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We study the degenerate, the star and the degenerate star
chromatic numbers and their relation to the genus of graphs. As a
tool we prove the following strengthening of a result of Fertin et al.
(2004) [8]: If G is a graph of maximum degree ∆, then G admits a
degenerate star coloring using O(∆3/2) colors. We use this result to
prove that every graph of genus g admits a degenerate star coloring
with O(g3/5) colors. It is also shown that these results are sharp up
to a logarithmic factor.

© 2011 Elsevier Ltd. All rights reserved.

1. Concepts

Let G = (V , E) be a graph. An n-coloring of G is a function f : V → N such that |f (V )| ≤ n. We
say that f is a proper coloring if f (x) ≠ f (y) for every edge xy ∈ E. A color class Ci of f is the set
f −1(i), where i ∈ f (V ). Two colorings f and g of G are said to be equivalent if the partitions of V into
color classes of f and g are equal. Suppose that for each vertex v ∈ V (G) we assign a list L(v) ⊂ N
of admissible colors which can be used to color the vertex v. A list coloring of G is a coloring such that
f (v) ∈ L(v) for each v ∈ V . If for any choice of lists L(v), v ∈ V , such that |L(v)| ≥ k, there exists a
proper list coloring of G, then we say that G is k-choosable. The list chromatic number of G, denoted as
ch(G), is the least k, such that G is k-choosable.

A proper coloring of G, such that the union of any two color classes induces a forest, is called an
acyclic coloring. The acyclic chromatic number of G, denoted as χa(G), is the least n such that G admits
an acyclic n-coloring.

The notion of a degenerate coloring is a strengthening of the notion of an acyclic coloring. A graph
G is k-degenerate if every subgraph of G has a vertex of degree less than k. A coloring of a graph such
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Fig. 1. An example of a star coloring which is not degenerate.

that for every k ≥ 1, the union of any k color classes induces a k-degenerate subgraph is a degenerate
coloring. The degenerate chromatic number of G, denoted as χd(G), is the least n such that G admits a
degenerate n-coloring.

A proper coloring of G, with no two-colored P4 is called a star coloring. This is equivalent to saying
that the union of any two color classes induces a star forest, i.e. a subgraph whose every component
is a star K1,t for some t ≥ 0. The least n such that G admits a star coloring with n colors is called the
star chromatic number of G, denoted as χs(G).

If a coloring is both degenerate and star, then we speak of a degenerate star coloring. The
corresponding chromatic number is denoted as χsd.

A proper list coloring is an acyclic coloring if the union of any two color classes induces a forest. The
acyclic list chromatic number cha is the least n, such that for any assignment of lists of size n, there is an
acyclic list coloring of G. The definitions of list versions for all other types of chromatic numbers are
analogous to their non-list versions andwe denote the list versions of chromatic numbers by cha, chd,
chs and chsd.

Clearly, χa(G) ≤ χd(G) ≤ χsd(G) and χa(G) ≤ χs(G) ≤ χsd(G). However χd(G) and χs(G) are not
comparable. To see this, note that the degenerate chromatic number of a tree is two. However, for any
tree T which is not a star, χs(T ) ≥ 3. In Fig. 1 we give an example of a graph whose star chromatic
number is four, but has no degenerate four-coloring (since its minimum degree is four).

It is well known that the list chromatic number of a graph of genus g is O(g1/2) (see e.g., [11]).
For acyclic colorings, Borodin proved in [6,7] that every planar graph admits an acyclic 5-coloring and
thereby solved a conjecture proposed by Grünbaum [9]. Alon et al. [3] determine the (asymptotic)
dependence on the acyclic chromatic number for graphs of genus g , where g is large. The
corresponding bounds for the acyclic list chromatic number have not appeared in the literature, but
the proof in [3] can be rather easily adapted to give the same bounds for the list chromatic version.

