Design, synthesis and antitumor activity of C3/C3 bis-fluoroquonolones cross-linked with [1,2,4]triazolo[3,4-b] [1,3,4]thiadiazole

Guo-qiang Hu ${ }^{\text {a,* }}$, Yong Yang ${ }^{\text {a }}$, Lei Yi $^{\text {a }}$, Guo-qiang Wang ${ }^{\text {a }}$, Nan-nan Duan ${ }^{\text {a }}$, Xiao-yi Wen ${ }^{\text {a }}$, Tie-yao Cao ${ }^{\text {a }}$, Song-qiang Xie ${ }^{\text {a }}$, Wen-Long Huang ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Chemistry \& Biology, Henan University, Kaifeng 475001, China
${ }^{\mathrm{b}}$ Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China

Received 24 January 2011; revised 21 February 2011; accepted 5 May 2011

KEY WORDS

Fluoroquinolone;
Triazolothiadiazole;
Synthesis;
Antitumor evaluation

Abstract

To contribute to the development of an efficient method for the conversion of antibacterial fluoroquinolones to antitumor fluoroquinolones, a series of $\mathrm{C} 3 / \mathrm{C} 3$ bis-fluoroquinolone fused heterocycles cross-linked with a [1,2,4]-triazolo[3,4-b] [1,3,4]-thiadiazole core as a common bioisostere of two carboxylic acid groups was designed and synthesized as their hydrochloride salts. Structures were characterized by elemental analysis and spectral data and their in vitro antitumor activity against L1210, CHO and HL60 cell lines was screened by determination of their IC_{50} values in the methylthiazole trazolium (MTT) assay. Two compounds were highly potent against the HL60 cell line and represent promising lead compounds for future development. © 2011 Institute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association. Production and hosting by Elsevier B.V. All rights reserved.

[^0]2211-3835 © 2011 Institute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association. Production and hosting by Elsevier B.V. All rights reserved.

Peer review under responsibility of Institute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association. doi:10.1016/j.apsb.2011.07.001

1. Introduction

Recently, the shift from antibacterial fluoroquinolones (ABFQs) to antitumor fluoroquinolones (ATFQs) based on their mechanistic similarities and sequence homologies of their target topoisomerases has received considerable attention ${ }^{1,2}$. Many ATFQs have been derived by structural modification of the clinical ABFQs , especially in the heterocyclic ring such as piperazine at the 7 -position of the quinolone scaffold ${ }^{3-5}$, whereas only a few of these have been produced by modification of the carboxylic acid group at the 3 -position ${ }^{6,7}$. Unfortunately, the resultant compounds were not considered worthy of clinical evaluation due to issues with their in vitro toxicity, stability or bioavailability. Therefore, there remains an urgent need to develop an efficient synthetic route for ATFQs to facilitate their evaluation as therapeutic agents.

In recent reports, we have shown that it is not necessary for an ATFQ to retain the C-3 carboxylic acid group and that some ATFQs derived by isosteric replacement of the carboxylic acid group with a (fused) heterocyclic ring such as oxadiazole or s-triazolo[3,4-b] [1,3,4]thiadiazine display anticancer activity ${ }^{8}$. In addition, a heterocyclic ring system related to s-triazolo[3,4-b] $[1,3,4]$ thiazole has been widely investigated ${ }^{9}$, but the use of a
fluoroquinolone scaffold as a substituent of the fused core at both the 3 - and 6 -positions has not been attempted. In this paper we report the synthesis from current antibacterial fluoroquinolones of five 3,6-fluoroquinolone-substituted [1,2,4]tria-zolo[3,4-b] [1,3,4]thiadiazoles in which the fused heterocyclic ring of triazolothiadiazole acts as a common bioisostere of the two carboxylic acid groups (Scheme 1).

2. Results and discussion

The intermediate ciprofloxacin hydrazide derivatives 3a-3c, prepared from N-substituted ciprofloxacins $\mathbf{2 a}-\mathbf{2 c}$ according to the known procedure ${ }^{10}$, were subjected to a cyclo-condensation with carbon disulfide in the presence of excess alkali-ethanol solution to yield the oxadiazole thiols $\mathbf{4 a}-\mathbf{4 c}$. A convenient basecatalyzed conversion of $\mathbf{4 a} \mathbf{4 e}$ to the amino s-triazole thiols $\mathbf{5 a}-\mathbf{5 c}$ was carried out using hydrazine hydrate. Interestingly, the condensation of $\mathbf{5 a - 5 c}$ with each of the commercially available ABFQs ($\mathbf{2 a}-\mathbf{2 c}$ and $\mathbf{6 a}-\mathbf{6 c}$) to produce the target compounds $\mathbf{1 a - 1 r}$ was successful only in the presence of POCl_{3} and not in the presence of other acidic media such as concentrated sulfuric acid or polyphosphoric acid.

Scheme 1 Synthetic route for the bis-fluoroquinolones cross-linked with [1,2,4]triazolo[3,4-b] [1,3,4]thiadiazole 1a-1r. Ciprofloxacin (2a); N-Methyl ciprofloxacin (2b); Enrofloxacin (2c); Norfloxacin (6a); Ofloxacin (6b); Levofloxacin (6c). $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{2}=$ cyclopropyl (1a); $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{3}=$ methyl, $\mathrm{R}_{2}=$ cyclopropyl (1b); $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{3}=$ ethyl, $\mathrm{R}_{2}=\operatorname{cyclopropyl}(\mathbf{1 c}) ; \mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{2}=$ ethyl $(\mathbf{1 d}) ; \mathrm{R}_{1}=$ methyl, $\mathrm{R}_{3}=\mathrm{H}$, $\mathrm{R}_{2}=$ cyclopropyl (1e); $\mathrm{R}_{1}=\mathrm{R}_{3}=$ methyl, $\mathrm{R}_{2}=$ cyclopropyl (1f); $\mathrm{R}_{1}=$ methyl, $\mathrm{R}_{3}=$ ethyl, $\mathrm{R}_{2}=$ cyclopropyl ($\mathbf{1 g}$); $\mathrm{R}_{1}=$ methyl, $\mathrm{R}_{3}=\mathrm{H}$, $\mathrm{R}_{2}=\operatorname{ethyl}(\mathbf{1 h}) ; \mathrm{R}_{1}=$ ethyl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{2}=$ cyclopropyl (1i); $\mathrm{R}_{1}=$ ethyl, $\mathrm{R}_{3}=$ methyl, $\mathrm{R}_{2}=$ cyclopropyl $(\mathbf{1}) ; \mathrm{R}_{1}=\mathrm{R}_{3}=$ ethyl, $\mathrm{R}_{2}=$ cyclopropyl $(\mathbf{1 k}) ; \mathrm{R}_{1}=$ ethyl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{2}=$ ethyl (11); $S / R-(\pm)-\mathrm{R}_{1}=\mathrm{H}(\mathbf{1 m}) ; S / R-(\pm)-\mathrm{R}_{1}=$ methyl $(\mathbf{1 n}) ; S / R-(\pm)-\mathrm{R}_{1}=$ ethyl $(\mathbf{1 0}) ; S-(-)-\mathrm{R}_{1}=\mathrm{H}(\mathbf{1 p}) ;$ $S-(-)-\mathrm{R}_{1}=$ methyl (1q); $S-(-)-\mathrm{R}_{1}=$ ethyl (1r).

