping-oriented classification of web pages. In: SAC ’02: Proceedings of the 2002
ACM Symposium on Applied Computing. ACM, New York, NY, USA, pp. 1108–1112.

de Alfaro, L., 2001. Model checking the world wide web. In: CAV 01. In: LNCS, vol. 2102. Springer, pp. 337–349.
Doorenbos, R.B., 1995. Production matching for large learning systems. Ph.D. Thesis, Pittsburgh, PA, USA.
Egly, U., Schiemann, B., Schneeberger, J., 2005. Tech. documentation authoring based on semantic web methods. Künstliche

Intelligenz 2, 56–59.
Emerson, E., 1990. Temporal and modal logic. In: van Leeuwen, J. (Ed.), Handbook of Theoretical Computer Science: Formal

Models and Semantics. Elsevier, pp. 996–1072.
Fernandez, M., Florescu, D., Levy, A. Y., Suciu, D., 1999. Verifying integrity constraints onweb sites. In: Proc. of the 16th Internat.

Joint Conf. on Artificial Intelligence. IJCAI. Morgan Kaufmann Pub. Inc., pp. 614–619.
Flores, S., Lucas, S., Villanueva, A., 2008. Formal verification of websites. Electronic Notes in Theoretical Computer Science 200,

103–118.
Gruppe, S., 2006. Schema ST4 Leistungsbeschreibung. SCHEMA Electronic Documentation Solutions GmbH.
Hepp, M., Siorpaes, K., Bachlechner, D., 2007. Harvesting wiki consensus: Using wikipedia entries as vocabulary for knowledge

management. IEEE Internet Computing 11 (5), 54–65.
Huth, M., Ryan, M., 2004. Verification by model checking. In: Logic in Computer Science, Modelling and Reasoning about

Systems, 2nd edition. Cambridge University Press (Chapter 3).
Jakšić, M., Freitag, B., 2008. Temporal patterns for document verification. Tech. Rep. MIP-0805, University of Passau.
Jakšić, M., Freitag, B., 2009. Evaluation der Methode zur Nutzerunterstützung. Tech. Rep. MIP-0906, University of Passau,

Germany.
Jakšić, M., Freitag, B., 2010. Temporal patterns for document verification. In: Proc. of the 6th International Workshop on

Automated Specification and Verification of Web Systems, WWV’10, Vienna, Austria, pp. 17–31.
Jelliffe, R., 2002. The schematron assertion language 1.6. http://xml.ascc.net/resource/schematron/Schematron2000.html,

visited 06/2010.
Klyne, G., Carroll, J.J., 2004. Resource Description Framework (RDF) Concepts and Abstract Syntax, W3C Recommendation 10

February 2004. http://www.w3.org/TR/rdf-concepts/, visited 06/2010.
Message Automation Ltd. 2010. messageAUTOMATION validator product site. http://www.messageautomation.com/products/

validator.html, visited 06/2010.
Miller, G.A., 2006. WordNet — a lexical database for the English language. http://wordnet.princeton.edu/.
Miller, R., Myers, B., 1999. Lightweight structured text processing. In: USENIX Annual Technical Conference. Monterey, CA,

pp. 131–144.
Nastase, V., Strube, M., 2008. Decoding wikipedia categories for knowledge acquisition. In: Fox, D., Gomes, C.P. (Eds.), AAAI.

AAAI Press, pp. 1219–1224.
Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A., 2002. xlinkit: a consistency checking and smart link generation service.

ACM Transactions on Internet Technology (TOIT) 2 (2), 151–185.
Nentwich, C., Emmerich, W., Finkelstein, A., 2003. Consistency management with repair actions. In: Proceedings of the 25th

International Conference on Software Engineering, Portland, Oregon, pp. 455–464.
Priestley, M., Hackos, J., 2005. OASIS Darwin Information Typing Architecture (DITA) Language Specification v1.0, OASIS

Standard.
Proctor, M., 2007. Relational declarative programming with jboss drools. In: Negru, V., Jebelean, T., Petcu, D., Zaharie, D. (Eds.),

SYNASC. IEEE Computer Society, p. 5.
Prud’hommeaux, E., Seaborne, A., 2008. SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/, visited

06/2010.