It is also conjectured in [5,7] that every planar graph can be colored with five colors, so that the
union of any k-color classes induces a k-degenerate graph for k = 1, . . . , 4. Rautenbach [16] proved
the existence of degenerate colorings of planar graphs using eighteen colors. This result was recently
improved to nine colors in [10]. However, for nonplanar graphs, this type of coloring has not been
treated before.

In [1] it was proved that every planar graph admits a star coloring with twenty colors and that the
star chromatic number of a graph of genus g is O(g).

The aim of this paper is to establish upper and lower bounds for the degenerate and the star
list chromatic numbers. We prove that the degenerate star choice number of a graph of genus g is
O(g3/5) thereby improving the bound O(g) given in [1]. We also prove that our bound is sharp up to a
logarithmic factor. These results in particular solve Problem 3 proposed in [1, Section 8]. The results
of this paper and previously known results are collected in Table 1.

Nešetřil and Ossona de Mendez studied some of these questions in a greater generality. In
particular, they considered star colorings in arbitrary minor closed families of graphs [13,14].
Cf. also [15].
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Table 1
Bounds for chromatic numbers in terms of the genus (g).

Planar Upper bound Lower bound

ch(G) 5 O(g1/2) Ω(g1/2)

cha(G) ≤ 7 O(g4/7) Ω(g4/7/ log(g)1/7)
chd(G) ≤ 9 O(g3/5) Ω(g4/7/ log(g)1/7)
chs(G) ≤ 20 O(g3/5) Ω(g3/5/ log(g)1/5)
chsd(G) – O(g3/5) Ω(g3/5/ log(g)1/5)

2. Probabilistic approach

In this section we give upper bounds on the degenerate star choice number in terms of the
maximum degree. The proof uses the probabilistic method in a way similar to that used in [2,8]
in the case of acyclic and star colorings. It is based on the Lovász Local Lemma but the proof is
more complicated than the corresponding proofs in [2,8]. We refer to [12] for applications of the
probabilistic method to graph colorings.

For X, Y ⊆ V we denote by E(X, Y ) the set of edges with one endvertex in X and the other in Y .

Observation 2.1. Let G be a graph with minimum degree k ≥ 2 and let f be a proper k-coloring of
G. If S is a non-empty subset of a color class Ci of f , then there exists a color class Cj of f , such that
|E(S, Cj)| ≥

k
k−1 |S| > |S|.

Proof. Each vertex in S has degree at least k. Therefore,−
j≠i

|E(S, Cj)| ≥ k|S|,

which implies the claimed inequalities. �

To prove the main result of this section, we will use the Lovász Local Lemma stated below (cf. [4]
or [12]).

Lemma 2.2. Let A1, A2, . . . , An be events in an arbitrary probability space. Let H = (V , E) be a graph
whose vertices V = {1, 2, . . . , n} correspond to the events A1, A2, . . . , An and whose edge-set satisfies
the following: for each i, the event Ai is mutually independent of the family of events {Aj | ij ∉ E}. If there
exist real numbers 0 ≤ wi < 1 such that for all i

Pr(Ai) ≤ wi

∏
ij∈E

(1 − wj)

then

Pr

∧

n
i=1 Āi


≥

n∏
i=1

(1 − wi) > 0,

so that with positive probability no event Ai occurs.

Any graph H satisfying the condition stated in the above lemma is called a dependency graph for
the events A1, . . . , An.

The following theorem is themain result of this section. It is provedwithout an attempt to optimize
the constant.

Theorem 2.3. For any graph G with maximum degree ∆ there is a degenerate star list coloring of G
whenever the list of each vertex contains at least ⌈1000∆3/2

⌉ admissible colors. Moreover, a list coloring
exists such that for every vertex v of degree at most ∆1/2, all neighbors of v are colored differently. In
particular χsd(G) ≤ ⌈1000∆3/2

⌉.

Proof. Let G be a graph with maximum degree ∆ and let α = ⌈1000∆3/2
⌉. Suppose that for each

vertex v of G a list L(v) of admissible colors is given and that |L(v)| = α. Consider the uniform
probability space of all list colorings of G. Then each list coloring of G appears with equal probability.
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Fig. 2. The set of graphs X = {A, B, C,D, E, F , I, J, K , L,M, S, T }.