Table 1 Growth inhibitory activities ($\mathrm{IC}_{50} \mu \mathrm{~mol} / \mathrm{L}$) of compounds ($\mathbf{1 a}-\mathbf{1 r}$) against L1210, HL60 and CHO tumor cells in the MTT assay.

Compound	$\mathrm{IC}_{50}(\mu \mathrm{~mol} / \mathrm{L})$		
	L1210	HL60	CHO
		0.54	7.8
$\mathbf{1 a}$	3.6	5.3	11.6
$\mathbf{1 b}$	8.5	2.7	15.0
$\mathbf{1 c}$	14.2	10.6	17.2
$\mathbf{1 d}$	18.5	2.7	10.5
$\mathbf{1 e}$	6.2	8.8	15.7
$\mathbf{1 f}$	12.4	4.7	17.5
$\mathbf{1 g}$	16.2	15.4	22.6
$\mathbf{1 h}$	21.3	5.0	13.7
$\mathbf{1 i}$	8.6	10.6	17.8
$\mathbf{1} \mathbf{j}$	14.6	7.2	19.5
$\mathbf{1 k}$	18.02	18.4	26.2
$\mathbf{1}$	23.6	14.2	16.8
$\mathbf{1 m}$	15.6	16.8	21.4
$\mathbf{1 n}$	17.2	16.4	23.7
$\mathbf{1 0}$	18.0	0.12	3.4
$\mathbf{1 p}$	1.5	1.8	5.2
$\mathbf{1 q}$	2.7	2.0	3.8
$\mathbf{1 r}$	2.5		

Being asymmetrical, the ${ }^{1} \mathrm{H}$ NMR spectra of compounds 1a-1r displayed one two-proton singlet signal at $\delta 9.20-8.90$ assignable to the $2-\mathrm{H}$ of the fluoroquinolone scaffold; other protons such as the $5-\mathrm{H}$ and 7 -piperazine- H or $8-\mathrm{H}$ are in close accord with their corresponding parent fluoroquinolone carboxylic acids ${ }^{11}$. In addition, the chemical shift for all target compounds 1a-1r at $\delta 11.0-12.0$ (exchangeable with $\mathrm{D}_{2} \mathrm{O}$) indicates the presence of dihydrochloride salts and the molecular ion peaks show a base peak in the MS spectrum corresponding to the respective molecular formulae of the free bases.

The in vitro antitumor activities of $\mathbf{1 a} \mathbf{- 1 r}$ against murine leukemia cell line (L1210), human leukocytoma cell line (HL60) and Chinese hamster ovary cell line (CHO) were evaluated using the MTT assay ${ }^{12}$ (Table 1). Interestingly, the results reveal that all compounds show cytotoxicity with IC_{50} values in the range $0.12-26.2 \mu \mathrm{~mol} / \mathrm{L}$ (Table 1). More importantly, the target compounds 1a (derived from ciprofloxacin $\mathbf{2 a}$) and $\mathbf{1 p}$ (derived from ciprofloxacin $\mathbf{2 a}$ and levofloxacin $\mathbf{6 c}$) exhibit the most potent activity against HL60 cells. This preliminary indication of antitumor activity suggests that di-(1-cyclopropyl)-substituted fluoroquinolones and bis-fluoroquinolone hybrid molecules are promising lead compounds for further development.

3. Experimental procedures

3.1. Chemistry

Melting points were determined in sealed capillary tubes and are uncorrected. IR spectra were recorded on a Nicolet Impact 410 spectrometer; ${ }^{1} \mathrm{H}$ NMR spectra on a Bruker AM-400 spectrometer; mass spectra on an Esquire LC instrument and elemental analyses on a PE2400-II instrument. The materials and solvents were commercially available and used as received.
3.1.1. General synthetic procedures for 1-cyclopropyl-6-fluoro-3-(5-mercapto-1,3,4-oxadiazol-2-yl)-7-substituted piperazin-1-yl-quinolin-4 (1 H)-one ($\mathbf{4 a} \mathbf{- 4 c}$)
To a solution of hydrazide 3a-3c (58.0 mmol) in $95 \% \mathrm{EtOH}$ (500 mL) containing $\mathrm{KOH}(5.0 \mathrm{~g}, 90 \mathrm{mmol})$, carbon disulfide was added at room temperature $(7.0 \mathrm{~g}, 92 \mathrm{mmol})$ and the mixture was stirred overnight. The resultant precipitate was dissolved under refluxing conditions. After removal of the solvent under reduced pressure, a 3% aqueous NaOH solution $(500 \mathrm{~mL})$ was added to the residue and refluxed for 6 h . The filtrate was adjusted to pH 7.0 using concentrated HCl and the resulting precipitate was collected and recrystallized from DMF-EtOH to give yellow crystals $\mathbf{4 a}-\mathbf{4 c}$.

1-Cyclopropyl-6-fluoro-3-(5-mercapto-1,3,4-oxadiazol-2-yl)-7-piperazin-1-yl-quinolin-4 $(1 \mathrm{H})$-one $\mathbf{4 a}$: yield 64%, mp $>250{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 13.64(\mathrm{~s}, 1 \mathrm{H}$, SH), $8.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 7.72(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.62(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.63-4.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.56-3.32(\mathrm{~m}, 8 \mathrm{H}$, piperazine-H), 1.26-1.14 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$); IR (KBr) $v: 3356$, 3104, 2952, 1638, 1617, $1457 \mathrm{~cm}^{-1}$; MS m/z: $388[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $387.44[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FN}_{5} \mathrm{O}_{2}$: C 55.80, H 4.68, N 18.08; found C 56.04, H 4.42, N 18.34 .

