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Abstract

An improved simple third-order shear deformation theory for the analysis of shear flexible plates is presented in this
paper. This new plate theory is composed of three parts: the simple third-order kinematics of displacements reduced from
the higher-order displacement field derived previously by the author; a system of 10th-order differential equilibrium equa-
tions in terms of the three generalized displacements of bending plates; five boundary conditions at each edge of plate
boundaries. Although the resulting displacement field is the same as that proposed by Murthy, the variational consistent
governing equations and the associated proper boundary conditions are derived and identified in this work for the first
time in the literature. The applications and accuracy of the present shear deformation theory of plates are demonstrated
by analytically solving the differential governing equations of a twisting plate, a bending beam and two bending plates to
which the 3-D elasticity solutions are available, and excellent agreements are achieved even for the torsion of a plate with
square cross-section as well the local effects of stresses at plate boundaries can be characterized accurately. These analytical
solutions clearly show that the simple third-order shear deformation theory developed in this work indeed gives better
results than the first-order shear deformation theories and other simple higher-order shear deformation theories, since
the present third-order shear flexible theory is based on a more rigorous kinematics of displacements and consists of
not only a system of variational consistent differential equations, but also a group of consistent boundary conditions asso-
ciated with the differential equations. The present simple third-order shear deformation theory can easily be applied to the
static and dynamic finite element analysis of laminated plates just like the applications of other popular shear flexible plate
theories, and improved results could be obtained from the present simple third-order shear deformable theories of plates.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The first-order shear deformation theories (FSDTs) for bending plates proposed by Reissner (1945) and
Mindlin (1951) have been used extensively in the analysis of shear flexible plates and shells (Noor and Burton,
1989; Karama et al., 2003). But when FSDT is applied to composite plates, the difficulty in accurately eval-
uating the shear correction factors presents the shortcoming of FSDT. Because the higher-order polynomial in
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the thickness direction of plates and shells could be able to approximate the nonlinear distributions of trans-
verse shear stresses, and the corresponding theories avoid to use the shear deformation corrector like the sit-
uation in FSDT, quite a number of higher-order shear deformation theories (HSDTs) were proposed for the
analysis of layered composite plates where the laminates are modeled as the equivalent single layer plates (e.g.
the references in the review paper of Noor and Burton, 1989). The two-dimensional plate theories with the
higher-order in-plane displacements but a constant deflection through the thickness are the so-called simple
higher-order shear deformation theories (simple HSDTs). A simple higher-order plate theory has the same
number of independent displacement parameters as the first-order shear flexible theories, but possesses high-
er-order stress distributions, therefore, the simple higher-order plate theories are very efficient and widely used
in the analysis of laminated composite plates (Noor and Burton, 1989; Rohwer, 1992). Although many lay-
erwise laminate theories that account for the stress continuity at the interfaces of laminates have been pro-
posed for the analysis of laminated plates in the past two decades (e.g. the references in the paper of
Karama et al., 2003 among others), the equivalent single layer models of laminated plates based on simple
HSDTs are still very attractive now in many applications (e.g. Ferreira et al., 2006 and others). This is because
simple HSDTs possess the simplicity in formulation, cost-effectiveness in computation. It is also because that,
as pointed by Yang et al. (2000), ‘‘no single theory has proven to be general and comprehensive enough for the
entire range of applications’’, and the equivalent single layer model based on HSDTs is the best choice for the
global response analyses of composite plates such as deformation, frequency, vibration and buckling analyses.

A higher-order plate theory is composed of a kinematics of displacements and a system of differential equa-
tions plus the associated boundary conditions. The third-order in-plane displacements proposed by Levinson
(1980) and Murthy (1981) are the most popular kinematics of simple higher-order displacements, but as point-
ed by Bickford (1982) and Reddy (1984a,b) that the equilibrium equations derived by Levinson and Murthy
are not variational consistent with the kinematics of displacements. Based on the kinematics proposed by Lev-
inson (1980), Bickford (1982) presented a variational consistent higher-order beam theory, and later Reddy
(1984a,b) developed the variational consistent equilibrium equations for plates. The comprehensive numerical
investigations on the accuracy of various HSDTs conducted by Rohwer (1992) show that the Murthy’s and
Reddy’s theories are the best choices for HSDT. As a matter of fact, Reddy’s high-order theory is still the most
popular simple HSDT used for composite plate analysis so far (see Ferreira et al., 2006 among others). How-
ever, it is easy to verify that the transverse shear strain energy obtained from Levinson’s third-order kinemat-
ics is different from the exact solution even in the case of isotropic plates free from distributed surface loads,
although the transverse shear strains given by Levinson’s kinematics have the same parabolic variation
through the plate thickness as the exact solution. As a result, the error of the transverse shear strain energy
in the theories based on Levinson’s kinematics could be negligible when transverse shear effect is not very sig-
nificant, but the kinematics proposed by Levinson would lead to considerable errors when the transverse
shears play an important role as shown by Bickford (1982). Furthermore, the four boundary conditions at
each edge of bending plates in Reddy’s theory (1984a,b) seem not consistent with the 10th-order differential
equations in the theory. Therefore, it is desirable to develop an improved simple higher-order shear flexible
plate theory that is based on a rigorous kinematics and has both a system of variational consistent differential
equations and a group of boundary conditions consistent with the differential equations.

