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Abstract

In this paper the process of data transmission in star coupled optical communication networks is modelled as a shop-type scheduling
problem, where channels (wavelengths) are treated as machines. We formulate an Open Block problem with the minimum makespan
objective (OB||Cmax) in which a relation of a new type between the operations of each job is introduced: any two operations of a
job have identical processing times and may be processed either simultaneously (in a common block) or, alternatively, at disjoint
time intervals. We show that the problem is polynomially solvable for 4 machines, NP-hard for 6 machines and strongly NP-hard
for a variable number of machines. For the case of a variable number of machines we present a polynomial time

√
2-approximation

algorithm and prove that there is no polynomial time �-approximation algorithm with � < 11/10, unless P= NP. For the case when
the number of machines is fixed, we show that the problem admits a linear time PTAS. In addition, we show that the two-machine
problem with release dates is NP-hard in the strong sense.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we study a scheduling problem that models the process of data transmission in optical communication
networks. Let us briefly overview the “physics” of the process.

Wavelength Division Multiplexing (WDM) technology enables the use of multiple wavelengths, each carrying a
separate “channel”, in a single fiber [7]. WDM is mainly applied in wide area networks (WANs) [20]. Only very
recently, a number of local area WDM testbeds have been constructed [2,10,19], and the first WDM LANs are expected
to enter the market soon.

In general, a local WDM optical network may be constructed by connecting network nodes via two-way fibers to a
passive star coupler, as shown in Fig. 1A. A node transmits a data packet to the star on several available wavelengths
(channels) simultaneously, using a laser which produces an optical information stream. The information streams from
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Fig. 1. A passive-star-based local optical WDM network: (A) LAN; (B) multicasting; (C) node block diagram; (D) optical fiber diagram.

multiple sources are optically combined by the star and then forwarded to all of the nodes on their receiver fibers
(Fig. 1B). A node’s receiver is tuned to only one of the channels; hence, it can receive a designated information stream.
Communication between a source and destination nodes takes place directly, i.e., via the single-hop method [11], and
takes time that may be neglected. What is really essential in this model is the time needed to transform information
(issued from a node) from the electronic to the optical form (Fig. 1C). Also note that, when a source transmits on
a particular channel, more than one receiver can be tuned to this channel, and all such receivers may pick up the
information stream. Thus, the passive-star can support multicast services.

In this paper we concentrate on the design of efficient algorithms for the scheduling problem of a packet-switched
broadcasting in such networks. We assume that each node has a receiver which is pre-tuned to a fixed channel, and
has a “tunable” transmitter (laser) which can transmit on several channels simultaneously. Each node (as an element
of the transmitting side, see Fig. 1B) has a multicast data packet that must be delivered to all receiving nodes in its
destination set. The goal is to minimize the overall transmission time, i.e., the time needed for all data packets to be
received.

We consider a multicast service with fanout splitting, which means that any data packet can be split into several
packets, identical by their contents but having element-wise different sets of destination channels. The transmission of
a data packet completes, when each destination node receives at least one copy of the packet. (For details, see [12,18].)
Furthermore, data transfer in such optical networks must meet the following natural restrictions:

(a) at any point in time no two transmitters may transmit data on the same wavelength (channel);
(b) at most one data packet can be sent by a transmitter at a time (although, on several channels simultaneously).

Below we formulate a new scheduling problem based on these conditions.

1.1. Open block problem (short notation: OB||Cmax)

We are given a set of n jobs J = {J1, . . . , Jn} and a set of m machines M = {M1, . . . , Mm}. For each job Jj ,
an integer processing time pj and a subset of indices vj ⊆ {1, . . . , m} are specified, so that job Jj consists of
|vj | operations that have to be processed on machines {Mi | i ∈ vj } and have identical processing times equal to
pj . Any two operations of a job may run either simultaneously (in a block), or should not overlap in time. No
restrictions on the combining of operations into blocks and on the order of processing the blocks are specified.
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Fig. 2. A feasible open-block schedule for jobs J1, . . . , J4 on three machines.

Each machine can process at most one operation at a time. Preemption is not allowed. The goal is minimizing the
makespan.

In the above model channels correspond to machines, while data packets correspond to jobs. A job has an operation
on a machine, if the data packet corresponding to that job must be transmitted on the channel corresponding to the
machine. Fig. 2 illustrates a feasible schedule for a given instance of the OB-problem with jobs {J1, . . . , J4} and
machines M1, M2, M3. One can see that, e.g., job J3 is scheduled in two blocks, while both operations of job J4 are
processed in a single block.

Thus, a novel feature of the above problem is a relation of a new type between the operations: now any two operations
of a job may be processed either completely simultaneously (like a job in multiprocessor scheduling), or at disjoint time
intervals (which is typical for classical models). Informally, here a job is an open block which can “break” into several
“sub-blocks” not overlapping in time. To our best knowledge, no similar scheduling models have been considered in
the literature.

1.2. Related problems and results

Clearly, given an instance of the OB-problem, it can also be treated either as an instance of the Open Shop problem
[8] - on one hand or of the Multiprocessor Dedicated Tasks problem [4]—on the other hand. Indeed, let us consider
two extremes: either no two operations of each job run overlapping, or all operations of each job run simultaneously (in
parallel on several machines). This leads to two well-known scheduling problems: to a special case of the Open Shop
problem (in which all operations of a job have identical processing times)—in the first case, and to the Multi-Processor
dedicated Tasks scheduling problem (MPT )—in the second case.

Moreover, any schedule constructed for that instance and feasible with respect to either the MPT, or the Open Shop
problem is also feasible with respect to the OB-problem, and therefore, efficient methods elaborated for those two
problems can be useful to provide good solutions for the OB-problem as well.

Let us first review the known results for the O||Cmax problem. As known from [8], the O2||Cmax problem admits a
linear-time solution, while the O3|pij = pj |Cmax problem is NP-hard. NP-hardness of the general O||Cmax problem
in the strong sense follows from the result proved in [21]: deciding whether there exists a schedule of length at most
4 is strongly NP-complete. This also implies that for the O||Cmax problem with a variable number of machines and
any � < 5/4 there is no �-approximation algorithm, unless P=NP. At the same time, it is well known that any greedy
algorithm provides a 2-approximation. For the Om||Cmax problem (when the number of machines m is constant), there
is a polynomial time approximation scheme (PTAS) [16]. A number of efficient “statistically optimal” algorithms
(constructing optimal schedules for almost all instances) were designed in [5,13–15] for the O||Cmax problem.