http://xml.ascc.net/resource/schematron/Schematron2000.html
http://www.w3.org/TR/rdf-concepts/
http://www.messageautomation.com/products/validator.html
http://www.messageautomation.com/products/validator.html
http://www.messageautomation.com/products/validator.html
http://www.messageautomation.com/products/validator.html
http://www.messageautomation.com/products/validator.html
http://www.messageautomation.com/products/validator.html
http://www.messageautomation.com/products/validator.html
http://wordnet.princeton.edu/
http://www.w3.org/TR/rdf-sparql-query/

206 C. Schönberg et al. / Journal of Symbolic Computation 46 (2011) 183–206

Rogers, J.E., Roberts, A., Solomon, W.D., van der Haring, E., Wroe, C.J., Zanstra, P.E., Rector, A.L., 2001. Galen ten years on: Tasks
and supporting tools. In: Patel, V., et al. (Eds.), Proceedings of MEDINFO 2001. IOS Press, Amsterdam, pp. 256–260.

Scheffczyk, J., 2004. Consistent document engineering. Dissertation, Universität der Bundeswehr München.
Schönberg, C., 2006. Model checking temporal description logics. Diploma Thesis, University of Passau.
Schönberg, C., Freitag, B., 2009. Extracting and storing document metadata. Tech. Rep. MIP-0907, University of Passau.
Schönberg, C., Jakšić, M., Weitl, F., Freitag, B., 2009. Verification of web-content: A case study on technical documentation.

In: Proc. of the 5th International Workshop on Automated Specification and Verification of Web Systems, WWV’09, Linz,
Austria.

Schönberg, C., Weitl, F., Jakšić, M., Freitag, B., 2009. Logic-based verification of technical documentation. In: Proceedings of the
9th ACM Symposium on Document Engineering. DocEng 09. ACM, Munich, Germany, pp. 251–252.

Schönberg, C., Pree, H., Freitag, B., 2010. Rich ontology extraction andwikipedia expansion using language resources. In: Proc. of
the 11th International Conference onWeb-Age Information Management, WAIM’10. In: LNCS, vol. 6184, Jiuzhaigou, China,
pp. 151–156.

Sciascio, E. D., Donini, F. M., Mongiello, M., Totaro, R., Castelluccia, D., 2005. Design verification of web applications using
symbolic model checking. In: Proc. of ICWE 2005. In: LNCS, vol. 3579. Springer, pp. 69–74.

Stotts, P.D., Furuta, R., Cabarrus, C.R., 1998. Hyperdocuments as automata: Verification of trace-based browsing properties by
model checking. Information Systems 16 (1), 1–30.

Walsh, N., Muellner, L., Stayton, B., Apr 2005. DocBook: The Definitive Guide, Version 2.0.12. O’Reilly, online Version.
Weiß, H., 2009. Specification-by-Example: Beispiels-basierte Spezifikationen von Dokumenteigenschaften. Diplomarbeit,

Universität Passau.
Weitl, F., 2008. Document Verification with Temporal Description Logics. Ph.D. thesis, University of Passau.
Weitl, F., Nakajima, S., 2010. Incremental construction of counterexamples in model checking web documents. In: Proceedings

of the 6th International Workshop on Automated Specification and Verification of Web Systems, WWV’10, Vienna, Austria,
pp. 61–75.

Weitl, F., Jakšić, M., Freitag, B., 2009. Towards the automated verification of semi-structured documents. Journal of Data &
Knowledge Engineering 68, 292–317.

Weitl, F., Nakajima, S., Freitag, B., 2010. Structured counterexamples for the temporal description logic ALCCTL. In:
Proceedings of the 8th IEEE International Conference on Software Engineering and Formal Methods, SEFM 2010, Pisa, Italy.

Wu, F., Weld, D. S., 2008. Automatically refining the wikipedia infobox ontology. In: WWW ’08: Proceeding of the 17th
international conference on World Wide Web. ACM, New York, NY, USA, pp. 635–644.

	Verifying the consistency of web-based technical documentations
	Introduction
	Problem definition and motivation
	Use case and sample scenario
	Problem statement
	Assumptions and prerequisites

	Overall verification framework
	Information extraction
	Background knowledge
	Information extraction process

	Model generation
	Verification model
	Model generation process
	States
	Transitions
	Concept and role annotations

	Formal specification
	Syntax and semantics of ALCCTL
	Model checking ALCCTL

	Error reporting
	Experimental results
	Related work
	Conclusion
	Acknowledgements
	References