The objective of this work is just to fulfill the aforementioned task. The kinematics with high-order displace-
ments derived by Voyiadjis and Shi (1991), which is based on the elasticity theory, is simplified to derive a new
simple third-order shear deformation theory of plates. It happens that the resulting displacement field in this
work is the same as that given by Murthy (1981), but the variational consistent governing equations with those
displacements are derived and the proper boundary conditions associated with the higher-order displacements
are identified in this work for the first time in the literature. The feasibility and accuracy of the present simple
HSDT are demonstrated by the applications of the new theory to analytically solve the differential governing
equations directly for some typical torsion and bending problems to which the solutions of elasticity are available.
The analytical solutions of these applications agree very well with the 3-D elasticity solutions. For example, in the
analysis of the torsion of rectangular plates, the solutions of the shear stresses and the boundary layer effects of
stresses at the boundaries agree with the elasticity solutions very well, even in the extreme case where a plate has a
square cross-section and in which the transverse shearing plays a dominant role. Therefore, the present simple
HSDT could provide a more accurate and efficient theory for the analysis of shear flexible plates.
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This paper is confined to the derivation and applications of the variational consistent governing equations
for the static analysis of shear flexible plates made of isotropic and orthotropic materials. However, the appli-
cation of the present theory to the analysis of layered composite plates is very straightforward by using the
corresponding constitutive equations for the equivalent rigidity calculations of composite plates just like
the applications of other popular shear flexible plate theories (see Reddy, 1984b; Rohwer, 1992; Yang
et al., 2000, and others); the geometric nonlinear analysis can easily be achieved by incorporating the von Kar-
man nonlinear strains as presented by Reddy (1984a) and by Shi and Voyiadjis (1991) plus the formulation for
large rigid rotations (Shi and Voyiadjis, 1991); and the formulation presented here can be simply extended to
the dynamic analysis of laminated plates by using the Hamilton’s principle (Reddy, 1984a; Shi and Lam,
1999). Although the second-order differentiation appears in the strain energy expression in the present theory,
the C0-continuity plate element still can be formulated by introducing the first-order transverse shear strains as
independent variables as presented by Shi et al. (1999). By using the assumed strain approach, the resulting
shear flexible plate elements would be free from the shear locking (see Shi and Voyiadjis, 1991; Shi et al.,
1999). More reliable and accurate results can be obtained from the present third-order theory than other
HSDTs as a more rigorous kinematics of displacements, which is derived from elasticity theory, is employed
in the present theory besides the consistent differential equations and boundary conditions.
2. Kinematics of refined simple third-order shear deformation of plates

Let x1, x2 and x3 be the principle material coordinates of a plate made of orthotropic material, and set x3 be
the coordinate in the plate thickness direction, then the constitutive equations of such a plate take the form:
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The engineering shear strains are used here. To be compatible with the notations employed in other transverse
shear flexible theories, the notations for coordinates x = x1, y = x2 and z = x3 will also be used in the present work.

Based on the elasticity solutions of the out-of-plane stress distributions in the plate thickness direction and
the stress equilibrium equations of 3-D elasticity theory, the refined two-dimensional theories with the trans-
verse normal strain effects for thick plates and cylindrical shells were presented, respectively, by Voyiadjis and
Baluch (1981) and by Voyiadjis and Shi (1991). Because the influence of the varying distributed loads acting
on the surfaces of plates and shells was considered in the aforementioned work, a fifth-order polynomial in
terms of thickness coordinate z appears in the expressions of the in-plane displacements, and a fourth-order
polynomial appears in the expression for the deflection. But when the effects of the distributed loads and the
explicit terms of bending moments are neglected, the displacements in x1, x2 and x3 directions take the form
(Voyiadjis and Shi, 1991):
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where the integral constants u0(x,y), v0(x,y) and w0(x,y) are the displacements at the reference surface of plate
where z = 0; Q1 and Q2 are the shear forces acting on the cross-sections with the normal in the x and y direc-
tions, respectively; and h is the plate thickness. The transverse shear forces Q1 and Q2 can be expressed in
terms of the average displacements /x, /y and �w ¼ w0 on the cross-sections, defined by the equivalent work
done across the plate thickness on the cross-sections (Voyiadjis and Shi, 1991), as
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in which ð/x þ ow
oxÞ and ð/y þ ow

oyÞ have the physical meaning of the transverse shears of the cross-sections with
x = constant and y = constant, respectively. The factor 5

6
in Eq. (3) is a numerical factor evaluated from the

work equivalence between the transverse shear forces and the transverse shear stresses. The average displace-
ments /x, /y and �w ¼ w0 can also be treated as the generalized displacements of plates (Hu, 1981). By substi-
tuting Eq. (3) into Eq. (2), the kinematics of plate displacements with the simple higher-order shear
deformations can be written as the following:
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The resulting displacements above are the same as those proposed by Murthy (1981), who assumed, by the meth-
od of hypotheses on displacements, a third-order polynomial approximation in the thickness direction for
u(x,y,z) and v(x,y,z), and then determined the coefficient functions by the traction conditions on plate surfaces
plus the specially defined displacement averaging process. The average displacements proposed by Murthy are
purely evaluated by a least square approximation on u(x,y,z) and v(x,y,z) over the plate thickness. Murthy then
used the approach employed in FSDT to derive the equilibrium equations. Even though the kinematics proposed
by Murthy has some special features, unfortunately, the sixth-order equilibrium equations in Murthy’s plate the-
ory are not variational consistent with the kinematics of displacements as pointed by Reddy (1984b).

It is worth to compare the present kinematics with that proposed by Levinson (1980) and used by Bickford
(1982) and Reddy (1984a,b). The in-plane displacements of Levinson are:
uðx; y; zÞL ¼ u0ðx; yÞ þ z/x �
4

3h2
z3 /x þ

ow0

ox

� �

vðx; y; zÞL ¼ v0ðx; yÞ þ z/y �
4

3h2
z3 /y þ

ow0

oy

� � ð5Þ
And the deflection w0 has the same form in the two theories. Expressions (5) lead to that Levinson’s third-order dis-
placements yield the transverse shear strain and the transverse shear force on the cross-section with x = constant as:
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Then the transverse shear strain energy density PsL evaluated in terms of (c13)L is
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The exact solution of the transverse shear stress distribution along the thickness direction of a beam without
distributed surface loading is well known. For example, the transverse shear stress s13 on a cross-section of a beam
can be expressed in terms of shear force Q1 acting on the cross-section, and the distribution of shear stress s13 and
shear strain c13 across the thickness of a beam with rectangular cross-section of unit width is of the form:
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Accordingly, the corresponding transverse shear strain energy density equals to
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Comparing the results Ps given in Eq. (9) and PsL in Eq. (7), one can find that the transverse shear strain energy
density PsL of a plate obtained from Levinson’s third-order kinematics is different from the exact solution of
orthotropic plates, although the transverse shear strain has the same variation in terms of polynomial as the exact
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transverse shear stress. Since the transverse shear stresses are usually evaluated from the stress equilibrium equa-
tions of elasticity rather than from the constitutive equations in the analysis of shear flexible composite plates, the
error of transverse shear strain energy given by the kinematics proposed by Levinson (1980) could be negligible
when the transverse shear effect is not very significant. Nevertheless, the Levinson’s kinematics would lead to con-
siderable errors when the transverse shears play a very important role as shown by Bickford (1982). On the other
hand, the accuracy of the transverse shear strain energy in the present theory is guaranteed, this is because the
kinematics of displacement in this theory is derived from elasticity equations (Voyiadjis and Shi, 1991) rather
than by the hypothesis on displacements.
3. Governing equations associated with the kinematics of simple third-order shear deformation