The MPT-problem seems to be much harder. Already MPT3||Cmax is strongly NP-hard [9]. However, in the same
work it is shown that MPTm|pj = 1|Cmax is solvable in polynomial time. A PTAS is proposed for MPTm||Cmax
in [1]. On the other hand, MPT |pj = 1|Cmax cannot be approximated within a factor of m1/2−ε, unless P = NP

[6]. Matching this, polynomial time O(
√

m)-approximation algorithms for MPT |pj = 1|Cmax and MPT ||Cmax were
recently proposed in [3].

1.3. Our results

It is shown that the problem can be solved in polynomial time, if the number of machines is at most 4, whereas the
6-machine problem is NP-hard. The problem with a variable number of machines is shown to be strongly NP-hard,
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while adding different release times makes the problem strongly NP-hard already for two machines. The problem with
a variable number of machines admits a polynomial time

√
2-approximation, but cannot be approximated better than

within a factor of 11/10 of the optimum, unless P = NP. The result follows from the analysis of the existence of short
schedules: as shown in the paper, the existence of a schedule of length no more than 9 can be checked in polynomial
time, whereas the same problem for the time interval of length 10 is NP-complete. In contrast to the above result, for
the case of any fixed number of machines it can be shown that the problem admits a linear time PTAS.

As an easy corollary of results known for the Open Shop problem, we also establish that the problem becomes poly-
nomially solvable for the set of instances with sufficiently large values of the maximum machine load—in comparison
with the maximum job processing time.

The paper is organized as follows. In Section 2 we introduce notation and formulate some preliminary results. In
Section 3 a few known polynomially solvable cases of the OB-problem are presented. Section 4 contains NP-hardness
and inapproximability results. A few constant-factor approximation algorithms and a PTAS are presented in Section 5.
In the final section we discuss open questions.

2. Preliminaries

Here, we introduce basic notation and definitions. We also formulate a few known results to be used further.
We define the maximum processing time of the operations as pmax = maxj pj , and the length dj of job Jj ∈ J as

the total length of all its operations; dmax = maxJj∈ J dj stands for the maximum job length over all jobs. The total
processing time of the operations on machine Mi is denoted by �i and called the load of machine Mi ; �max = maxi �i

and Cmax(S) denote the maximum machine load and the length of schedule S, respectively; OPT stands for the optimum.
Clearly,

�max �OPT�Cmax(S). (1)

The same relation also holds for any scheduling problem on dedicated machines with the standard constraint that each
machine cannot process more than one operation at a time.

We say that a polynomial-time algorithm A is a �-approximation-algorithm (or provides a �-approximation) for a
minimization problem, if for any instance of the problem it outputs a feasible solution of cost at most � ·OPT. We say
that a minimization problem admits a PTAS if it can be solved by a polynomial-time (1+ ε)-approximation algorithm
for any constant ε > 0.

2.1. Normal schedules and instances

Given an instance I of a scheduling problem, its feasible schedule S is called normal, if

Cmax(S) = �max. (2)

Due to (1), any normal schedule is optimal. The converse is not true, in general. An instance I is called normal, if its
optimal schedule is normal.

At first glance, such a coincidence like in (2) seems to be improbable. However, it will be shown in Section 3 that
most instances of the OB-problem are normal, which approves the term.

2.2. No-idle schedules

We say that a schedule is left no-idle (resp., right no-idle), or LNI (resp., RNI), for short, if each machine Mi ∈ M
executes all its operations within a continuous time interval Ii = [t ′i , t ′′i ] (i.e., without idle time between t ′i and t ′′i ), and
all intervals Ii start (resp., finish) at the same point in time t ′i = t (resp., t ′′i = t).

2.3. Simple jobs and multi-jobs

A job Jj is called a simple job, if it consists of only one operation. Otherwise, it is called a multi-job.
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2.4. Gluing procedures

For a subset v ⊆ {1, . . . , m}, the v-class of jobs is defined as the set of all jobs in J having the machine set equal
to v: J(v) = {Jj | vj = v}. As an efficient tool of decreasing the running time of algorithms, we will use three gluing
procedures described below. The goal of each such procedure is to reduce the number of jobs: at each step of the
procedure we replace several jobs in a given instance by a new one without violation of some selected properties of the
instance. All elements of the resulting family of jobs (obtained as the output of a gluing procedure) will be referred to
as aggregated jobs.

The First gluing procedure combines all jobs in each v-class into a single job, with v as the machine set and
p (v) =∑

Jj∈ J(v)pj as the processing time of the new job.

Lemma 2.1. The First gluing procedure can be implemented in O(m2n) time and completes with at most n′ =
min{n, 2m} aggregated jobs having pairwise different machine sets.

Proof. We implicitly use a balanced binary tree T with at most n′ nodes (corresponding to classes J(v), v ⊆
{1, . . . , m}) and with the length of each path from the root to a leaf no greater than O(m). As a search key we
use the characteristic vector v of a set v ⊆ {1, . . . , m}, two vectors being compared lexicographically. The procedure
consists in scanning the list of jobs J. For each job Jj ∈ J we either insert into T a new node (with a new vector v = vj ),
or find in T the already existing node with v = vj (in the latter case we add pj to p (v)). Since both cases require at
most log(2m) = m comparisons of vectors v ∈ Rm, the whole procedure requires O(m2n) time. �

The Second and the Third gluing procedures combine jobs regardless of the difference in their machine sets. The
families of aggregated jobs obtained by the procedures, normally, represent no instances of the OB-problem, because
the processing times of different operations of such job may be different. However, they can be treated as instances of
the Open Shop problem, enabling one to apply some of known efficient methods developed for the Open Shop problem.

The Second gluing procedure runs as follows: Given a lower threshold p on processing times of operations, we scan
the list of jobs, gluing two jobs together each time that the maximum processing time of the operations of both jobs is
no greater than p/2. The procedure terminates, as soon as each job in the resulting instance (but maybe one job) gets
at least one operation with length greater than p/2.

The Third gluing procedure works similar to the second one, but operates with job lengths {dj } and a threshold d on
the minimum job length instead.

The following lemma can be easily proved.

Lemma 2.2. The Second (the Third) gluing procedure can be implemented in O(nm) time and completes with at most
O(m�max/p) (at most O(m�max/d)) aggregated jobs.

In [13,14], a few sufficient conditions were derived which, given an instance of the Open Shop problem satisfying
one of these conditions, guarantee that a normal schedule for that instance exists and can be found in polynomial time.
In Section 3 we will see that these results can be successfully applied to the Open Block problem, enabling one to
construct optimal schedules for most instances in polynomial time. The above mentioned results run as follows:

Proposition 2.3. Given an instance of the Open Shop problem with n jobs and m machines, its normal (optimal)
schedule can be found
(a) in O(n2m2) time, as soon as �max �m2pmax holds [14], and
(b) in O(nm2 log m) time, as soon as �max �( 16

3 m log2 m+ 61
9 m− 7.4)pmax holds [13].