1-Cyclopropyl-6-fluoro-3-(5-mercapto-1,3,4-oxadiazol-2-yl)-7-(4-methylpiperazin-1-yl)-quinolin-4 $(1 H)$-one $\mathbf{4 b}$: yield 72%, $\mathrm{mp}>250{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 13.72(\mathrm{~s}, 1 \mathrm{H}$, SH), 8.88 (s, $1 \mathrm{H}, \mathrm{H}-2$), 7.76 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.68$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.62-4.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.55-3.28(\mathrm{~m}, 8 \mathrm{H}$, piperazine-H), $2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.38-1.17\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; IR (KBr) v: 3364, 3087, 2874, 1644, 1625, $1456 \mathrm{~cm}^{-1}$; MS m/z: $402[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $401.47[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FN}_{5} \mathrm{O}_{2}$: C 56.84, H 5.02, N 17.44; found C 57.11, H 4.87, N 17.65 .

1-Cyclopropyl-6-fluoro-3-(5-mercapto-1,3,4-oxadiazol-2-yl)-7-(4-ethylpiperazin-1-yl-quinolin-4 $(1 \mathrm{H})$-one $\mathbf{4 c}$: yield 68%, $\mathrm{mp}>250{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \quad$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) ~ \delta: 13.68$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{SH}$), $8.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 7.82(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$, 7.64 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.64-4.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.53-3.25$ $\left(\mathrm{m}, 8 \mathrm{H}\right.$, piperazine-H), $2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42-1.15(\mathrm{~m}, 7 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$ and CH_{3}); IR (KBr$) v: 3357,3084,2915,1642,1624$, $1455 \mathrm{~cm}^{-1}$; MS m/z: $416[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $415.49[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{FN}_{5} \mathrm{O}_{2}$: C 57.82, H 5.34, N 16.86; found C 57.69, H 5.13, N 17.06.

3.1.2. General synthetic procedures for 3-(4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)-1-cyclopropyl-6-fluoro-7substituted piperazin-1-yl-quinolin-4 (1H)-one (5a-5c)

 A mixture of $\mathbf{4 a}-\mathbf{4 c}(30.0 \mathrm{mmol}), 85 \%$ hydrazine hydrate $(50 \mathrm{~mL})$ and 30% aqueous NaOH solution ($5.0 \mathrm{~g}, 125 \mathrm{mmol}$) was stirred and refluxed for 12 h . After removal of the solvent under reduced pressure, the residue was dissolved in water $(500 \mathrm{~mL})$ and treated by the same procedure as for $\mathbf{4}$ to give the intermediate $\mathbf{5 a - 5}$.3-(4-Amino-5-mercapto-4 H -1,2,4-triazol-3-yl)-1-cyclopro-pyl-6-fluoro-7-piperazin-1-yl-quinolin-4 $(1 H)$-one 5 : yield $58 \%, \mathrm{mp} 246-248{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) δ : 13.87 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{SH}$), $8.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 8.14(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$, $5-\mathrm{H}), 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 5.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.66-$ $4.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.55-3.34(\mathrm{~m}, 8 \mathrm{H}$, piperazine-H), 1.17-1.26 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$); IR (KBr) v: 3442, 3008, 2867, 1630, 1616, $1457 \mathrm{~cm}^{-1} ;$ MS m/z: $402[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $401.47[\mathrm{M}]^{+}$. Anal.
calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FN}_{7} \mathrm{OS}: \mathrm{C} 53.85, \mathrm{H} 5.02, \mathrm{~N} 24.42$; found C 53.96, H 4.84, N 24.68 .

3-(4-Amino-5-mercapto-4 H -1,2,4-triazol-3-yl)-1-cyclopro-pyl-6-fluoro-7-(4-methyl- piperazin-1-yl)-quinolin-4 (1 H)-one 5b: yield 66%, mp $242-244{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $400 \mathrm{MHz}) \delta: 13.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 9.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 8.21(\mathrm{~d}$, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 5.80(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}_{2}$), 4.63-4.52 (m, 1H, CH), 3.52-3.32 (m, 8 H , piper-azine-H), 2.42 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.35-1.20 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$); IR (KBr) $v: 3356,3024,2876,1632,1618,1455 \mathrm{~cm}^{-1}$; MS m/z: $416[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $415.50[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FN}_{7} \mathrm{OS}: \mathrm{C} 54.93$, H 5.34, N 23.60 ; found C 55.17 , H 5.11, N 23.85.

3-(4-Amino-5-mercapto-4 H -1,2,4-triazol-3-yl)-1-cyclopro-pyl-6-fluoro-7-(4-ethyl- piperazin-1-yl)-quinolin-4 (1 H)-one 5c: yield 58%, mp $240-242{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta$: $13.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 9.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 8.16(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$, $5-\mathrm{H}), 7.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 5.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.62-$ $4.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.52-3.34(\mathrm{~m}, 8 \mathrm{H}$, piperazine-H), $2.40(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42-1.22\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) v$: 3368, 3016, 2938, 1640, 1625, $1457 \mathrm{~cm}^{-1}$; MS m/z: 430 $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $429.52[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{FN}_{7} \mathrm{OS}$: C 55.93, H 5.63, N 22.83 ; found C 56.15 , H 5.40, N 23.07.

3.1.3. Synthetic procedures for 1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3,6-bis-[1-cyclopropyl-6-fluoro-7-piperazin-1-yl-quinolin-4(1H)-one] dihydrochloride
 (1a.2HCl)

A mixture of 5 a ($1.0 \mathrm{~g}, 2.5 \mathrm{mmol}$), Ciprofloxacin 2a (1.0 g , $3.0 \mathrm{mmol})$ and 4-dimethylpyridine (DMAP) ($0.4 \mathrm{~g}, 3.0 \mathrm{mmol}$) in $\mathrm{POCl}_{3}(10 \mathrm{~mL})$ was stirred at room temperature for 6 h and then refluxed for 3 h . The reaction mixture was concentrated under reduced pressure, poured into ice-water (100 mL) and adjusted to pH 10.0 with 30% aqueous NaOH solution. The resulting precipitate was collected by filtration and washed with water to give the crude free base 1a, which was recrystallized from $95 \% \mathrm{EtOH}(30 \mathrm{~mL})$ and concentrated $\mathrm{HCl}(1.0 \mathrm{~mL})$ to give a yellow solid $\mathbf{1 a} \cdot \mathbf{2 H C l}$: yield 32.0%, $\mathrm{mp} 264{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 11.52$ (br, $2 \mathrm{H}, 2 \mathrm{HCl}$), 9.12-8.97 (br, $2 \mathrm{H}, 2 \times 2-\mathrm{H}$), 7.84-7.78 (brs, $2 \mathrm{H}, 2 \times 8-\mathrm{H}$), $7.63-7.55$ (brs, $2 \mathrm{H}, 2 \times 5-\mathrm{H}$), $4.66-4.47$ (m, 2 H , $2 \times \mathrm{CH}), 3.55-3.26(\mathrm{~m}, 16 \mathrm{H}, 2 \times$ piperazine-H), 1.20-1.40(m, $8 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2}$); IR (KBr) $v: 3356,3054,2947,1633,1616$, 1552, 1442, $1338 \mathrm{~cm}^{-1}$; MS m/z: $697[\mathrm{M}+\mathrm{H}]^{+}$, calcd. 696.79 $[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{~S} \cdot 2 \mathrm{HCl}$: C $54.62, \mathrm{H}$ 4.71, N 18.20; found C 54.93, H 4.57, N 18.46.