3.1. Variational consistent equilibrium equations

For simplicity, but without loss of basic bending features of shear flexible plates, the in-plane displacements u0

and v0 are omitted, and the notation w is used for w0 in the following derivation of the governing equations of
plates. The kinematics of displacements in Eq. (4) results in the strain components of a bending plate as:
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3h2 and a2 ¼ 5

3h2.
Making use of the constitutive equations (Eq. (1)), the strain energy P of an orthotropic plate with uniform

thickness h and the domain X of the plate in the reference plane takes the form:
P ¼ 1

2

Z
X

Z h=2

�h=2

C11e
2
1 þ 2C12e1e2 þ C22e

2
2 þ C66c

2
12


 �
dzdXþ 1

2

Z
X

Z h=2

�h=2

C44c
2
23 þ C55c

2
13


 �
dzdX ð15Þ
Substituting the strain components defined in Eqs. (10)–(14) into the expression above and performing the
integration in the z-direction, one has
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where b1 ¼ 85
84

, b2 ¼ 1
105

and b3 ¼ 1
84

are constants; Dij (i, j = 1,2,6) and Tkk (k = 4,5) are, respectively, the flex-
ural stiffness and transverse shear stiffness of an orthotropic plate defined as:
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The work done by the distributed load q acting on the plate surface is of the form
W ðwÞ ¼ �
Z

X
qwdX ð18Þ
Then, for a plate with the transverse shear deformations and the external load defined above, the minimum
potential principle states as
d½Pð/x;/y ;wÞ þ W ðwÞ� ¼ 0 ð19Þ
Substituting Eqs. (16) and (18) into Eq. (19), and using the integration by parts, one obtains the following
expression:
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where C denotes the boundary of the plate domain in the reference plane; nx = cos (x,n) and ny = sin (x,n) are
the direction cosines of the outward normal n of a point on C; and s is the coordinate along the tangential
direction of a point on C.

Both the field integral and the boundary integral in Eq. (20) would be equal to zero when the boundaries of
the plates are traction free. Collecting the terms corresponding to the variations of dw, d/x and d/y in the field
integral, then one has the following three equilibrium equations in the domain X of the plate:
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� �� �
þ o

ox
D66 b1

o/x

oy
þ

o/y

ox

� �
þ 5

2
b2

o2w
oxoy

� �� �

�T 44 /y þ
ow
oy

� �
¼ 0 ð22Þ

o

ox
T 55 /x þ

ow
ox

� �� �
þ o

oy
T 44 /y þ

ow
oy

� �� �
þ q

� o
2

ox2

5

4
b2 D11

o/x

ox
þ D12

o/y

oy

� �
þ b3 D11

o
2w

ox2
þ D12

o
2w

oy2

� �� �

� o
2

oxoy
D66

5

2
b2

o/x

oy
þ

o/y

ox

� �
þ 4b3

o
2w

oxoy

� �� �

� o
2

oy2

5

4
b2 D22

o/y

oy
þ D12

o/x

ox

� �
þ b3 D22

o
2w

oy2
þ D12

o
2w

ox2

� �� �
¼ 0 ð23Þ
In Eqs. (21)–(23), the total differential order of the three simultaneous differential equations in terms of the
generalized displacements of plates is 10. Therefore, five boundary conditions for each edge of plates are
expected. The differential order of Eqs. (21)–(23) also indicates that the high-order polynomial for the trans-
verse shear deformations leads to the higher-order differential equilibrium equations when the variational con-
sistent approach of the formulation is used.
3.2. Variational consistent boundary conditions

For the commonly used force boundary conditions, the stress resultants and stress couples of plates in
terms of generalized displacements of plates adopted here have to be defined first. The following quantities
are defined:
M1 ¼ D11
o/x

ox
þ D12

o/y

oy
; M2 ¼ D12

o/x

ox
þ D22

o/y

oy
; M12 ¼ D66

o/x

oy
þ

o/y

ox

� �

Q1 ¼ T 55 /x þ
ow
ox

� �
; Q2 ¼ T 44 /y þ

ow
oy

� �

M�
1 ¼

1

84
D11

o/x

ox
þ o2w

ox2

� �
þ D12

o/y

oy
þ o2w

oy2

� �� �
; M�

12 ¼
1

84
D66

o/x

oy
þ 2

o2w
oxoy

þ
o/y

ox

� �

M�
2 ¼

1

84
D12

o/x

ox
þ o2w

ox2

� �
þ D22

o/y

oy
þ o2w

oy2

� �� �
ð24Þ
Then the entities in the boundary integral in Eq. (20) can be grouped in terms of d/x and d/y, dw, as well as
odw
ox and odw

oy as:
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I
C

D11 b1

o/x

ox
þb3

ow2

ox2

� �
þD12 b1

o/y

oy
þb3

ow2

oy2
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� �
þ2b3D66
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� �
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I

C
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� �
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oy2
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oy

� �
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oxoy
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ox

� �� �
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o
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oxoy

� �� �
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o
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oMn
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� oMns
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� �
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� �
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I
C

Qndwds ð26Þ
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oy
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oy2
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o2w
oxoy

� �� �
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� �
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�
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o/y

oy
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oy2
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þ b3D12
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ox
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ox2

� �� �
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oy
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o/y
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þ 2

o
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� �� �
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� �
odw
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¼
I
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n
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þM�

ns

odw
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� �
ds ð27Þ
To set each expression on the boundary integrals in Eqs. (25)–(27) to zero, one obtains that either quantity
in the following five pairs needs to be specified on boundaries C of plates.
/n or Mn

/s or Mns

w or Qn

ow
on or M�

n
ow
os or M�

ns

8>>>>>><
>>>>>>:

on C ð28Þ
The following transformations of stress resultants and stress couples are used in the derivation of the
boundary integration in Eq. (28).
Mn ¼ M1n2
x þ 2M12nxny þM2n2

y ; Ms ¼ M1n2
y � 2M12nxny þM2n2

x

Mns ¼ �M1nxny þ 2M12ðn2
x � n2

yÞ þM2nxny

M�
n ¼ M�

1n2
x þ 2M�

12nxny þM�
2n2

y ; M�
s ¼ M�

1n2
y � 2M�

12nxny þM�
2n2

x

M�
ns ¼ �M�

1nxny þM�
12ðn2

x � n2
yÞ þM�

2nxny

M1 ¼ M1 þM�
1; M2 ¼ M2 þM�

2; M12 ¼ M12 þM�
12;