3. Polynomial time solvable cases

Theorem 3.1. A normal (optimal) schedule for OB4||Cmax with n jobs can be found in O(n) time.

Proof. First of all, applying the First gluing procedure (defined in Section 2), we obtain an instance containing 4 simple
jobs, 6 double-jobs, 4 triple-jobs, and a single multi-job with 4 operations.
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Furthermore, w.l.o.g. we may remove the latter multi-job and reduce the value of �max, respectively.After constructing
a normal schedule for the remaining jobs we can simply add this removed job as a single block at the end of the schedule.

Next, we aim at constructing a normal schedule. We divide the set of all multi-jobs into two sets J ′ and J ′′. We
construct a feasible LNI-schedule starting at time 0 for the jobs in J ′ and a feasible RNI-schedule finishing at time �max
for the jobs in J ′′. We remind the reader that LNI- and RNI-schedules have no interior idle time intervals. It follows
that on each machine we can put the remaining simple job into the idle gap between the LNI- and RNI-schedules. For
an illustration, see Fig. 3. Clearly, if we succeeded in all steps, the constructed schedule is normal.

For simplicity, we will use Ji (i = 1, . . . , 4) to denote the triple job having no operation on machine Mi , and Jij

(1� i<j �4) to denote the double job with exactly two operations on machines Mi and Mj . For an illustration, see
Fig. 4. To keep similar notation, we will also use pi and pij to denote the processing times of jobs Ji and Jij ,
respectively.

Consider three pairs of double-jobs: {J12, J34}, {J13, J24}, and {J14, J23}. One can see that two jobs in each pair
require mutually complementary sets of machines. We define three values:

�12 = min{p 12, p 34}, �13 = min{p 13, p 24}, �14 = min{p 14, p 23},

and compute

�∗ = max{�12, �13, �14}.

W.l.o.g., we may assume that �∗ = �12. Then we have

p 12 � min{p 13, p 24}, (3)

p 34 � min{p 14, p 23}. (4)

Now we divide all multi-jobs into two sets (each containing 5 jobs) as follows:

J ′ = {J12, J13, J24, J3, J4}, J ′′ = {J34, J14, J23, J1, J2}.
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Fig. 6. The RNI-schedule for J ′′ with p 23 �p 34 < p 14. (a) p 1 < p 2; (b) p 2 < p 1 �p 14 + p 2; (c) p 2 + p 14 < p 1.

One can see that there is a symmetry between the jobs in J ′ and J ′′, including relations (3) and (4). In particular,
a feasible LNI-schedule starting at time 0 for the jobs in J ′ can be constructed in a way similar to that we use
for constructing a feasible RNI-schedule for J ′′ finishing at time �max. In the following we only concentrate on the
latter.

First, consider the case when p 34 � max{p 14, p 23}. Then, the RNI-schedule depicted in Fig. 5 is clearly feasible.
For two jobs A and B, we use ↓A, B and ↑A, B in our figures to denote the smaller and the larger job, respectively.

Now, consider the case when min{p 14, p 23}�p 34 < max{p 14, p 23}. Clearly, the case p 23 > p 14 reduces to the
case p 23 < p 14 by renumbering the machines: M1 ↔ M2, M3 ↔ M4. For certainty, assume that p 23 < p 14. Then,
we have

p 23 �p 34 < p 14. (5)

The RNI-schedule depicted in Fig. 6 depends on which of three possible intervals [0, p2], (p 2, p 2+p 14], (p 2+p 14,∞)

the value of p 1 falls. The feasibility of this schedule follows from (5).
Clearly, not mentioning the running time of the gluing procedure, all other computing operations require just a

constant time. Thus, by Lemma 2.1, the overall running time of the algorithm is O(n). This completes the proof of
Theorem 3.1. �

Given an instance of the OB-problem, we may consider it as an instance of the Open Shop problem and propose for
it a feasible open shop schedule in which no two operations of the same job overlap. Such a schedule is also feasible
for the original OB-problem, and when it is normal, it is evidently optimal for the OB-problem. Thus, we can apply
Proposition 2.3 and deduce similar conclusions for the OB-problem. Moreover, it is possible to derive better bounds
on the running time of our algorithms by making use of the Second Gluing Procedure.

Indeed, we can implement the Second gluing procedure with the parameter p = �max/m2 or p = �max/(
16
3 m log2 m+

61
9 m− 7.4) (in cases (a) and (b) of Proposition 2.3, respectively) and obtain an instance with at most O(m3) (at most

O(m2 log m)) aggregated jobs, and still satisfying the corresponding condition ((a) or (b)). Next we apply the algorithm
from [14] (or the algorithm from [13]) to the family of aggregated jobs and construct a normal schedule, optimal for
the OB-problem. Thus, we obtain
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Theorem 3.2. For any instance of the OB||Cmax problem with n jobs and m machines satisfying at least one of the
relations

�max �
( 16

3 m log2 m+ 61
9 m− 7.4

)
pmax, (6)

�max �m2pmax, (7)

its normal schedule exists and can be found in O(min{nm+m4 log2 m, nm2 log m}) time—in the case of (6), and in
O(min{nm+m8, n2m2}) time—in the case of (7).

Note 1: One can observe from the above theorem that, if all job processing times and the number of machines
are bounded from above, while the number of jobs infinitely increases and the mean job processing time is positive,
then �max tends to infinity and the conditions of Theorem 3.2 are satisfied with high probability. This implies that
most instances of the OB-problem are normal, and optimal schedules for such instances can be found by one of the
polynomial time algorithms of Theorem 3.2.

Another interesting polynomially solvable case of the OB-problem is formulated in Theorem 3.3. It also finds a
useful application in Section 5, to construct efficient approximation algorithms.

Theorem 3.3. Let � > 0 be a rational number, a and ki (i = 1, . . . , n) be integers. Then, given an instance of the
OB-problem with m machines and n jobs with processing times pj = �aki , its optimal (normal) schedule can be found
in O(mn+ n log n) time.

Proof. The following LNIS-algorithm is proposed for constructing the desired normal schedule.
LNI SCHEDULING (LNIS):
Step 1: Number the jobs in nonincreasing order of their processing times: p1 �p2 � · · · �pn.
Step 2: Considering the jobs in this order, schedule each operation of the current job as early as possible, without

any idle time on the corresponding machine.
Clearly, the length of the LNI-schedule is equal to �max. Note that for arbitrary processing times the LNIS-algorithm

can obtain an infeasible schedule. However, we show that for the considered processing times the above LNI-schedule
is feasible.