We will apply the Lovász Local Lemma to show that in this probability space, a coloring of G is
a degenerate star list coloring, and has additional properties as stated in the theorem, with positive
probability. For this purpose, we define events of several types and show that if none of them occurs,
then the coloring is a degenerate star list coloring with the required properties.

A pair of vertices at distance two having at least∆1/2 common neighbors is called a special pair. We
next define a familyF of subgraphs of G. On Fig. 2we give a set of graphsX and for each graph X ∈ X,
a coloring gX (as shown) is given. Suppose that R is a subgraph of G isomorphic to X ∈ X − {S, T } and
let i: V (X) → V (R) be an isomorphism of these two graphs. If for every pair a, b ∈ V (X), having the
same color under gX , the pair i(a), i(b) is not a special pair in G, then R is in F . Moreover, F contains
all special pairs of vertices and all paths x1x2x3 such that degG(x2) ≤ ∆1/2.

Let f be a random list coloring of G. For R ∈ F , denote by XR the event that the induced coloring f|R
on R is equivalent to the coloring gX , where R ∈ F , X ∈ X and R ∼= X . We refer to an event XR as an
event of type X.

Claim 0. If no event XR occurs for X ∈ X, and R ∈ F , then the coloring f of G is a degenerate star
coloring such that for every vertex of degree≤ ∆1/2 all its neighbors are colored by pairwise different
colors.

Proof. Let us observe that the definition of the set F includes the condition that vertices of the same
color do not form a special pair. However, knowing that events of type S do not occur, we may simply
forget about this condition in the rest of the proof. In particular, if a subgraph X of G is isomorphic to
some Y ∈ X − {S, T }, then its coloring f|X is not equivalent to gY .

Since no event of type A, B, or T occurs, the coloring f is a star coloring such that any vertex of
degree at most ∆1/2 has its neighbors colored by pairwise different colors. It remains to prove that
the coloring is degenerate. Suppose on the contrary, that there is a subgraph Q of G with minimum
degree k colored by k colors. Since f is a proper coloring, we have k ≥ 2. Then there exists a vertex
x ∈ V (Q ) of (say) color 1 adjacent to two vertices y, z of color 2 (see Observation 2.1). Furthermore,
there is a color class P of f|Q , such that |E({y, z}, P)| ≥ 3. Since events of type B do not occur, the color
of P is not 1 or 2. Similarly we see thatN(y)∩N(z)∩P = ∅. As events of type C are excluded, there are
three vertices u, v, w ∈ P , such that u, v are adjacent to y and w is adjacent to z. Let Y = {u, v, w}.
Then there is a color class P ′ such that |E(Y , P ′)| ≥ 4. Since events of type B, D, E, and F do not occur,



344 B. Mohar, S. Špacapan / European Journal of Combinatorics 33 (2012) 340–349

P ′ is distinct from the color classes 1 and 2. If |N(Y ) ∩ P ′
| ≥ 4 then (since B and C do not occur) an

event of type I, K, L or M happens, a contradiction. If |N(Y ) ∩ P ′
| ≤ 3, then a similar argument shows

that either type J or type E event occurs. This contradiction proves the claim. �

Let H be the graph with vertices XR (X ∈ X, R ∈ F , R ∼= X), in which two events XR1 and YR2
(X, Y ∈ X) are adjacent if and only if R1∩R2 ≠ ∅. Since every vertex gets its color independently from
others, XR is mutually independent of the family of events YR′ (Y ∈ X, R′

∈ F , R′ ∼= Y , R ∩ R′
= ∅).

Therefore, the graph H is a dependency graph for the events XR.
Claim 1. Let X ∈ X, R ∈ F and R ∼= X . Then for every Y ∈ X − {S}, the number of events of type Y
adjacent to XR in H is at most 100∆|Y |−1.