Qn ¼ Q1nx þ Q2ny ; Qn ¼ Qn �
oM�

n

on
� oM�

ns

os
o

on
¼ nx

o

ox
þ ny

o

oy
;

o

os
¼ �ny

o

ox
þ nx

o

oy

ð29Þ
The 10th-order system of three simultaneous differential equations in Eqs. (21)–(23) together with the five
pairs of boundary conditions on each edge in Eq. (28) compose the complete set of the differential governing
equations for the present higher-order shear deformation theory of plates. It should be pointed out that the
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equilibrium equations in Eqs. (21)–(23) are different from those in Reddy’s theory (1984a) when the equations
there are reduced to the system for linear static analysis because of different kinematics used, even though the
differential orders of the system equations in the two theories are the same. Furthermore, there are only four
boundary conditions associated with each edge for the problem of bending plates in Reddy’s theory (1984a,b),
that is, there is no specification on the pair of ow

os and M�
ns in Reddy’s theory, although the differential order of

his equilibrium equations is also 10.
The following are some typical boundary conditions of bending plates. First, the five boundary conditions

on a simply supported edge of a plate are
w ¼ /s ¼
ow
os
¼ 0; Mn ¼ M�

n ¼ 0 ð28aÞ
Second, the boundary conditions on a clamped edge of a plate are
w ¼ /n ¼ /s ¼
ow
on
¼ ow

os
¼ 0 ð28bÞ
and third, the boundary conditions on an edge of a plate with specified stresses are
Mn ¼ ~Mn; Mns ¼ ~Mns; Qn ¼ ~Qn; M�
n ¼ ~M�

n; M�
ns ¼ ~M�

n ð28cÞ
The values with ‘‘�’’ in the above expressions denote the values given by the specified stresses on the stress
edges.

4. Torsion of rectangular plates

In order to demonstrate the feasibility and accuracy of the present higher-order theory, especially the neces-
sity of the higher-order differential equations for the shear flexible bending problems, it is desirable to analyt-
ically solve some typical problems of elasticity and compare them with the existing analytical solutions of 3-D
elasticity. However, it is not an easy task to solve a system of differential equations of order 10 analytically.
Nevertheless, the analytical solutions of several typical bending problems that the 3-D elasticity solutions are
available are attempted here.

A rectangular plate of length 2l, width a and uniform thickness h shown in Fig. 1a is considered here as the
first example. The two edges of y = ±a/2 are free of stresses, while the two sections with x = ±l are assumed to
rotate without distortion and to be free of normal stress. The task here is to evaluate the proper shear stresses
acting on the twisted sections withx = ±l. This is a twisting prismatic bar problem of Saint-Venant torsion
that can be solved by 3-D elasticity. Reissner (1945) solved this problem using his first-order shear deforma-
tion theory, in which the equilibrium equations are in terms of deflection w and two transverse shear forces Q1

and Q2 that was derived from the mixed variational principle.
As specified by Reissner (1945), the requirement of distortionless rotation means that the deformation has

to be ow
os ¼ ow

oy ¼ �/s along the rotated end sections. Let h be the angle of twist per length along the x-axis, then
the five boundaries conditions at each edge of the plate are
at x ¼ �l

w ¼ �hly

/s ¼ �hl
ow
os ¼ hl

Mn ¼ 0

M�
n ¼ 0

8>>>>>><
>>>>>>:

at y ¼ �a=2

ow
os ¼ hy

Qn ¼ 0

Mn ¼ 0

M�
n ¼ 0

Mns ¼ 0

8>>>>>><
>>>>>>:

ð30Þ
In Reissner’s theory there are only three boundary conditions for each plate edge. Usually the boundary
conditions along a stress edge are the specified values of Qn, Mn and Mns, but Reissner used an unusual con-
dition for Qs = Q2 = 0 on the sections with x = ±l, by making use of the shear forces being the independent
variables in his theory.

The boundary conditions given in Eq. (30) lead to the deflection and one rotation as follows:
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wðx; yÞ ¼ xyh

/yðx; yÞ ¼ �xh
ð31Þ
Substituting the expression of w and making use the boundary conditions into the equilibrium equations in
Eqs. (21)–(23), one has the following equations for /x:
o

ox
b1D11

o/x

ox

� �
þ o

oy
D66b1

o/x

oy

� �
� T 55ð/x þ hyÞ ¼ 0 ð32Þ

o

oy
b1D12

o/x

ox

� �
þ o

ox
D66b1

o/x

oy

� �
¼ 0 ð33Þ

o

ox
½T 55/x� �

o2

ox2

5

4
b2D11

o/x

ox

� �
� o2

oxoy
D66

5

2
b2

o/x

oy

� �
� o2

oy2

5

4
b2D12

o/x

ox

� �
¼ 0 ð34Þ
Eq. (33) leads to that /x is a function of y only. As a result, Eq. (34) is satisfied and Eq. (32) reduces to
o2/x

oy2
� k2/x ¼ k2hy with k2 ¼ T 55

b1D66

ð35Þ
The solution of the second-order differential equation in Eq. (35) is of the form
/x ¼ Ashky þ B chky � hy ð36Þ
In the equation above, A and B are two integral constants to be determined by boundary conditions. It is easy
to check that the solutions given by Eqs. (36) and (31) satisfy all the boundary conditions in Eq. (30) except the
last one, which will be used to determine the integral constants. Finally, the conditions of Mns = Mxy = 0 at
y = ±a/2 yields B = 0 and
A ¼ 168

85

h
kchðka=2Þ ð37Þ
Consequently, for an isotropic plate with shear modulus G, Eqs. (12), (14) and (31) plus Eqs. (36) and (37)
yield the nonzero stress components in the twisting plate as:
s12ðy; zÞ ¼ Gc12 ¼
5

4
1� 4z3

3h2

� �
168

85

chky
chðka=2Þ � 2

� �
þ 2

z
4
� 5z3

3h2

� �� �
Gh ð38Þ

s13ðy; zÞ ¼ Gc13 ¼ G
5

4
1� 4z2

h2

� �
168

85

hshky
kchðka=2Þ ¼

42

17

shky
kchðka=2Þ 1� 4z2

h2

� �
Gh ð39Þ
The solution in Eq. (39) is similar to the result given by Reissner (1945), but the in-plane shear stress s12 given
in Eq. (38) has only a similar distribution along the plate width direction with Reissner’s result, but a different
distribution in the thickness coordinate, as the present stress is a cubic function of z while the one given by
Reissner is linear corresponding to the first-order shear deformation.