By the induction on the job number k, it can be easily proved that after iteration k of Step 2, when jobs J1, . . . , Jk

have already been scheduled, each machine completes its work at a time which is a multiple of pk .
Indeed, we have this property at the beginning of Step 2, when no jobs are scheduled yet. Suppose, this is true after

the first k− 1 jobs are scheduled. Since pk−1 is divisible by pk , the completion time of each machine is also a multiple
of pk; this property, clearly, remains valid after scheduling each operation of job Jk on the corresponding machine.

Now, once each operation of job Jk starts at a time which is a multiple of pk , any two operations of Jk either start
at the same time, or do not overlap. Thus, the schedule constructed is feasible. To estimate the running time of the
LNIS-algorithm, it suffices to observe that sorting the jobs requires O(n log n) time, whereas the second step can be
implemented in O(nm) time. �

A symmetric RNI Scheduling algorithm (RNIS) could be suggested that constructs at Step 2 an RNI-schedule
finishing at point t (instead of the LNI-schedule being produced by the LNIS-algorithm).

4. Hardness and inapproximability results

In this section we prove that the OB-problem is NP-hard if the number of machines is at least 6 (Theorem 4.2).
The NP-hardness of the OB-problem in the strong sense for a variable number of machines follows from Theorem 4.4
which states that checking the existence of a feasible schedule of length no more than 10 is strongly NP-complete.
Another corollary of Theorem 4.4 is the inapproximability result: no �-approximation polynomial time algorithm may
exist for the OB||Cmax problem and any � < 11/10, unless P = NP. (And therefore, no PTAS may exist as well.)
Finally, we show that adding arbitrary release dates makes the problem NP-hard in the strong sense already for two
machines (Theorem 4.3).
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We start with formulating sample NP-complete problems that are to be used in our proofs.
PARTITION.

Instance: k integer positive numbers e1, . . . , ek ∈ Z+ and E ∈ Z+ such that
∑k

i=1ei = 2E.
Question: Is there a partition of the set of indices {1, . . . , k} into two disjoint subsets N1, N2 such that for each subset

Nj we have

∑
i∈Nj

ei = E? (8)

In fact, the sample problem will be used in a slightly modified form, formulated below as a PARTITIONM problem
(to which PARTITION can be easily reduced by adding two extra numbers: ek+1 = 5E and ek+2 = 2E).

PARTITIONM.
Instance: k integer positive numbers e1, . . . , ek ∈ Z+ and E ∈ Z+ such that

∑k
i=1ei = 9E.

Question: Is there a subset of indices N ⊂ {1, . . . , k} such that

∑
i∈N

ei = 6E? (9)

3-PARTITION.

Instance: 3k integer positive numbers e1, . . . , e3k ∈ Z+ and E ∈ Z+ such that E/4 < ei < E/2, ∀i and
∑3k

i=1ei =
kE.

Question: Is there a partition of the set of indices {1, . . . , 3k} into k disjoint subsets N1, . . . , Nk such that for each
subset Nj we have (8)?

MONOTONE-NOT-ALL-EQUAL-3SAT.

Instance: Set U of variables, collection C of clauses over U such that each clause has size 3 and contains only
unnegated variables.

Question: Is there a truth assignment for U such that each clause in C has at least one true variable and at least one
false variable?

A new essential condition in the MONOTONE-NOT-ALL-EQUAL-DIFFERENT-4SAT problem (or MODIFF-4SAT, for
short) presented below is that all variables in each clause must be different. (This relates to the requirement that each
job in the OB-problem may have on each machine at most one operation.) It is also essential (for the reduction of this
sample problem to the recipient problem) that the number of literals in each clause is exactly 4.

MODIFF-4SAT.

Instance: Set U of variables, collection C of clauses over U such that each clause has size exactly 4 and contains
only unnegated different variables.

Question: Is there a truth assignment for U such that each clause in C has at least one true variable and at least one
false variable?

Lemma 4.1. The MODIFF-4SAT problem is NP-complete.

Proof. To prove the NP-completeness of the MODIFF-4SAT problem, we present a polynomial-time reduction from
the MONOTONE-NOT-ALL-EQUAL-3SAT. problem. Suppose, we are given a set of variables U = {xj } and a collection
C3 = {c1, . . . , cn} of clauses, each being a disjunction of 2 or 3 unnegated different variables from U. (The case
when there is a clause in C3 containing only one variable is trivial: the answer is “no”.) We define a collection C4
of clauses for the MODIFF-4SAT problem as follows: add 5 basis variables yi (i = 1, . . . , 5) to the set U and define
5 basis clauses ĉi , i = 1, . . . , 5 (related to no variable or a clause of C3), where ĉi = yi1 ∨ yi2 ∨ yi3 ∨ yi4 for
{i1, i2, i3, i4} = {1, . . . , 5} \ {i}. Next, if a clause ci ∈ C3 contains 2 variables: ci = xj ∨ xk , we define 10 ci-based

clauses c
l,m
i = xj ∨ xk ∨ yl ∨ ym—for every pair {l, m} ⊂ {1, . . . , 5}. If a clause ci ∈ C3 contains 3 variables:

ci = xj ∨ xk ∨ xl , we define 4 ci-based clauses cm
i = xj ∨ xk ∨ xl ∨ ym, m = 1, 2, 3, 4. We now prove that the desired

assignment for variables in C3 exists, iff it exists for variables in C4.
⇒: Suppose, we have an assignment of variables {xj }, which is NOT-ALL-EQUAL for each clause ci ∈ C3. To get

an assignment with the same property for the variables of C4, it suffices to assign the true value to any two variables
yl, ym, retaining the false value for the remaining three basis variables {y�}.
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⇐: Suppose, we have an assignment of variables {xj , y�}, which is NOT-ALL-EQUAL for each clause ci ∈ C4. Let us
prove that the same values of variables {xj } provide the NOT-ALL-EQUAL property for each clause ci ∈ C3. Suppose
the contrary, and let ci = xj ∨ xk be a clause of C3 in which both its variables have the same value �. Since among
any 4 basis variables yi1 , yi2 , yi3 , yi4 there are two with different values (because of basis clauses ĉi), we can find two
variables yl, ym having values �, which results in a clause (xj ∨ xk ∨ yl ∨ ym) ∈ C4 having ALL-EQUAL values of its
literals—a contradiction. Similarly, suppose that all three variables of a clause ci = xj ∨ xk ∨ xl have the same value
�. Then, due to the property that at least one of the variables y1, . . . , y4 (say, ym) has value �, we would get a clause
cm
i = ci ∨ ym ∈ C4 that violates the NOT-ALL-EQUAL property—a contradiction again. Lemma 4.1 follows. �

Theorem 4.2. The OB6||Cmax problem is NP-hard.