Proof. If XR is adjacent to YR′ , then there is a vertex u ∈ R∩ R′. There are |X ||Y | possibilities to choose
a one-vertex intersection of R and R′. Since G has maximum degree ∆ and R′ is connected, there are
at most ∆|R′

|−1 ways to choose the other vertices of R′. It follows that there are at most |X ||Y |∆|Y |−1

graphs isomorphic to Y whose intersection with R is nonempty. The result follows from the fact that
|X | ≤ 10 for all X ∈ X. �

Claim 2. Let X ∈ X, R ∈ F and R ∼= X . Then the number of events of type J adjacent to XR in H is at
most 90∆15/2.

Proof. There are 9|R| ≤ 90 possibilities to choose a one-vertex intersection of R with a graph R′

isomorphic to J . Let i: V (R′) → V (J) be an isomorphism and recall that any pair of vertices a, b in R′

with gJ(i(a)) = gJ(i(b)) is not a special pair. In particular, a pair of vertices in the four-cycle of R′ is
not a special pair. Therefore there are at most ∆1/2 ways to choose a common neighbor of this pair.
Since there is a vertex of R′ that can be chosen in at most ∆1/2 ways, we conclude that there are at
most ∆1/2∆7 ways to chose the graph R′, when a one-vertex intersection of R and R′ is fixed. �

Claim 3. Let X ∈ X, R ∈ F and R ∼= X . Then the number of events of type S adjacent to XR in H is at
most 10∆3/2.

Proof. For a fixed vertex u ∈ R there are less than ∆2 induced paths of length 2 with one endvertex
u. Each special pair of vertices requires ∆1/2 of these paths. Thus there are at most ∆2/∆1/2 vertices
v, such that u, v is a special pair. It follows that the number of special pairs intersecting R is at most
|R|∆3/2

≤ 10∆3/2. �

Claim 4. Let X ∈ X, R ∈ F and R ∼= X . Then the number of events of type T adjacent to XR in H is at
most 30∆3/2.

Proof. If XR and TR′ are adjacent inH , then R and R′ have nonempty intersection. There are atmost 3|R|
ways to choose a one-vertex intersection of R and a path x1x2x3. Since degG(x2) ≤ ∆1/2, the other two
vertices of R′ can be chosen in at most ∆3/2 ways. It follows that there are at most 3|R|∆3/2

≤ 30∆3/2

events of type T adjacent to XR in H . �

The following table gives upper bounds P(XR) onprobabilities of eventsXR of different typesX ∈ X:

Type A, S, T B, C D, E, F, M J I, K, L

P(XR) α−1 α−2 α−4 α−5 α−6

Let us define the weights for the Local Lemma 2.2. For each event XR of type X, let the weight be
wX = 2 P(XR). Set T = X − {J, S, T }. To be able to apply Lemma 2.2 it suffices to show that

P(XR) ≤ wX (1 − wJ)
90∆15/2

(1 − wS)
10∆3/2

(1 − wT )
30∆3/2 ∏

Y∈T

(1 − wY )
100∆|Y |−1

.

To prove this, observe that 1 − nx ≤ (1 − x)n, so it suffices to show that

1
2

≤ (1 − 90wJ∆
15/2)(1 − 10wS∆

3/2)(1 − 30wT∆
3/2)

∏
Y∈T

(1 − 100wY∆|Y |−1).
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But this is easily seen to be true, since the weights for the events are wJ = 2α−5
≤ 2 · 10−15∆−15/2

and wA = wS = wT = 2α−1
≤ 2 · 10−3∆−3/2 and wY ≤ 2 · 10−6∆1−|Y | for Y ∈ X − {J, A, S, T }.