The edge effects of the stress distributions near the plate edges with y = ±a/2 are clearly illustrated in the
present solutions. For example, Eq. (39) indicates that transverse shear stress s13, which is neglected in the
classical plate theory, has its maximum value s13(y, 0) aty = ±a/2, and drops down to zero at a distance away
from y = ±a/2 as illustrated in Figs. 1b and 2a, in which k ¼

ffiffiffiffi
84
85

q ffiffiffiffi
10
p

h for isotropic material is used. These two
figures also illustrate that the transverse shear stress only distributes in a narrow zone near the plate edge in the
length order of magnitude of the plate thickness h in the both cases of a moderate thick plate with a/h = 20
and a thick plate with a/h = 5.

The solutions in Eqs. (38) and (39), obtained from the present two-dimensional theory with third-order
shear deformation, can be compared with the solutions of Saint-Venant torsion theory given by theory of
elasticity. Take the extreme case of a plate with square cross-section, a = h, as an example, even though the
structure in this case is no longer able to be modeled as a plate. The distribution of transverse shear stress
s13(y, 0) in this case is illustrated in Fig. 2b. The maximum values of shear stresses given by Eqs. (38) and
(39) are



Fig. 1. Transverse shear stress distribution in the torsion of a rectangular plate with a/h = 20.

Fig. 2. The transverse shear stress distributions in the torsion of thick plates.
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a ¼ h
s12 0; h

2

� �
¼ �1:34Gh h

2

s13
a
2
; 0

� �
¼ 1:44Gh h

2

(
ð40Þ
In the exact solutions of 3-D elasticity, the two numerical factors in the equations above would be the same
and have a value of 1.33 (Timoshenko and Goodier, 1970); the value given by Reissner is 1.21 for s12 and 1.45
for s13, respectively. Because the transverse shear stress s12 reaches its maximum value on the plate surfaces
where z = ±h/2, a better results for s12 is achieved by the present theory because of the nonlinear distribution
in the thickness direction.

The limiting values of these two shear stresses for very large values of a/h (i.e. thin plates) given by Eqs. (38)
and (39) are
when
a
h
� 1

s12 0; h
2

� �
¼ �2:00Gh h

2

s13
a
2
; 0

� �
¼ 1:56Gh h

2

(
ð41Þ
The present value for s12 is the same as that given by Reissner, but the value for s13 given by Reissner is 1.58.
The resultant torque Ttotal contributed by s12 and s13 at a cross-section can be evaluated as
T total ¼
Z a=2

�a=2

Z h=2

�h=2

ðs12zþ s13yÞdzdy

¼ 1

6
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85

84

r
2hffiffiffiffiffi
10
p

a
th

ffiffiffiffiffi
84

85
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10
p

a
2h

 !
� 1

" #
þ 1

6
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84

85

r
2hffiffiffiffiffi
10
p

a
th

ffiffiffiffiffi
84

85

r ffiffiffiffiffi
10
p

a
2h

 !
� 1

" #( )
Ghh3a

¼ �k1Ghh3a with k1 ¼
1

3
1� 1

2

ffiffiffiffiffi
84

85

r
þ

ffiffiffiffiffi
85

84

r !
2hffiffiffiffiffi
10
p

a
th

ffiffiffiffiffi
84

85

r ffiffiffiffiffi
10
p

a
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 !" #
ð42Þ
The values k1 evaluated from Eq. (42), the exact values k1,ex from elasticity theory (Timoshenko and Goodier,
1970), the values k1,Re given by Reissner, and those k1,CPT from classical plate theory are tabulated in Table 1.
The results in the table show that present solutions for the resultant torque also agree very well with the solu-
tions of 3-D elasticity.

This example also indicates that the new boundary condition ow
os , which has been identified here for the first

time in all shear flexible plate theories, really plays a role in solving some types of problems, as it makes the



Table 1
Coefficients for the resultant torque acting on the edge of rectangular plate

a/h 1 2 1
k1 0.140 0.228 0.333
k1,ex 0.1406 0.229 0.333
k1,Re 0.139 0.228 0.333
k1,CPT 0.333 0.333 0.333
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condition of the shear force on the tangential direction of the twisting-axis to be satisfied naturally in the pres-
ent application.

5. Bending of a cantilevered beam with a point load acting at the free end

Since a cantilevered beam has the typical types of boundaries, a free end and a clamped end, a cantilevered
beam of thickness h with a concentrated load P acting at the free end is considered here. Taking the coordinate
origin at the free end and the beam axis as x-coordinate, and setting l be the length, EI the flexural rigidity, T

the transverse shearing stiffness, then the equilibrium equations in Eqs. (21) and (23) for such a beam reduce
to:
EI
o

ox
85

84

o/x

ox
þ 1

84

o
2w

ox2

� �
� T /x þ

ow
ox

� �
¼ 0 ð43Þ

T
o

ox
/x þ

ow
ox

� �
� EI

84

o2

ox2

o/x

ox
þ o2w

ox2

� �
¼ 0 ð44Þ
The three boundary conditions associated with the higher-order theory at the free end and the three con-
ditions at the clamped end are:
Mnð0Þ ¼ D
85o/x

84ox
þ o2w

84ox2

� �����
x¼0

¼ 0

M�
nð0Þ ¼ D

o/x

84ox
þ o2w

84ox2

� �����
x¼0

¼ 0

Qnð0Þ ¼ T /x þ
ow
ox

� �
� D

o
2/x

84ox2
þ o

3w
84ox3

� �� �����
x¼0

¼ P

wðlÞ ¼ 0; /xðlÞ ¼ 0;
ow
ox

����
x¼l

¼ 0

ð45Þ
It should be noticed that in the present theory the physical conditions on the shearing constraint at the
clamped end are that both /x(l) = 0 and ow

ox jx¼l ¼ 0. But only /x(l) = 0 can be chosen as a boundary condition
in the first-order shear deformation theory (Hu, 1981).