3.1.4. Synthetic procedure for the compounds
 (1b-1r). $\mathbf{2 H C l}$

By a procedure similar to that for $\mathbf{1 a} \cdot \mathbf{2 H C l}$, the compounds $(\mathbf{1 b}-\mathbf{1 r}) \cdot \mathbf{2 H C l}$ were prepared. 1,2,4-Triazolo[3,4-b] [1,3.4]thiadia-zole-3-[1-cyclopropyl-6-fluoro-7-piperazin-1-yl-quinolin-4(1H)-one]-6-[1-cyclopropyl-6-fluoro-7-(4-methylpiperazin-1-yl)-qui-nolin- $4(1 H)$-one] dihydrochloride ($\mathbf{1 b} \cdot \mathbf{2 H C l}$) derived from $\mathbf{5 a}$ and N-Methylciprofloxacin 2b: yield 32%, mp $257^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 11.53$ (br, $2 \mathrm{H}, 2 \mathrm{HCl}$), $9.22-$ $9.15(\mathrm{br}, 2 \mathrm{H}, 2 \times 2-\mathrm{H}), 8.12-7.83(\mathrm{br}, 2 \mathrm{H}, 2 \times 8-\mathrm{H}), 7.65-7.53$ (br, $2 \mathrm{H}, 2 \times 5-\mathrm{H}$), $4.62-5.16(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}), 3.53-3.24(\mathrm{~m}$, $16 \mathrm{H}, 2 \times$ piperazine-H), $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 1.41-1.22(\mathrm{~m}, 8 \mathrm{H}$, $2 \times \mathrm{CH}_{2} \mathrm{CH}_{2}$); IR (KBr) v: 3352, 3032, 2884, 1645, 1627, 1560, $1453,1324 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{z}: 711[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $712.81[\mathrm{M}]^{+}$;

Anal. calcd. for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{~S} \cdot 2 \mathrm{HCl}$: C 55.17, H 4.89, N 17.87; found C $55.34, \mathrm{H} 4.68, \mathrm{~N} 18.07$.

1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3-[1-cyclopropyl-6-fluoro-7-piperazin-1-yl-quinolin-4(1 H)-one]-6-[1-cyclopropyl-6-fluoro-7-(4-ethylpiperazin-1-yl)-quinolin-4(1 H)-one] dihydrochloride ($\mathbf{1 c} \cdot \mathbf{2 H C l}$) derived from $\mathbf{5 a}$ and Enrofloxacin 2c: yield 28%, mp $255{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) $\delta: 11.36$ (br, $2 \mathrm{H}, 2 \mathrm{HCl}$), $9.25-9.17$ (br, $2 \mathrm{H}, 2 \times 2-\mathrm{H}), 7.88-7.72$ (br, $2 \mathrm{H}, 2 \times 8-\mathrm{H}$), $7.62-7.50(\mathrm{br}, 2 \mathrm{H}, 2 \times 5-\mathrm{H}), 4.60-4.44$ (m, $2 \mathrm{H}, 2 \times \mathrm{CH}), 3.52-3.38(\mathrm{~m}, 16 \mathrm{H}, 2 \times$ piperazine -H$), 2.34(\mathrm{q}$, $\left.J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 1.17-1.44\left(\mathrm{~m}, 11 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and CH_{3}); IR (KBr) $v: 3368,3027,2876,1642,1608,1562,1457$, $1226 \mathrm{~cm}^{-1}$; MS m/z (\%): $725[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $724.84[\mathrm{M}]^{+}$; Anal. calcd. for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{~S} \cdot 2 \mathrm{HCl}$: C 55.71, H 5.05 , N 17.56; found C 55.93 , H 5.30, N 17.82 .

1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3-[1-cyclopropyl-6-fluoro-7-piperazin-1-yl-quinolin-4(1 H)-one]-6-[1-ethyl-6-fluoro-7-piperazin-1-yl)-quinolin-4(1 H)-one] dihydrochloride $(\mathbf{1 d} \cdot \mathbf{2 H C l})$ derived from 5a and Norfloxacin 6a: yield 34%, $\mathrm{mp} 240{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) $\delta: 11.46$ (br, $2 \mathrm{H}, 2 \mathrm{HCl}), 9.04-8.87(\mathrm{br}, 2 \mathrm{H}, 2 \times 2-\mathrm{H}), 8.15-7.87(\mathrm{br}, 2 \mathrm{H}$, $2 \times 8-\mathrm{H}), 7.62-7.55(\mathrm{br}, 2 \mathrm{H}, 2 \times 5-\mathrm{H}), 4.67-4.56(\mathrm{~m}, 3 \mathrm{H}, \mathrm{N}-$ CH_{2} and CH), $3.55-3.27(\mathrm{~m}, 16 \mathrm{H}, 2 \times$ piperazine- H$), 1.46-$ $1.22\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{3}\right)$; IR (KBr$) v: 3364,3025$, 2896, 1642, 1627, 1562, 1455, $1226 \mathrm{~cm}^{-1}$; MS m/z: 685 $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $684.78 \quad[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{~S} \cdot 2 \mathrm{HCl}$: C 53.90, H 4.79, N 18.49; found C 54.13, H 4.58, N 18.67.