To conclude, Lemma 2.2 applies and shows that there exists a coloring f for which no event XR
(X ∈ X, R ∈ F ) occurs. Finally, Claim 0 shows that f is a coloring whose existence we were to
prove. �

3. Degenerate star colorings for graphs of genus g

An orientation of a graph G is a function h: E(G) → V (G), such that for each edge e = xy ∈ E(G),
h(e) ∈ {x, y}. We call h(e) the head of e and the other endvertex of e the tail of e. Let G be a graph and
h an orientation of G. The set of in-neighbors of v is

N−(v) = {u ∈ V (G) | uv ∈ E(G), h(uv) = v}

and the set of out-neighbors of v is

N+(v) = {u ∈ V (G) | uv ∈ E(G), h(uv) = u}.

If c is a coloring of G, we define the set of in-colors C−(v), and out-colors C+(v) of v as C±(v) = {c(u) |

u ∈ N±(v)}.
The following lemma is a simple yet effective tool for recognition of star colorings. We prove it for

the sake of completeness although an equivalent result appears in [1] and some other papers.

Lemma 3.1. A proper coloring of G is a star coloring if and only if the edges of G can be oriented so that
for every vertex v

|N−(v)| = |C−(v)| and C−(v) ∩ C+(v) = ∅.

Proof. Suppose that c is a star coloring of G. Then the union of any two color classes induces a star
forest. Orient the edges with one endvertex in color class A and the other in color class B so that the
tail of each edge is the root of a star induced by A and B (the root of a star, which is not a K2, is the
vertex of degree at least two, and the root of K2 is any vertex of K2). It is straightforward that so defined
orientation satisfies both conditions from the lemma.

Conversely, let c be a proper coloring of G and h an orientation of Gwith properties as stated in the
lemma. Suppose that x1x2x3x4 is a two-colored path on four vertices and (without loss of generality)
assume that h(x2x3) = x3. Since the in-neighbors of x3 are colored by pairwise different colors, we
have h(x3x4) ≠ x3. Since C−(v) ∩ C+(v) = ∅ we see that h(x3x4) ≠ x4, a contradiction. �

The following observation will be used in a recursive construction of degenerate colorings.

Observation 3.2. Let G be a graph and let c be a degenerate coloring of a vertex-deleted subgraph G− v.
If the neighbors of v are colored by pairwise distinct colors and we color v by a color which is different
from all of those colors, then the resulting coloring of G is degenerate.

We are ready for our main result. Its proof is given without intention to optimize constants. Let us
recall that a surface has Euler genus g if its Euler characteristic is equal to 2 − g .

Theorem 3.3. Let G be a simple graph embedded on a surface of Euler genus g. Then chsd(G) ≤

⌈1000g3/5
+ 100000⌉.

Proof. LetΣ be a surface of Euler genus g , and letG be a graph embedded onΣ . For a vertex v ∈ V (G),
let L(v) be the list of admissible colors.We shall prove a stronger statement thatG admits a degenerate
star list coloring from lists of size at least α := ⌈1000g3/5

+100000⌉, such that every vertex of degree
≤ 12 has its neighbors colored by pairwise distinct colors. We will reduce the graph G by using a
sequence of edge contractions so that in the resulting graph G0 the number of vertices of degree at
least∆0 := ⌈

1
4g

2/5
+12⌉ is at most α0 := ⌈48g3/5

⌉. We say that a vertex v of G is reducible if its degree
is either at most two, or its degree is equal to 5 − i and v is adjacent to a vertex of degree ≤ 9 + i for
some i ∈ {0, 1, 2}.
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We define a sequence of graphs G = Gℓ,Gℓ−1, . . . ,G0 as follows. We start with Gℓ = G, and the
precise value of ℓ will be determined later. Suppose that we have the graph Gt . If it has no reducible
vertices, then we stop and adjust the indices so that the current graph is G0 and ℓ is the number of
reductions used to get G0 from G. Otherwise, let v be a reducible vertex of Gt . In order to obtain Gt−1,
we perform the following reduction. If v has degree at most 1, then delete v; if v has degree 2, then
delete v and add an edge between the neighbors of v (if not already present). Otherwise, v is of degree
5 − i where i ∈ {0, 1, 2}. In this case contract the edge joining v and a neighbor u of degree at most
9 + i (and delete possible multiple edges that appear after the contraction). The new vertex inherits
the list L(u) of admissible colors from u.