It is worthwhile to compare the equilibrium equations of beams in the present theory with those given by
Bickford (1982) and those reduced from the plate theory proposed by Reddy (1984a). The equilibrium equa-
tions of Bickford and Reddy for an isotropic beam of unit width with shear modulus G are of the form:
EI
o

ox
68

105

o/x

ox
� 16

105

o2w
ox2

� �
� 8Gh

15
/x þ

ow
ox

� �
¼ 0 ð43-BÞ

8Gh
15

o

ox
/x þ

ow
ox

� �
� EI

o
2

ox2

5

105

o
2w

ox2
� 16

105

o/x

ox

� �
¼ 0 ð44-BÞ
It can be seen from Eqs. (43-B) and (44-B) that the equivalent transverse shear stiffness in the theories of Bick-
ford and Reddy is 8

15
Gh instead of 5

6
Gh given in Eq. (17) which is obtained from the equivalence of transverse

shear strain energy.
By defining the relation
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c ¼ /þ ow
ox

ð46Þ
It follows that Eqs. (43) and (44) can be rewritten as:
EI
o2/x

ox2
þ EI

84

o2c
ox2
� T c ¼ 0 ð43aÞ

T
oc
ox
� EI

84

o
3c

ox3
¼ 0 ð44aÞ
Therefore, the two simultaneous differential equations in Eqs. (43) and (44) can be replaced by the three simul-
taneous differential equations Eqs. (46), (43a) and (44a) with total differential order of six. An efficient ap-
proach to solve the simultaneous equations in Eqs. (43a) and (44a) was presented by Shi (2007). The six
integral constants can be determined by Eq. (45). Using the solution technique proposed by Shi (2007), one
obtains the generalized deflection and rotation of the beam as
wðxÞ ¼ �a
Pl3

3EI
1� 3

2

x
l
þ 1

2

x
l

� 	3
� �

� a
Pl3

5EI
ð1þ mÞ h

l

� �2

1� x
l

� 	" #

þ a
Pl3

5EI
ð1þ mÞ h

l

� �3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ mÞ

420

r
1

chkl
ðshkl� shkxÞ

" #
ð47Þ

/xðxÞ ¼ a
Pl2

2EI
x
l

� 	2

� 1

� �
ð48Þ

with a ¼ chkl
chkl� 2

; k2 ¼ 84T
EI
¼ 420

ð1þ mÞh2
ð49Þ
where m is the Poisson’s ratio of the material. The first part in the expression of the deflection in Eq. (47) is the
solution given by the elementary theory; the second term is the contribution of the transverse shearing eval-
uated from the first-order shear deformation theory (Timoshenko beam theory); and the last term with param-
eter ðhl Þ

3 is the modifying term resulting from the higher-order shear deformation. The factor ðhl Þ
3 indicates

that influence of the higher-order shear deformation on the deflection is negligible when the length l of a beam
is few times larger than its thickness h.

The solution of elasticity theory for this problem is not unique, as the determination of integral constants
depends on the manner how the clamped end is fixed (Timoshenko and Goodier, 1970). When the boundary con-
dition ow

ox ¼ 0 is used, there is no influence of shear deformation on the solution, but when the boundary condition
ou
oz ¼ 0 is chosen, a solution with the effect of transverse shear deformation is obtained, which is similar to the sit-
uation in the first-order shear deformation theory (Hu, 1981). The first two terms in the present result are the same
as the deflection curve of the beam axis given by the elasticity theory with the condition ou

oz ¼ 0 at the clamped end
(Timoshenko and Goodier, 1970) except the parameter a ¼ chkl

chkl�2
appearing in the present solution. Bickford

(1982) also solved this problem using the variational consistent higher-order theory based on Levinson’s kine-
matics of displacements. His result for the deflection is similar to Eq. (47), but there is no the square root sign
in the third term and no multiplier parameter a ¼ chkl

chkl�2
for the whole expression neither. The missing of the square

root sign in Bickford’s result seems a typing error or a minor calculating error in the derivation.
The maximum deflection occurs at the free end of the cantilevered beam. By substituting x = 0 into Eq.

(47), one has
wð0Þ ¼ �a
Pl3

3EI
1þ 3

5
ð1þ mÞ h

l

� �2

� 3

5
ð1þ mÞ h

l

� �3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ mÞ

420

r
shkl
chkl

" #
ð50Þ
If the length l of the beam is several times larger than its thickness h, say l/h > 5, then
kl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
420=ð1þ mÞ

p
ðl=hÞ � 1 leads to a = chkl/(chkl � 2) = 1 and shkl/chkl = 1. Therefore the deflection at

the middle of the beam can be approximated as



Fig. 3. The shear force distributions along cantilevered beams of different aspect ratios.

Fig. 4.
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wð0Þ ¼ � Pl3

3EI
1þ 3

5
ð1þ mÞ h

l

� �2

� 3

5
ð1þ mÞ h

l

� �3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ mÞ

420

r" #
ð51Þ
Eqs. (47) and (48) lead to the shear force as an internal force of a beam is
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The result of shear force given by the elementary theory is Q1(x) = P. The present solution given by Eq. (52)
reduces to Q1(x) = P except at the narrow zones within a very small distance from the clamped end when
kl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
420=ð1þ mÞ

p
ðl=hÞ � 1. Fig. 3 illustrates the Q1(x) distributions of a thick beam with l/h = 5 and a thin

beam of l/h = 50 where m = 0.3 is used. The inset in Fig. 3c is the enlarged shear force distribution near the
clamped end. Fig. 3b and c also shows that the ‘‘transiting zone’’ of shear force at the beam clamped boundary
is less than the beam thickness h in both thick and thin beams. Therefore, the present result of shear force
function in Eq. (52) is both capable of characterizing the boundary effects caused by the concentration of ap-
plied loads or boundary conditions and consistent with the elementary theory.

Although the deflection given by Bickford (1982) is almost the same as that obtained from the present third-
order theory, his result for the internal force of shear force (Eq. (8b) in Bickford’s paper, 1982) is
½Q1ðxÞ�B ¼
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3
hG /x þ
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which is totally different from the result in the mechanics of materials, and it differs from the solution in Eq.
(52) even after omitting the parameter a ¼ chkl

chkl�2
. As a matter of factor, the internal force of shear force Q1(x)

given by Reddy’s theory (1984a,b) would be the same as that given by Bickford as shown in Eq. (6).