1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3-[1-cyclopropyl-6-fluoro-7-(4-methylpiperazin-1-yl)-quinolin-4($1 H$)-one]-6-(1-cyclopropyl-6-fluoro-7-piperazin-1-yl-quinolin-4(1 H)-one) dihydrochloride ($\mathbf{1 e} \cdot \mathbf{2 H C l}$) derived from $\mathbf{5 b}$ and Ciprofloxacin 2a, yield 27.0%, mp $256{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $400 \mathrm{MHz}) \delta: 11.42(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{HCl}), 9.17-8.92(\mathrm{br}, 2 \mathrm{H}, 2 \times 2-$ H), $7.82-7.76$ (brs, $2 \mathrm{H}, 2 \times 8-\mathrm{H}$), $7.62-7.58$ (brs, $2 \mathrm{H}, 2 \times 5-\mathrm{H}$), 4.63-5.24 (m, $2 \mathrm{H}, 2 \times \mathrm{CH}), 3.50-3.24(\mathrm{~m}, 16 \mathrm{H}, 2 \times$ piperazineH), $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.42-1.23\left(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; IR (KBr) $v: 3347,3054,2962,1638,1624,1557,1445 \mathrm{~cm}^{-1}$; MS $m / z: 711[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $710.81[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{~S} \cdot 2 \mathrm{HCl}$: C 55.17, H 4.89, N 17.87; found C 55.42, H 4.66, N 18.72 .

1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3,6-bis-[1-cyclopro-pyl-6-fluoro-7-(4-methyl-piperazin-1-yl)-quinolin-4(1 H)-one] dihydrochloride ($\mathbf{1 f} \cdot \mathbf{2 H C l}$) derived from $\mathbf{5 b}$ and N-Methylciprofloxacin 2b: yield 25%, mp $253{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 11.62(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{HCl}), 9.15-9.08$ (br, $2 \mathrm{H}, 2 \times 2-\mathrm{H}$), 8.14-7.80 (br, $2 \mathrm{H}, 2 \times 8-\mathrm{H}$), $7.72-7.56$ (br, $2 \mathrm{H}, 2 \times 5-\mathrm{H}), 4.62-4.47(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}), 3.50-3.27(\mathrm{~m}, 16 \mathrm{H}$, $2 \times$ piperazine-H), $2.37-2.44$ (brs, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$), $1.40-1.22(\mathrm{~m}$, $8 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2}$); IR (KBr) v: 3364, 3015, 2893, 1642, 1624, 1557, $1455,1276 \mathrm{~cm}^{-1}$; MS m/z: $725[\mathrm{M}+\mathrm{H}]^{+}$, calcd. 724.84 $[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{~S} \cdot 2 \mathrm{HCl}: \mathrm{C} 55.71, \mathrm{H}$ 5.05, N 17.56; found C 55.94, H 4.87, N 17.80.

1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3-[1-cyclopropyl-6-fluoro-7-(4-methylpiperazin-1-yl)-quinolin-4(1H)-one]-6-[1-cyclopropyl-6-fluoro-7-(4-ethylpiperazin-1-yl)-quinolin-4(1 H)-one] dihydrochloride $(\mathbf{1 g} \cdot \mathbf{2 H C l})$ derived from $\mathbf{5 b}$ and Enrofloxacin $\mathbf{2 c}$: yield 31\%, $\mathrm{mp} 252{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 11.35$ (br, $2 \mathrm{H}, 2 \mathrm{HCl}), 9.22-9.13(\mathrm{br}, 2 \mathrm{H}, 2 \times 2-\mathrm{H}), 7.86-7.75(\mathrm{br}, 2 \mathrm{H}, 2 \times 8-$ H), $7.64-7.57(\mathrm{br}, 2 \mathrm{H}, 2 \times 5-\mathrm{H}), 4.62-4.50(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}), 3.57-$ $3.35\left(\mathrm{~m}, 16 \mathrm{H}, 2 \times\right.$ piperazine-H), $2.40-2.34\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{3}\right.$ and CH_{2}), 1.45-1.18 (m, $11 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2}$ and CH_{3}); IR (KBr)
$v: 3347,3006,2876,1644,1616,1563,1457,1247 \mathrm{~cm}^{-1} ;$ MS m / z (\%): $739[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $738.87[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{~S} \cdot 2 \mathrm{HCl}: \mathrm{C} 56.22$, H 5.21 , N 17.25 ; found C 55.45, H 5.37, N 17.46.

1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3-[1-cyclopropyl-6-fluoro-7-(4-methylpiperazin-1-yl)-quinolin-4(1H)-one]-6-[1-ethyl-6-fluoro-7-piperazin-1-yl)-quinolin-4(1 H)-one] dihydrochloride ($\mathbf{1 h} \cdot \mathbf{2 H C l}$) derived from $\mathbf{5 b}$ and Norfloxacin $\mathbf{6 a}$: yield 25%, mp $242{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) $\delta: 11.44$ (br, $2 \mathrm{H}, 2 \mathrm{HCl}$), $9.06-8.89(\mathrm{br}, 2 \mathrm{H}, 2 \times 2-\mathrm{H}), 8.17-7.84$ (br, $2 \mathrm{H}, 2 \times 8-\mathrm{H}), 7.66-7.57(\mathrm{br}, 2 \mathrm{H}, 2 \times 5-\mathrm{H}), 4.60-4.57(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CH}_{2}$ and CH$), 3.50-3.25(\mathrm{~m}, 16 \mathrm{H}, 2 \times$ piperazine- H$)$, 1.44-1.20 (m, 7H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$ and CH_{3}); IR (KBr) v: 3372, 3045, 1644, 1626, 1572, 1457, $1238 \mathrm{~cm}^{-1}$; MS m/z: $699[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $698.80[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{~S} \cdot 2 \mathrm{HCl}$: C 54.47, H 4.96, N 18.15; found C 54.68, H 4.72, N 18.36.

1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3-[1-cyclopropyl-6-fluoro-7-(4-ethylpiperazin-1-yl)-quinolin-4(1 H)-one]-6-(1-cyclopropyl-6-fluoro-7-piperazin-1-yl-quinolin-4(1 H)-one) dihydrochloride ($\mathbf{1 i} \cdot \mathbf{2 H C l}$) derived from $\mathbf{5 c}$ and Ciprofloxacin 2a: yield $24.0 \%, \operatorname{mp} 251{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $400 \mathrm{MHz}) \delta: 11.62(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{HCl}), 9.22-8.94(\mathrm{br}, 2 \mathrm{H}, 2 \times 2-$ H), 7.86-7.75 (brs, $2 \mathrm{H}, 2 \times 8-\mathrm{H}$), 7.68-7.54 (brs, $2 \mathrm{H}, 2 \times 5-\mathrm{H}$), 4.68-5.42 (m, 2H, $2 \times \mathrm{CH}$), $3.54-3.18(\mathrm{~m}, 16 \mathrm{H}, 2 \times$ piperazineH), 2.46-2.37 (brs, $5 \mathrm{H}, \mathrm{CH}_{2}$ and $\left.\mathrm{CH}_{3}\right), 1.45-1.22(\mathrm{~m}, 11 \mathrm{H}$, CH_{3} and $2 \times \mathrm{CH}_{2} \mathrm{CH}_{2}$); IR (KBr) v: 3367, 3038, 2967, 1636, 1628, 1557, $1452 \mathrm{~cm}^{-1}$; MS m/z: $725[\mathrm{M}+\mathrm{H}]^{+}$, calcd. 724.84 $[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{~S} \cdot 2 \mathrm{HCl}: \mathrm{C} 55.71, \mathrm{H}$ 5.05, N 17.56; found C 55.92, H 4.87, N 17.83 .