Proof. We prove that it is NP-complete to verify whether a given instance of the 6-machine OB-problem has a normal
schedule. To this end, we construct a reduction from the PARTITIONM problem to our OB-problem. Given an instance
{e1, . . . , en;E} of the PARTITIONM problem satisfying

∑
iei = 9E, we define an instance I ∗ of the OB-problem as

follows:
We introduce 6 machines M1, . . . , M6 and 8 basic jobs: big jobs b1, b2, b3, medium jobs m1, m2, and small jobs

s1, s2, s3 with processing times:

p (b1) = 70, p (b2) = 73, p (b3) = 67, p (m1) = 17, p (m2) = 20,

p (s1) = 13, p (s2) = 10, p (s3) = 7.

The machines are prescribed to execute the following jobs:

M1: {b1, m1, s1}, M3: {b2, m1, s2}, M5: {b3, m2, s1},
M2: {b1, m2, s2}, M4: {b2, m2, s3}, M6: {b3, m1, s3}.

Note that the load �i of each machine Mi (i = 1, . . . , 5) is equal to 100, while the current load of M6 is 91. In
addition to operations of basic jobs, machine M6 is prescribed to execute n tiny simple jobs {t1, . . . , tn}. Each job ti
has length ei/E. Thus, the total load of machine M6 is also 100, and so we have �max = 100.

To prove the theorem, it suffices to show that the question in the PARTITIONM problem has the positive answer, if
and only if the instance I ∗ has a normal schedule.
⇐: Assume that there exists a normal schedule S. Since p (bj ) > �max/2, the operations of each big job bj must be

executed as a block. Since no two different jobs have equal processing times, b1 and b2 can only be scheduled either at
the beginning or at the end of the schedule. So the blocks of both jobs can only be scheduled either at the beginning,
or at the end of the makespan. Without loss of generality we may assume that b1 is processed at the beginning of the
schedule.

We first prove that b2 must be the last job on M3 and M4. Assume the contrary. Then, b2 must be the first job on M3
and M4. Since p (m1) > {p (s1), p (s2)} and p (b1) �= p (b2), job m1 has to be the last on both M1 and M3. Thus, s2 is
in the middle on M3, and so it must be the last on M2, while m2 occurs there in the middle. But in this case we cannot
place job m2 on M4 properly. This proves our claim.

We now consider three possible locations of job b3 on machine M6.
Case 1: b3 is the third job on M6 (see Fig. 7). Then it is also the third job on M5. Since p (m2) > {p (s1), p (s3)}

and p (s1) �= p (s3), job m2 cannot be second neither on M4, nor on M5. Therefore, it must be the first job on both
machines, whereas s3 must be the second on M4.

If m1 is the first job on M3 (Fig. 7A), then due to the inequality 2p (m1) + p (b3) > �max, it also must be the first
on M6. Therefore, s3 must be scheduled on M6 exactly in the interval [20, 27], so as to form a block with its operation
on M4. This implies the existence of a subset N satisfying (9).

If m1 is the second job on M3 (Fig. 7B), it must constitute a block (scheduled in the interval [10, 27]) with its
operation on M6. The tiny jobs scheduled on M6 between jobs m1 and b3 evidently determine the desired subset N
satisfying (9).

Case 2: b3 is the second on M6 (see Fig. 8). Then it is also the second on M5. If m2 is the first job on M5, then, due
to p (m1) > p (s1), job m1 must be the first job on M6 (see Fig. 8A). Symmetrically, if m2 is the third job on M5, then
m1 is the third job on M6 as well (see Fig. 8B). In both cases the existence of a subset N satisfying (9) is evident.
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Fig. 7. Normal schedules for the basic jobs in Case 1.
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Fig. 8. Normal schedules for the basic jobs in Case 2.
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Fig. 9. A normal schedule for the basic jobs in Case 3.

Case 3: b3 is the first on M6 (see Fig. 9). Then it is also the first on M5.
Clearly, m2 must be the third job on M2 and M5, and therefore, s1 is the second job on M5. This implies that s1

can only be the third job on M1, whereas m1 is the second job. This, in turn, implies that m1 is the second job on M6
constituting a block with its operation on M1. This means that it must be scheduled in the interval [70, 87], requiring
job s3 to be scheduled somewhere in the interval [87, 100]. Thus, the total length of tiny jobs processed on M6 after
m1 is equal to 6, which implies the answer “yes” to the question of the PARTITIONM problem.
⇒: Suppose that the answer to the question in the PARTITIONM problem is positive. Then a normal schedule for

the instance I ∗ can easily be produced. Indeed, any of the 5 schedules depicted in Figs. 7–9 can be used for this
purpose. �
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Fig. 10. A normal schedule.

If release dates are added, the two-machine Open Block problem becomes strongly NP-hard.

Theorem 4.3. The OB2|rj |Cmax problem is NP-hard in the strong sense.

Proof. We describe a polynomial reduction from the 3-PARTITION problem to our OB2|rj |Cmax problem. Suppose,
we are given a set of indices N = {1, . . . , 3n}, a bound E ∈ Z+, and 3n integer numbers ei , i ∈ N , such that∑

i∈N ei = nE and E/4 < ei < E/2, for i ∈ N . We specify an instance of the OB2|rj |Cmax problem and show that
it admits a normal schedule, if and only if there exists a partition of N into n disjoint subsets N1, . . . , Nn such that∑

i∈Nj
ei = E, for j = 1, . . . , n.

We define 5n jobs as follows: Each job J 12
i (i = 1, . . . , n) has operations on both machines, its processing time is

equal to 2E, and its release date is r12
i = 3(i − 1)E. Each job J 2

i (i = 1, . . . , n) has an operation on machine M2, its
processing time is equal to E, and its release date is r2

i = (3i−1)E. Each job J 1
i (i = 1, . . . , 3n) has a single operation

on machine M1, its processing time is equal to ei , and its release date is equal to 0. We check the existence of a normal
schedule for this problem instance, i.e., a feasible schedule with makespan equal to the maximum machine load, which
is equal to 3nE.

It can be easily seen that the existence of a desired partition in the 3-PARTITION problem implies the existence of a
normal schedule for the defined above instance, as shown in Fig. 10. Now let us prove the converse statement.

Suppose, we are given a normal schedule S. First of all, it can be easily observed that there is a single feasible way
to schedule the operations of machine M2—exactly as shown in Fig. 10. Next, we cannot shift the operation of job J 12

n

on machine M1 to the right, so, both its operations have to be scheduled as a single block (as in Fig. 10). The same
is true for job J 12

n−1, and so on (by induction). Thus, all operations of jobs J 2
i and J 12

i (i = 1, . . . , n) have the unique
feasible schedule shown in Fig. 10.

As one can see from this schedule, the remaining idle time on machine M1 is divided into n equal parts. So, to obtain
a schedule of length 3nE, we have to fill those “holes” completely with operations of jobs J 1

i (i = 1, . . . , 3n). This
implies the existence of a desired 3-partition. �

Note 2: By a similar reasoning, the two machine OB-problem of checking the existence of a schedule that meets
given deadlines is also strongly NP-complete.