6. Simply supported rectangular plates with uniformly distributed transverse load

The deflection and stress analysis of simply supported rectangular plates made of isotropic and orthotropic
materials under the action of uniformly distributed transverse load q0 are studied in this section. The plate has
the dimension a in the x-direction, b in the y-direction, and thickness h. The boundary conditions of the plates
under consideration have the form as those in Eq. (28a) as shown in Fig. 4.
Distributions of the transverse shear stresses across the thickness of simply supported square plates under the action of uniformly
uted load.
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6.1. The Navier solution procedure of rectangular plates

The analysis of the deflection and stresses of simply supported rectangular plates can be solved by the Fou-
rier series expansion method proposed by of Navier (Timoshenko and Woinowsky-Krieger, 1987). The trial
functions satisfying the boundary conditions in Fig. 4 take the form:
wðx; yÞ ¼
X1

m;n¼1

W mn sin
mp
a

x sin
np
b

y

/xðx; yÞ ¼
X1

m;n¼1

Uxmn cos
mp
a

x sin
np
b

y

/yðx; yÞ ¼
X1

m;n¼1

Uymn sin
mp
a

x cos
np
b

y

ð54Þ
The uniform transverse load q0 can be expanded as
q0 ¼
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Substituting Eqs. (54) and (55) into Eqs. (21)–(23), one obtains that
A11 A12 A13

A12 A22 A23

A13 A23 A33

2
64

3
75

Uxmn

Uymn

W mn

8><
>:

9>=
>; ¼

0

0

Qmn

8><
>:

9>=
>; with m; n ¼ 1; 3; 5; . . . ð56Þ
The coefficients Qmn of the given load expansion in the equation above are defined in Eq. (55). By making a use
of n ¼ mp

a and g ¼ np
b , the entities in the matrix of Eq. (56) are of the form:
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The flexural and shearing rigidities, Dij and Tkk, are given in Eq. (17). By solving Eq. (56) for each m and n, the
expansion coefficients of Fourier series in Eq. (54) can be obtained. The stresses in the plate can be evaluated
from Eqs. (1), (10)–(14) and (54).
6.2. Isotropic thin plates

In order to study the convergence rate of the Fourier series expansions based on the present third-order
plate theory, the analysis of simply supported thin plates of isotropic materials is considered first because
the closed form solutions of such plates are available (Timoshenko and Woinowsky-Krieger, 1987). The cen-
tral deflection and the central normal stress in the x-direction of a plate are the values given by the following
expressions:
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The nondimensional central deflections and normal stresses with aspect ratios a/h = 100 obtained, respective-
ly, by using a single term expansion, nine terms of expansion (m,n = 1,3,5), and one hundred terms of expan-
sion (m,n = 1,3, . . . , 19) are listed in Table 2, where E is the Young’s modulus, and Poisson ratio m = 0.3 is
used. The values in the columns under HSDT-R in the table are the results given by Reddy (1984a) using
m,n = 1,3, . . . , 19. The results in the table show that the Fourier series solutions using the present theory con-
verge quite fast. For instance, the nine terms of expansion yield almost the exact solutions.

6.3. Orthotropic plates

Let the plane of elastic symmetry of the orthotropic plates be the x–y plane (or the x1 � x2 plane), the mate-
rial properties used by Reddy (1984a) are:
C11 ¼
E1

1� m12m21

; C12 ¼
m12E2

1� m12m21

; C22 ¼
E2

1� m12m21

;

C44 ¼ G23 ¼ 6:19� 106 psi; C55 ¼ G13 ¼ 3:71� 106 psi; C66 ¼ G12 ¼ 6:10� 106 psi
with
E1 ¼ 20:83� 106 psi; E2 ¼ 10:94� 106 psi; m12 ¼ 0:44; m21 ¼ 0:23
where 1 psi = 6895 N/m2. It should be pointed out that the engineering constants given above do not exactly
satisfy the symmetric condition of the stiffness matrix such as m21E1 = m12E2, nevertheless when the form of
constitutive equation C21 = C12 in Eq. (1) is used, it does nor present major problem.

The results of deflections and stresses of a rectangular plate with b/a = 2 and a square plate with different
aspect ratios of h/a are tabulated in Table 3. The normal stresses r1 in Table 3 are the maximum stresses at the
plate center as defined in Eq. (57), and transverse shear stresses are the values at the mid-side of the edge with
x = 0, i.e., s13 ¼ s13ð0; b

2
; 0Þ. The results under the column of Exact in the table are those given by Srinivas and

Rao (1970). The values in the columns under HSDT-R in the table are the results given by Reddy (1984a). The
FSDT results are taken from Reddy’s paper. The values with a superior letter ‘a’ for transverse shear stress s13

are the results evaluated from the stress equilibrium equations of elasticity. It should be pointed that two cor-
rections were made for the numbers taking from the Table 2 in Reddy’s paper. First, the multiplier used for
the deflections in the table should be the elastic coefficient Q11 in Eq. (8a) of Reddy’s paper (that is C11 in Eq.
(1) in the present paper), but not the first coefficient in Eq. (57). Second, in the table of the Reddy’s paper, his
results of the transverse shear stresses evaluated from the stress equilibrium equations based on the in-plane
stresses were wrongly positioned with the results of Srinivas and Rao evaluated from the stress equilibrium
equations. However, the transverse shear stress curve in Fig. 1 of Reddy’s paper for a thick square plate with
a/h = 10 shows the correct value of the transverse shear stress evaluated from the stress equilibrium equations
given by Reddy’s theory as illustrated in Fig. 4. Because the kinematics of displacements in the present theory
were derived from the assumed distributions of the transverse shear stresses and the stress equilibrium equa-
tions of elasticity, the stress equilibrium equations in the present yield almost the same results given by the
constitutive equations of plates.
2
nvergence of Fourier series solutions of the plate central deflections and normal stresses (a/h = 100)

wc(h
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m,n = 1 m,n = 1,3,5 m,n = 1,3, . . . , 19 Navier HSDT-R m,n = 1 m,n = 1,3,5 m,n = 1,3, . . . , 19 HSDT-R