1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3-[1-cyclopropyl-6-fluoro-7-(4-ethylpiperazin-1-yl)-quinolin-4(1H)-one]-6-[1-cyclopropyl-6-fluoro-7-(4-methylpiperazin-1-yl)-quinolin-4(1 H)-one] dihydrochloride $(\mathbf{1} \mathbf{j} \cdot \mathbf{2 H C l})$ derived from $\mathbf{5 c}$ and N-Methylciprofloxacin $\mathbf{2 b}$: yield 22%, mp $248{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) δ : 11.70 (br, $2 \mathrm{H}, 2 \mathrm{HCl}), 9.18-9.04(\mathrm{br}, 2 \mathrm{H}, 2 \times 2-\mathrm{H}), 8.20-7.86$ (br, $2 \mathrm{H}, 2 \times 8-\mathrm{H}), 7.75-7.62(\mathrm{br}, 2 \mathrm{H}, 2 \times 5-\mathrm{H}), 4.68-5.36(\mathrm{~m}, 2 \mathrm{H}$, $2 \times \mathrm{CH}$), $3.52-3.30(\mathrm{~m}, 16 \mathrm{H}, 2 \times$ piperazine-H), 2.41-2.45 (brs, $5 \mathrm{H}, \mathrm{CH}_{2}$ and $\left.\mathrm{CH}_{3}\right), 1.42-1.20\left(\mathrm{~m}, 11 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; IR (KBr) $v: 3358,3034,2884,1638,1622,1557,1453,1262 \mathrm{~cm}^{-1}$; MS m / z : $739[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $738.87[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~F}_{2} \mathrm{~N}_{10}$ $\mathrm{O}_{2} \mathrm{~S} \cdot 2 \mathrm{HCl}: \mathrm{C} 56.22, \mathrm{H} 5.21, \mathrm{~N} 17.25$; found C 56.45, H 5.02 , N 17.46.

1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3,6-bis-[1-cyclopro-pyl-6-fluoro-7-(4-ethyl-piperazin-1-yl)-quinolin-4(1 H)-one] dihydrochloride $(\mathbf{1 k} \cdot \mathbf{2 H C l})$ derived from $\mathbf{5 c}$ and Enrofloxacin 2c: yield $20 \%, \mathrm{mp} 246{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $400 \mathrm{MHz}) \delta: 11.42(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{HCl}), 9.24-9.15(\mathrm{br}, 2 \mathrm{H}, 2 \times 2-$ H), 7.84-7.72 (br, $2 \mathrm{H}, 2 \times 8-\mathrm{H}), 7.68-7.52(\mathrm{br}, 2 \mathrm{H}, 2 \times 5-\mathrm{H})$, 4.66-4.53 (m, 2H, $2 \times \mathrm{CH}$), $3.55-3.34(\mathrm{~m}, 16 \mathrm{H}, 2 \times$ piperazineH), 2.45-2.42 (m, 4H, $\left.2 \times \mathrm{CH}_{2}\right), \quad 1.46-1.17(\mathrm{~m}, \quad 14 \mathrm{H}$, $2 \times \mathrm{CH}_{2} \mathrm{CH}_{2}$ and $2 \times \mathrm{CH}_{3}$); IR (KBr) v: 3363, 3027, 2885, 1640, 1626, 1568, 1454, $1238 \mathrm{~cm}^{-1}$; MS $m / z(\%): 753[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $752.90[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{~S} \cdot 2 \mathrm{HCl}$: C 56.72, H 5.37, N 16.96; found C 56.87, H 5.11, N 17.16.