Now we turn to the following decision problem. Given an instance of the OB-problem, we would like to answer
the following question: does there exist a schedule of length at most 10? To prove that the decision problem is NP-
complete, we construct a reduction from the MODIFF-4SAT problem. The technique used in our reduction differs
from the one used in Williamson et al. [21] in the following: instead of associating jobs and machines with literals
(which obliges us to synchronize the jobs corresponding to literals of the same variable), we associate them with
variables.

Theorem 4.4. The problem of deciding if there is a feasible OB-schedule of length at most 10 is NP-complete.

Proof. Suppose, we are given an instance of the MODIFF-4SAT problem, i.e., a collection C = {c1, . . . , cn} of
clauses, each being a disjunction of 4 non-negated different variables. We define an instance I of the OB-problem
with the maximum machine load �max = 10, and show that a feasible schedule of length 10 for that instance ex-
ists, iff there exists an assignment for the variables of C such that their values in each clause ci ∈ C are “not all
equal”.
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The processing time of each job in I will be either 2, 3, or 5 (according to which the jobs will be referred to as 2-, 3-,
or 5-jobs). By their destination, the jobs divide into: basis jobs (J̃ i

j ) and assignment jobs (J i
j ), where the upper index i

is the processing time of the job.
Similarly, we define three types of machines by their destination: basis machines (denoted with tildes), clause

machines (with hats), and assignment machines. By processing times of jobs that are to be scheduled on a machine,
we recognize 4 types of machines: A-machines (with load 2 + 2 + 2 + 2 + 2), B-machines (3 + 3 + 3), C-machines
(5+ 5), and D-machines (2+ 3+ 5). It can be seen that the maximum load over all types of machines is 10.

There are 11 basis jobs: J̃ 2
1 , . . . , J̃ 2

6 ; J̃ 3
1 , J̃ 3

2 , J̃ 3
3 ; J̃ 5

1 , J̃ 5
2 , and 13 basis machines (the jobs listed in braces are to be

processed on the corresponding machine):

Ã : {J̃ 2
1 , . . . , J̃ 2

5 }; B̃ : {J̃ 3
1 , J̃ 3

2 , J̃ 3
3 }; C̃ : {J̃ 5

1 , J̃ 5
2 };

D̃i :
{ {J̃ 3

2 , J̃ 5
1 , J̃ 2

i } for i = 1, . . . , 5;
{J̃ 3

3 , J̃ 5
1 , J̃ 2

i−5} for i = 6, . . . , 10.

With each logic variable xj (j = 1, . . . , N) in collection C we associate one assignment job J 2
j and one assignment

machine Dj : {J̃ 3
1 , J̃ 5

1 , J 2
j }.

With each clause c� = xj1(�) ∨ xj2(�) ∨ xj3(�) ∨ xj4(�) (� = 1, . . . , n) we associate a clause machine Â� :
{J̃ 2

6 , J 2
j1(�)

, J 2
j2(�)

, J 2
j3(�)

, J 2
j4(�)
}. This completes the definition of instance I.

The constant number of basis machines is characterized by the property that it processes only basis jobs, related to
no variables or clauses. They are interesting for us only in view of the following:

Lemma 4.5. In any normal schedule for the instance I, every assignment machine Di processes its basis jobs J̃ 3
1 and

J̃ 5
1 at the end of the interval [0, �max]; this implies that the remaining job J 2

j has to be scheduled on that machine in
the middle.

Proof. Due to machine C̃, job J̃ 5
1 should be scheduled on each D-machine as an outermost job. This enables us, given a

normal schedule S for the instance I, to divide all D-machines into two subsets: right machines (where J̃ 5
1 is scheduled

at the right end of the interval [0, �max]) and left machines (where it is scheduled first). Let us prove that job J̃ 3
1 is also

outermost on all D-machines.
W.l.o.g., we may assume that jobs J̃ 2

1 , . . . , J̃ 2
5 are processed on machine Ã in this order. This implies that job J̃ 2

3
cannot be processed on machines D̃3 and D̃8 in the middle. Therefore, job J̃ 3

2 has to be scheduled in the middle on
machine D̃3, and job J̃ 3

3 in the middle on machine D̃8. This means that neither of the two jobs may be the second on
machine B̃. So, this vacant place must be occupied by job J̃ 3

1 , which excludes any appearance of this job in the middle
on any assignment machine Dj .

To complete the proof of Lemma 4.5, it remains to make sure that there exists a feasible schedule for basis machines.
One of such schedules is presented in Fig. 11. �

Let us prove that a normal schedule for the instance I exists, iff there is an assignment for the variables of collection
C with the “not all equal” property.
⇒: Suppose, we are given a normal schedule S. Once all assignment jobs J 2

j have to be scheduled on the corresponding

assignment machines in the middle, they cannot occupy the third place on clause machines Â�. That is why this place

on all clause machines is exclusively occupied by job Ĵ 2
6 (which has no operations on assignment machines).

Next, for any clause c� = xj1(�) ∨ xj2(�) ∨ xj3(�) ∨ xj4(�), the four assignment machines Dj1(�), Dj2(�), Dj3(�), Dj4(�)
corresponding to the variables of clause c� cannot be right machines simultaneously. Indeed, if we assume the contrary,
then each of the jobs J 2

j1(�)
, J 2

j2(�)
, J 2

j3(�)
, J 2

j4(�)
has to be scheduled on the corresponding assignment machine in the

interval [3, 5], and so, none of them could occupy the second place on the clause machine Ã�. Similarly, we can prove
that the above four assignment machines cannot be left machines simultaneously. Let us assign to each variable xj of
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Fig. 11. A normal schedule for basis machines.

the collection C the value

xj := “machine Dj is right”. (10)

Then for each clause c�, the value at least one of its variable xji(�) is true, while the value of some other variable xjk(�)
is false, which provides the desired “not all equal” property.
⇐: Suppose, we are given a truth assignment for the variables of the collection C with the “not all equal” property.

We first schedule the operations on basis machines as shown in Fig. 11 and the operations on assignment machines
according to (10), placing all 2-jobs in the middle. Then a feasible normal schedule for each clause machine Â� can
be easily defined: assign the basis job J̃ 2

6 to the third position, one of the “false” jobs of that machine (a job J 2
jk(�)

whose assignment machine Djk(�) is left we know that such jobs exist) to the second position, and one of the “true”
jobs of that machine (a job J 2

jk(�)
whose assignment machine Djk(�) is right we know that such jobs also exist) to the

fourth position, while the remaining two assignment jobs occupy the vacant first and fifth positions arbitrarily. The
resulting schedule of machine Â� is clearly feasible, and so, the whole schedule is normal and feasible. Theorem 4.4
follows. �

As a straightforward corollary of the above theorem, we obtain

Theorem 4.6. For the OB-problem with a variable number of machines and any � < 11/10, there is no polynomial
time �-approximation algorithm, unless P = NP.