0.04546 0.044439 0.044398 0.044335 0.0444 0.32033 0.28944 0.28731 0.2873
0.11635 0.11075 0.11065 0.11062 0.1106 0.67809 0.61378 0.6107 0.6100



Table 3
Comparisons of deflections and stresses in orthotropic rectangular plates under uniform transverse load (m,n = 1,3, . . . ,19)

b/a h/a wcC11/hq0 (r1)c/q0 s13/q0

Exact Present HSDT-R FSDT Exact Present HSDT-R FSDT Exact Present HSDT-R FSDT

2 0.05 21,542 21,542 21,542 21,210 262.67 262.65 262.6 262.2 14.048 14.037 13.98 11.20
11.40a 14.013a 13.57a 14.00a

0.10 1408.5 1408.9 1408.5 1408.5 65.975 65.883 65.95 65.38 6.927 6.944 6.958 5.599
6.998a 6.856a 6.229a 6.998a

0.14 387.23 388.70 387.5 348.76 33.862 33.809 33.84 33.27 4.878 4.934 4.944 3.998
4.997a 4.842a 4.027a 4.999a

1 0.05 10,443 10,450 10,450 104,50 144.31 144.30 144.3 143.9 10.875 10.873 10.85 8.701
10.88a 10.88a 10.45a 10.88a

0.10 688.57 689.46 689.5 689.6 36.021 36.012 36.01 35.62 5.341 5.375 5.382 4.338
5.422a 5.331a 4.657a 5.442a

0.14 191.07 191.91 191.6 119.6 18.346 18.321 18.34 17.94 3.731 3.798 3.805 3.086
3.857a 3.751a 2.884a 3.887a

a The values evaluated from the stress equilibrium equations.
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It can be seen from Table 3, the deflections and normal stresses given by the present theory are the same as
those given by Srinivas and Rao and Reddy even for the thick plates with h/a = 0.14. But there are some dif-
ferences in the results of the transverse shear stress s13 of thick plates predicted from the first three different
theories in the table. The values of present s13 results evaluated form the constitutive equations are between
the values predicted from the constitutive equations and the values evaluated from the stress equilibrium equa-
tions presented by Srinivas and Rao. The different s13 results predicted from the present simple HSDT and
Reddy’s HSDT can be expected when the transverse shears play an important role in the case of thick plates,
as the different definitions of transverse shear strains as shown in Eqs. (14) and (6) are employed. The results in
Table 3 also show that, as concluded by Reddy (1984a), the stress equilibrium equations using the in-plane
stress results given by Reddy’s HSDT theory underestimate the transverse shear stresses when plate becomes
thicker as illustrated in Fig. 4 for the case of a square plate with a/h = 10, see also Fig. 1 in Reddy’s paper.
7. Discussions and conclusions

A new two-dimensional theory with third-order transverse shear deformations is proposed for the bending
analysis of shear flexible plates in this paper. This variational consistent theory of shear flexible plates consists
of following three parts:

(1) a rigorous third-order kinematics of in-plane displacements reduced from the higher-order displacement
field that was based on the elasticity theory and derived by the author previously;

(2) a 10th-order system of simultaneous differential equilibrium equations in terms of three generalized dis-
placement functions /x, /y and w0 of bending plates;

(3) five boundary conditions associated with each edge of plate boundaries as opposed to only four condi-
tions in Reddy’s theory (1984a,b).

The resulting displacement field is the same as that proposed by Murthy (1981), however the variational
consistent governing equations and the associated proper boundary conditions are derived and identified in
this paper for the first time in the literature.

The new third-order shear deformation theory of plates is applied to analytically solve one torsion analysis
of rectangular plates and some bending problems of beams and plates with different boundary conditions and
aspect ratios. The 3-D elasticity solutions of these problems are available, and the excellent agreements
between the present solutions and the elasticity solutions are achieved even for the torsion of a plate with
square cross-section and the local characters of stresses at boundaries are captured in the examples of twisting
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plate and bending beam. The resulting analytical solutions in this work clearly demonstrate that the present
simple third-order theory has the following features.

1. Comparing with FSDT of plates, besides there is no need for the shear correction factor, the higher-order
shear deformations give better solutions in the analysis of shear flexible plates. This is because: the higher-
order shears can yield a higher-order (in terms of h/a, the ratio of thickness to length) modifying term to the
solution of deflection given by FSDT; it is capable of capturing boundary layer effects; and its associated
boundary conditions are more convenient to model the boundary conditions for some problems.

2. Comparing with other simple HSDTs for bending plates, the present simple third-order shear deformation
theory is more rigorous, for the kinematics in the present theory is derived from elasticity theory and the
boundary conditions are consistent with the system of differential equations. For instance, the theories
based on Levinson’s kinematics are not able to yield the correct value of the transverse shear strain energy
even for the case of beams with isotropic materials, and the four boundary conditions for each boundary in
Reddy’s theory (1984a,b) are not consistent with the 10th-order differential equations in the theory. As a
result, the present simple HSDT could yield more reliable and accurate solutions than other simple HSDTs
in the bending analysis of plates.

The analytical solutions of the new HSDT presented in this work also illustrate that the special features of
the higher-order shear deformations, such as the higher-order deflection corrections to the results given by
FSDT and the boundary layer effect of stresses, can only be studied by the analytical approach.

This paper only presents the derivations of the governing equations for the static analysis of shear flexible
plates made from orthotropic materials. But the application of the present theory to the analysis of layered
composite plates would be straightforward by using the corresponding constitutive equations of each lamina
for the equivalent rigidity evaluation of composite plates in Eq. (17), which is just like the applications of other
shear flexible plate theories (see Reddy, 1984b; and others); the geometric nonlinear analysis of plates can eas-
ily be achieved by incorporating the von Karman nonlinear stains as presented by Reddy (1984a), and by Shi
and Voyiadjis plus the formulation for large rigid rotations (Shi and Voyiadjis, 1991); and by making use of
the Hamilton’s principle (Reddy, 1984a; Shi and Lam, 1999) it will be very easy to apply the present theory to
the dynamic analysis of laminated plates. Hence, the present simple HSDT provides an accurate theory for the
analysis of shear flexible plates. Furthermore, by using the assumed strain approach, the shear flexible plate
elements free from the shear locking can be formulated (see Shi and Voyiadjis, 1991; Shi et al., 1999); and the
C0 plate element can also be developed by introducing the first-order transverse shear strains as independent
variables as presented by Shi et al. (1999).
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