1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3-[1-cyclopropyl-6-fluoro-7-(4-ethylpiperazin-1-yl)-quinolin-4(1 H)-one]-6-[1-ethyl-6-fluoro-7-piperazin-1-yl)-quinolin-4(1H)-one] dihydrochloride ($\mathbf{1 1} \cdot \mathbf{2 H C l}$) derived from 5c and Norfloxacin 6a: yield 23%, mp $238^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 11.64(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{HCl})$, $9.12-8.93(\mathrm{br}, 2 \mathrm{H}, 2 \times 2-\mathrm{H}), 8.22-7.86(\mathrm{br}, 2 \mathrm{H}, 2 \times 8-\mathrm{H}), 7.72-7.63$ (br, $2 \mathrm{H}, 2 \times 5-\mathrm{H}$), $4.64-4.53\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$ and CH), $3.56-3.27$ $\left(\mathrm{m}, 16 \mathrm{H}, 2 \times\right.$ piperazine-H), $1.46-1.25\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and
$2 \times \mathrm{CH}_{3}$); IR (KBr) v: 3366, 3035, 1628, 1617, 1557, 1456, $1228 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / z: 725[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $724.84[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{~S} \cdot 2 \mathrm{HCl}$: C 55.71 , H 5.05, N 17.56; found C 55.90, H 4.88, N 17.84.
(S, R)-1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3-[1-cyclopro-pyl-6-fluoro-7-piperazin-1-yl-quinolin-4($1 H$)-one]-6-[1,8-(2,1-oxypropyl)-6-fluoro-7-(4-methylpiperazin-1-yl)-quinolin$4(1 H)$-one] dihydrochloride ($\mathbf{1 m} \cdot \mathbf{2 H C l}$) derived from $\mathbf{5 a}$ and Ofloxacin 6b: yield $36 \%, \mathrm{mp} 238-240{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 11.38$ (br, $\left.2 \mathrm{H}, 2 \mathrm{HCl}\right), 9.16-8.94$ (br, $2 \mathrm{H}, 2 \times 2-\mathrm{H}), 7.86(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.62-7.55(\mathrm{br}, 2 \mathrm{H}$, $2 \times 5-\mathrm{H}), 4.57-4.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CHN}\right.$ and CH$), 3.53-3.36$ ($\mathrm{m}, 16 \mathrm{H}, 2 \times$ piperazine-H), $2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right.$), 1.16-1.44 $\left(\mathrm{m}, 7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{3}\right)$; IR (KBr) v: 3356, 3032, 2892, 1638, 1604, 1567, 1457, $1228 \mathrm{~cm}^{-1}$; MS m/z: $727[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $726.81[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{3} \mathrm{~S} \cdot 2 \mathrm{HCl}$: C 54.07, H 4.79, N 17.51; found C 54.26, H 4.60, N 17.72.
(S, R)-1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3-[1-cyclopropyl-6-fluoro-7-(4-methyl-piperazin-yl)-quinolin-4(1 H)-one]-6-[1,8-(2,1-oxypropyl)-6-fluoro-7-(4-methylpiperazin-1-yl)-quinolin$4(1 H)$-one] dihydrochloride ($\mathbf{1 n} \cdot \mathbf{2 H C l}$) derived from $\mathbf{5 b}$ and Ofloxacin 6b: yield $31 \%, \operatorname{mp} 235{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 11.50(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{HCl}), 9.18-8.97(\mathrm{br}, 2 \mathrm{H}, 2 \times 2-$ H), $7.85(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.65-7.58(\mathrm{br}, 2 \mathrm{H}, 2 \times 5-\mathrm{H})$, $4.62-4.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CHN}\right.$ and CH$), 3.56-3.34(\mathrm{~m}, 16 \mathrm{H}$, $2 \times$ piperazine-H), 2.48-2.43 (m, 6H, $2 \times \mathrm{CH}_{3}$), 1.46-1.20 (m, $7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$ and CH_{3}); IR (KBr) v: 3358, 3027, 2918, 1632, 1615, 1557, 1455, $1236 \mathrm{~cm}^{-1}$; MS m/z: $741[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $740.84[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{3} \mathrm{~S} \cdot 2 \mathrm{HCl}$: C 54.61, H 4.95, N 17.21; found C 54.82, H 4.67, N 17.46.
(S, R)-1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3-[1-cyclopro-pyl-6-fluoro-7-(4-ethyl-piperazin-yl)-quinolin-4(1H)-one]-6-[1,8-(2,1-oxypropyl)-6-fluoro-7-(4-methylpiperazin-1-yl)-quino-lin- $4(1 \mathrm{H})$-one] dihydrochloride ($\mathbf{1 0} \cdot \mathbf{2 H C l}$) derived from $\mathbf{5 c}$ and Ofloxacin 6b: yield $23 \%, \operatorname{mp} 234{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 11.52(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{HCl}), 9.18-8.95(\mathrm{br}, 2 \mathrm{H}, 2 \times 2-$ H), $7.86(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.72-7.56(\mathrm{br}, 2 \mathrm{H}, 2 \times 5-\mathrm{H})$, 4.66-4.52 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CHN}$ and CH), 3.57-3.35 (m, 16 H , $2 \times$ piperazine -H), $2.46-2.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{3}\right), 1.48-1.18$ $\left(\mathrm{m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and $2 \times \mathrm{CH}_{3}$); IR (KBr) v: 3366, 3025, 2936, 1636, 1622, 1558, 1455, $1228 \mathrm{~cm}^{-1}$; MS m/z: $755[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $754.87[M]^{+}$. Anal. calcd. for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{3} \mathrm{~S} \cdot 2 \mathrm{HCl}$: C 55.14, H 5.11, N 16.92; found C 55.38, H 5.34, N 17.11.
(S)-1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3-[1-cyclopropyl-6-fluoro-7-piperazin-1-yl-quinolin-4(1H)-one]-6-[1,8-(2,1-oxy-propyl)-6-fluoro-7-(4-methylpiperazin-1-yl)-quinolin-4(1 H)one] dihydrochloride ($\mathbf{1 p} \cdot \mathbf{2 H C l}$) derived from $\mathbf{5 a}$ and Levofloxacin 6c: yield 26%, mp $224-226^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 11.26$ (br, $2 \mathrm{H}, 2 \mathrm{HCl}$), 9.17-8.96 (br, $2 \mathrm{H}, 2 \times 2-\mathrm{H}$), $7.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.64-7.57$ (br, $2 \mathrm{H}, 2 \times 5-\mathrm{H}$), $4.56-4.47\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CHN}\right.$ and CH), 3.55-3.37 (m, 16H, $2 \times$ piperazine-H), $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right)$, 1.18-1.46 (m, 7H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$ and CH_{3}); IR (KBr) $v: 3364,3036$, 2895, 1642, 1608, 1564, 1455, $1226 \mathrm{~cm}^{-1}$; MS m/z (\%): 727 $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $726.81 \quad[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{3} \mathrm{~S} \cdot 2 \mathrm{HCl}: \mathrm{C} 54.07$, H 4.79 , N 17.51 ; found C 54.28, H 4.64, N 17.6.
(S)-1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3-[1-cyclopropyl-6-fluoro-7-(4-methyl- piperazin-yl)-quinolin-4($1 H$)-one]-6-[1,8-(2,1-oxypropyl)-6-fluoro-7-(4-methylpiperazin-1-yl)-quinolin$4(1 H)$-one] dihydrochloride $(\mathbf{1 q} \cdot \mathbf{2 H C l})$ derived from $\mathbf{5 b}$ and Levofloxacin 6c: yield 25%, mp $220{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR
(DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 11.62(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{HCl}), 9.22-8.98$ (br, $2 \mathrm{H}, 2 \times 2-\mathrm{H}), 7.86(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.64-7.52(\mathrm{br}, 2 \mathrm{H}$, $2 \times 5-\mathrm{H}), 4.64-4.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CHN}\right.$ and CH$), 3.53-3.32$ $(\mathrm{m}, 16 \mathrm{H}, 2 \times$ piperazine- H$), 2.46-2.40\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.45-$ $1.17\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{3}\right)$; IR (KBr) v: 3363, 3025, 2925, 1634, 1618, 1557, 1456, $1234 \mathrm{~cm}^{-1} ; \quad \mathrm{MS}$ $m / z: 741[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $740.84[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{3} \mathrm{~S} \cdot 2 \mathrm{HCl}: \mathrm{C} 54.61, \mathrm{H} 4.95$, $\mathrm{N} \mathrm{17.21;} \mathrm{found}$ C 54.77, H 4.75, N 17.42.
(S)-1,2,4-Triazolo[3,4-b][1,3,4]thiadiazole-3-[1-cyclopropyl-6-fluoro-7-(4-ethyl- piperazin-yl)-quinolin-4($1 H$)-one]-6-[1,8-(2,1-oxypropyl)-6-fluoro-7-(4-methylpiperazin-1-yl)-quinolin$4(1 H)$-one] dihydrochloride ($\mathbf{1 r} \cdot \mathbf{2 H C l}$) derived from $\mathbf{5 c}$ and Levofloxacin 6c: yield 20%, mp $216{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 11.50(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{HCl}), 9.17-8.96$ (br, $2 \mathrm{H}, 2 \times 2-\mathrm{H}$), $7.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.74-7.60$ (br, $2 \mathrm{H}, 2 \times 5-\mathrm{H}$), $4.66-4.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CHN}\right.$ and CH), 3.56-3.35 (m, 16H, $2 \times$ piperazine-H), 2.47-2.44 (m, 5H, CH2 and $\left.\mathrm{CH}_{3}\right), 1.48-1.20\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and $\left.2 \times \mathrm{CH}_{3}\right)$; IR (KBr) $v: 3358,3027,2934,1640,1624,1562,1455,1232 \mathrm{~cm}^{-1}$; MS $m / z: 755[\mathrm{M}+\mathrm{H}]^{+}$, calcd. $754.87[\mathrm{M}]^{+}$. Anal. calcd. for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{3} \mathrm{~S} \cdot 2 \mathrm{HCl}$: C 55.14, H 5.11, N 16.92; found C 55.36, H 5.28, N 17.14.