Now we should motivate, why in Theorem 4.4 we consider the time interval of length 10. (If we proved a similar result
for a smaller value of �max, we could obtain a better lower bound on nonapproximability.) The answer is contained in
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Theorem 4.7. There is a polynomial time algorithm which, given an instance of the OB-problem with �max �9, con-
structs its normal (and therefore, optimal) schedule.

Proof. We first show this for �max = 9. In fact, it suffices for each i ∈ {2, . . . , 9} to prescribe a set of allowed locations
for i-jobs within the interval [0, 9], so that:
(a) no two locations of i-jobs overlap in time;
(b) for any feasible combination of jobs destined to be processed on one machine (i.e., such that their total length is at

most 9), it should be shown that there exists a schedule for that machine in which each i-job is assigned to one of
its allowed locations.

Let us define a set Li of allowed locations for each i ∈ {2, . . . , 9} as follows: L9 = {[0, 9]}, L8 = {[1, 9]}, L7 =
{[2, 9]}, L6 = {[3, 9]}, L5 = {[4, 9]}, L4 = {[0, 4], [4, 8]}, L3 = {[0, 3], [3, 6], [6, 9]}, L2 = {[0, 2], [2, 4], [4, 6],
[6, 8]} (clearly, 1-jobs may be scheduled arbitrarily).

It can be easily checked that, given a family of jobs {J1, . . . , Jk} with total length �9 containing a “long job” (of
length �5), it can be scheduled without overlapping within the time interval [0, 9], so that each job gets one of its
allowed locations. All other combinations of jobs with total length 9 can be sequenced as follows: 4+ 4+ 1, 4+ 2+
3, 4+ 2+ 2+ 1, 3+ 3+ 3, 2+ 1+ 3+ 3, 2+ 2+ 2+ 3, 2+ 2+ 2+ 2+ 1.

As one can observe, for each i we assigned allowed locations to i-jobs successively, one right after another, starting
from either the left, or the right end of the interval [0, 9]. Depending on this left-to-right or right-to-left orientation,

the set of allowed locations for i ∈ {2, . . . , 9} will be denoted by either
→
i , or

←
i . In this notation, the sets {Li} defined

above for the case of �max = 9 can be shortly written as:
←
8 ,
←
7 ,
←
6 ,
←
5 ,
→
4 ,
←
3 ,
→
2 . It can be checked that the sets {Li}

with exactly the same orientation can be defined for i-jobs in all remaining cases of �max �9 (with the only exception

for �max = 8, where we change
←
5 to

→
5 ). Theorem 4.7 follows. �

5. Approximation algorithms

In this section, we first propose a few constant approximation algorithms. After that, a linear time PTAS will be
presented for the case of an arbitrary fixed number of machines.

5.1. Rounding technique

A simple 2-approximation algorithm can be deduced by applying the LNIS-algorithm from the proof of Theorem 3.3.
2-ROUNDED LNI SCHEDULING (2R-LNIS):
Step 1: For each job Jj ∈ J, round its processing time pj up to the nearest integer power of 2.
Step 2: Apply the LNIS-algorithm (see page 11).
The first step ensures an increasing of the maximum machine load (�max) by at most a factor of 2, whereas Step 2

provides (by Theorem 3.3) the computing of an LNI-schedule with length equal to the new �max. As a result, we have
a feasible schedule for the original instance with length at most a factor of 2 larger than the optimum.

Another algorithm with better approximation can be suggested, if to implement a division trick. The idea of the
algorithm can be formulated as follows:

5.2. Division technique

ROUND-AND-DIVIDE SCHEDULING (RDS):
Step 1: Round pj (Jj ∈ J) up to the nearest integer power of �

.= √2; let p̄j = ��j be the new processing time of
job Jj . Compute �max for the instance with the new processing times.

Step 2: Divide the set of jobs into Jodd = {Jj ∈ J | �j is odd} and Jeven = {Jj ∈ J | �j is even}.
Step 3: Apply the LNIS-algorithm to Jodd.
Step 4: Apply the RNIS-algorithm with finishing time �max to Jeven.
The
√

2-approximation of the above algorithm is ensured by two factors. Firstly, the rounding procedure increases
�max at Step 1 by at most a factor of

√
2.And secondly, the RNIS-algorithm succeeds (due to Theorem 3.3) in constructing

a feasible RNI-schedule for the set of jobs Jeven, since the processing times of all jobs Jj ∈ Jeven represent integer
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powers of 2. Similarly, all processing times of jobs Jj ∈ Jodd represent integer powers of 2 multiplied by �, and so, the
LNIS-algorithm also succeeds in constructing a feasible LNI-schedule for the jobs Jj ∈ Jodd.

The above algorithm would be correct, if we could compute the value of
√

2 exactly. But if in the above algorithm
we use an approximate value of

√
2, the rounded processing times p̄j of jobs in Jodd (as well as those of jobs in Jeven)

lose their property of being multiples of each other (because �2 is not an integer any more). As a result, Theorem 3.3
cannot guarantee now the feasibility of the LNI-schedule produced by the LNIS-algorithm. In the algorithm below we
solve this problem, and furthermore, manage to decrease the running time down to a function linear in n.

SQUARED-ROUND-AND-DIVIDE SCHEDULING (SRDS):
Step 1: Applying the First gluing procedure, we get an instance with n′� min{n, 2m} aggregated jobs {Ĵj } with

processing times p̂j . By Lemma 2.1, this can be done in O(m2n) time.
Step 2: Round the squared processing time p̂2

j of each aggregated job Ĵj up to the nearest value 2�j for an integer

�j . Divide the whole set Ĵ of aggregated jobs into two subsets: Jodd (the set of jobs with odd exponents �j ) and

Jeven (with even exponents �j ). For each {Jj ∈ Jodd} define p ′j = 2(�j−1)/2; set � = maxJi∈Jodd
p̂i

p ′i
. Define instance

I ′odd by jobs {Jj ∈ Jodd} with new processing times p̄j = �p ′j and instance I ′′even by jobs {Jj ∈ Jeven} with new

processing times p ′′j = 2�j /2. Compute the loads �′i and �′′i of each machine Mi in the instances I ′odd and I ′′even.

Compute �̄max = maxi (�
′
i + �′′i ).