3.2. MTT assay

The tumor cell lines, L1210, HL60 and CHO, were maintained in RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine serum. Medium containing 5×10^{3} cells was seeded into each well of a 96 -well microplate and solutions of test compounds at concentrations of $0.1,1.0,10.0,30.0$ and $50.0 \mu \mathrm{~mol} / \mathrm{L}$ added simultaneously to triplicate wells before making the final volume up to $100 \mu \mathrm{~L}$. Plates were incubated at $37^{\circ} \mathrm{C}$ for 48 h in a humidified atmosphere ($5 \% \mathrm{CO}_{2}, 95 \%$ air $)$ after which $100 \mu \mathrm{~L}$ methylthiazole trazolium (MTT) solution $(1.0 \mathrm{mg} / \mathrm{mL}$ in phosphate-buffered saline lacking calcium and magnesium) was added to each well. After a further incubation for 4 h at $37^{\circ} \mathrm{C}, 100 \mu \mathrm{~L}$ DMSO was added to CHO cells and 10% sodium dodecylbenzene sulfonate (SDS) added to L1210 and HL60 cells to solubilize any MTT-formazan produced. The optical density (OD) of each well was measured at 570 nm $\left(\mathrm{OD}_{570}\right)$ with a microplate reader and the inhibition of cell growth (\%) was calculated as $(1-T / C) \times 100$, where C is the mean OD_{570} of the control group and T is that of the treated group. The IC_{50} was determined from the concentrationresponse data.

Acknowledgment

Project supported by the National Natural Science Foundation of China (nos. 20872028, 21072045).

References

1. Mugnaini C, Pasquini S, Corelli F. The 4-quinolone-3-carboxylic acid motif as a multivalent scaffold in medicinal chemistry. Curr Med Chem 2009;16:1746-67.
2. Bax BD, Chan PF, Eggleston DS, Fosberry A, Gentry DR, Gorrec F, et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 2010;466:935-40.
3. Chang YH, Hsu MH, Wang SH, Huang LJ, Qian K, MorrisNatschke SL, et al. Design and synthesis of 2-(3-benzo[b]thienyl)-6.7-methylenedioxyquinolin-4-one analogues as potent antitumor agents that inhibit tubulin assembly. J Med Chem 2009;52: 4883-91.
4. Foroumadi A, Emami S, Rajabalian S, Badinloo M, Mohammadhosseini N, Shafiee A. N-Substituted piperazinyl quinolones as potential cytotoxic agents: structure-activity relationships study. Biomed Pharmacother 2009;63:216-20.
5. Rajabalian S, Foroumadi A, Shafiee A, Emami S, Functionalized N-(2-oxyiminoethyl) piperazinyl quinolones as new cytotoxic agents. J Pharm Pharm Sci 2007;10:153-8.
6. Hu GQ, Wu XK, Wang X, Zhang ZQ, Xie SQ, Huang WL, et al. Synthesis and antitumor activity of C3 heterocyclic-substituted fluoroquinolone derivatives (I): ciprofloxacin aminothiodiazole Schiff-bases. Acta Pharm Sin 2008;43:1112-5.
7. Hu GQ, Hou LL, Yang Y, Yi L, Xie SQ, Wang GQ, et al. Synthesis and antitumor evaluation of fluoroquinolone C3 fused heterocycles (II): from triazolothiadiazines to pyrazolotriazoles. Chin Chem Lett 2011;22:804-6.
8. Hu GQ, Yang Y, Yi L, Wang X, Zhang ZQ, Xie SQ, et al. Part II: Design, synthesis and antitumor action of C3/C3 bis-fluoroquinolones linked-cross 2,5-[1,3,4]oxadiazole. Acta Pharm Sin 2010; 45:1012-6.
9. Hu GQ, Zhang ZQ, Xu QT, Huang WL, Wang H. Phase transfer catalyzed synthesis and bioactivity of s-triazolo[3,4-b]thiadiazoles. Acta Chim Sin 2004;62:204-7.
10. Hu GQ, Zhang ZQ, Wang X, Zhang ZQ, Zhang TD, Xie SQ, et al. Synthesis and antibacterial activity of fluoroquinolone C-3 acylhydrazones. Chin Pharm J 2010;45:867-70.
11. Guo Q, Feng LS, Liu ML, Zhang YB, Chai Y, Lv K, et al. Synthesis and in vitro antibacterial activity of fluoroquinolone derivatives containing 3 -(N^{\prime}-alkoxycarbamimidoyl)-4-(alkoxyimino) pyrrolidines. Eur J Med Chem 2010;45:5498-506.
12. Xie SQ, Hu GQ, Zhang ZQ, Xu M, Ji BS. Anti-tumour effects of HL-37, a novel anthracene derivative, in-vivo and in-vitro. J Pharm Pharmacol 2008;60:213-9.

[^0]: *Corresponding author.
 E-mail address: hgqxy@sina.com.cn (Guo-qiang Hu).