Step 3: Applying the LNIS-algorithm, construct the LNI-schedule S′ for the instance I ′odd.
Step 4: Applying the RNIS-algorithm, construct the RNI-schedule S′′ (finishing at time �̄max) for the instance I ′′even.
Step 5: Round the starting time of each operation in schedule S̄ = S′ ∪ S′′ down to the nearest integer, providing an

integer-valued schedule Ŝ for the instance with aggregated jobs.
Step 6: Disaggregate each job Ĵj into the original jobs, preserving identical orders of those jobs in every aggregated

operation of Ĵj . The resulting schedule S is the desired one.

Theorem 5.1. For any instance of the OB-problem there exists a feasible integer-valued schedule S with length
Cmax(S) <

√
2 �max; the schedule can be found by the SRDS-algorithm in O(m2n) time, where m is the number

of machines and n is the number of jobs.

Proof. Due to Theorem 3.3, the LNI-schedule S′ is feasible for the instance I ′odd, and the RNI-schedule S′′ is feasible
for the instance I ′′even. The overall schedule S̄ = S′ ∪ S′′ is also feasible for the whole instance I ′odd ∪ I ′′even, because
on each machine Mi the jobs of the instances I ′odd and I ′′even are scheduled within not overlapping intervals [0, �′i] and
[�′i , �̄max].

Since we have p̄j � p̂j for every Jj ∈ Jodd and p′′j � p̂j for every Jj ∈ Jeven, schedule S̄ remains feasible for the
instance with (smaller) aggregated processing times {p̂j }. Next, since all {p̂j } are integers, rounding each starting time
down to the nearest integer does not break the feasibility of the schedule. Thus, schedule Ŝ is also feasible. Finally, the
feasibility of schedule S follows from the following two properties:
(a) any two aggregated operations of an aggregated job Ĵj are processed in schedule Ŝ either simultaneously, or with

no overlap in time;
(b) original jobs making up an aggregated job Ĵj are sequenced identically in each of its aggregated operations.

Since p ′j < p̂j <
√

2p ′j , we have � <
√

2. This implies the relation p̄j = �p ′j <
√

2p̂j for each job Jj ∈ Jodd.

Similar relations p ′′i <
√

2p̂j hold for jobs Jj ∈ Jeven. This implies �̄max <
√

2�max, and therefore

Cmax(S)�Cmax(S̄) = �̄max <
√

2�max.

It remains to estimate the running time of the algorithm. By Lemma 2.1, Step 1 can be implemented in O(nm2)

time. Time O(nm) is clearly sufficient for Steps 2, 5 and 6. Finally, since O(n′ log n′)�O(n log 2m) = O(nm), by
Theorem 3.3 the running time of Steps 3 and 4 is O(nm). �

It follows from Theorem 4.6, that no PTAS can be designed for the OB-problem (unless P = NP) in the case that
the number of machines is treated as a variable. An opposite result can be derived, if we treat the number of machines



A.A. Ageev et al. / Theoretical Computer Science 361 (2006) 257 –274 273

as a constant. In this case, a linear time PTAS similar to that proposed by Sevastianov and Woeginger [17] for the Open
Shop problem exists.

5.3. PTAS for the OB-problem with a fixed number of machines

For any ε > 0, we present an algorithm Aε that outputs a schedule S with makespan Cmax(S)�(1 + ε) OPT . The
running time of Aε is polynomially bounded in n (but exponentially in ε and m).

The desired (1+ ε)-approximation can be easily attained in the case that dmax �ε · �max: a simple greedy algorithm
[17] finds a schedule S with makespan

Cmax(S)��max + dmax �(1+ ε)�max �(1+ ε)OPT

in time O(m2n). If we first apply the Third gluing procedure with d = ε · �max (so as to reduce the number of jobs to
O(m/ε)), we can reduce the overall running time downto O(nm+ C(m, ε)), where C(m, ε) is a function of m and ε.

In the case dmax > ε · �max we divide the set of jobs J into three subsets L, M, S of large, medium, and small jobs,
respectively. For given �′ > �′′ > 0, these sets are defined as follows:

L= {Jj ∈ J | dj ��′�max}, M = {Jj ∈ J | �′′�max �dj < �′�max},
S = {Jj ∈ J | dj < �′′�max}.

The values of �′ and �′′ are chosen with respect to the value of ε so that:
(a) the number |L| of large jobs is bounded above by a constant;
(b) the total length of medium jobs is at most ε · �max;
(c) the ratio �′′/�′ is small enough, so as to meet �′ + �′′ + �′′|L|�ε.

As proved in [17], the numbers �′ and �′′ with the above properties exist, the value of �′′ being at least �∗ .=
ε/(e1.25 · 2m/ε). The latter bound enables us to reduce the total number of jobs to at most a constant number 2m/�∗ by
applying the Third gluing procedure with the threshold d = �∗�max. Next, we compute an optimal schedule OPT (L)

for the set of large jobs, and finally, using the greedy algorithm [17], we complete the schedule for the remaining jobs,
trying to fill up the “holes” in the OPT (L) schedule with medium and (glued) small jobs as densely as possible.

Let us present a formal description of the algorithm Aε in the case dmax > ε · �max.
ALGORITHM Aε:
Step 1: Apply the Third gluing procedure with d = ε · e−1.25 · 2−m/ε · �max. Number the jobs with dj > d in

nonincreasing order of dj .
Step 2: Find a partition of the job set into subsets L, M , and S satisfying (a)–(c).
Step 3: Construct an optimal schedule OPT (L) for the jobs in L.
Step 4: Use the greedy algorithm [17] to place the jobs of M and S into OPT(L).
Similar to [17], the following result can be proved.

Theorem 5.2. For any ε > 0 and any instance of the OB||Cmax problem with n jobs and m machines, algorithm Aε

constructs a schedule S with makespan

Cmax(S)�(1+ ε)OPT .

The algorithm runs in time O(nm+C(m, ε)), where C(m, ε) is the time needed to find an optimal schedule for at most
O(2m/ε) so-called “large” jobs.

6. Concluding remarks

In our paper we provided a certain basis to design good performing scheduling algorithms for multicast star coupled
WDM LANs. On the other hand, we introduced a new scheduling model based on a new type relation between the
operations of each job. The simplest scheduling problem of this type (called an OB-problem) was considered, and a
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first (yet quite comprehensive) complexity analysis of the problem was performed. However, a lot of questions remain
open. Some of the most interesting ones are listed below.
1. Does there exist a pseudo-polynomial algorithm for solving the OB-problem with any fixed number of machines?
2. What is the complexity status of the 5-machine OB-problem? (We know that the 4-machine problem is polynomially

solvable, while the one with 6 machines is NP-hard.)
3. What is the exact polynomial time approximation threshold �∗ for the OB-problem with variable number of

machines? (We know that 1.1��∗�
√

2.)
4. What is the complexity status of the OB-problem with at most 2 operations per job?
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