Let the vertex set of G0 be {v1, v2, . . . , vn}, where deg(vi) ≤ deg(vi+1) for i = 1, . . . , n − 1.

Claim 0. The number of vertices in G0 of degree at least ∆0 is at most α0.

Proof. Suppose (reductio ad absurdum) that deg(vk) ≥ ∆0, where k = n − α0. Since G0 is a minor of
G, it has an embedding in the same surfaceΣ of Euler genus g as G has. LetF be the set of faces of this
embedding. Let c(vi) = deg(vi) − 6 for i = 1, . . . , n and for each face f ∈ F let c̄(f ) = 2 deg(f ) − 6,
where deg(f ) is the length of f . Euler’s formula for Σ implies (cf., e.g., [11]) that

n−
i=1

c(vi) +

−
f∈F

c̄(f ) ≤ 6g − 12.

Now let c ′(vi) =
1
2 deg(vi) if i > k and c ′(vi) = c(vi) otherwise. Then

n−
i=1

c ′(vi) +

−
f∈F

c̄(f ) =

n−
i=1

c(vi) +

n−
i=k+1


6 −

1
2
deg(vi)


+

−
f∈F

c̄(f )

≤ 6g − 12 + 6 · 48g
3
5 − 24g

3
5


1
4
g

2
5 + 12


< 0.

Let c ′′ be obtained from c ′ and c̄ by the following discharging rules, which preserve the left hand side of
the above inequality. From each face f ∈ F with deg(f ) ≥ 4 send charge 1 to each vertex of degree 3
lying on the boundary of f . If deg(f ) ≥ 4 and three consecutive vertices on its boundary have degrees
deg(v1) ∈ {4, 5}, deg(v2) = 11, and deg(v3) ∈ {4, 5}, then f sends charge 1 to v2 as well. Further,
send charge 1 from each vertex x of degree≥ 11 to each neighbor y of degree 3 such that the edge xy is
incident with two faces of length 3, and send 1/2 to other neighbors of degree 3 and to each neighbor
of degree 4 or 5. Finally, send 1/5 from each vertex of degree 10 to each neighbor of degree 5.

Our goal is to show that c ′′(x) ≥ 0 for every x ∈ V (G0) ∪ F . This will imply that
n−

i=1

c ′(vi) +

−
f∈F

c̄(f ) =

−
x∈V (G0)∪F

c ′′(x) ≥ 0,

which will in turn contradict the above inequality.
Since G0 has no reducible vertices, a face f ∈ F has at most ⌊

1
2 deg(f )⌋ incident vertices whose

degree is 3, or is 11 (and their neighbors on f have degree 4 or 5). It sends charge 1 to them. Therefore,

c ′′(f ) ≥ c̄(f ) −
1
2
deg(f ) ≥ 0

whenever deg(f ) ≥ 4. Clearly, c ′′(f ) = c̄(f ) = 0 if deg(f ) = 3.
It is easy to see that each vertex v of degree at least 12 sends charge at most 1

2 deg(v), so that
c ′′(v) ≥ c ′(v)− 1

2 deg(v) ≥ 0. It is also clear that for a vertex of degree ten, c ′′(v) ≥ c ′(v)− 1
5 ·10 > 0.

If v has degree 11, then c ′(v) = 5. The vertex may send charge 1
2 to all its neighbors (if they all have

degrees 4 or 5). This is the only situation where its charge c ′′(v) may become negative. However, in
such a case v receives 1 from each of its neighboring faces (which are of length at least 4 since there
are no reducible vertices). Therefore, c ′′(v) ≥ 0 holds in every case. Vertices of degrees between 6
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and 9 have not changed their charge. The reader will verify that vertices of degrees 3, 4, or 5 have
c ′′(v) ≥ 0 as well.

In conclusion, we have c ′′(v) ≥ 0 for every v ∈ V (G0) and we have c ′′(f ) ≥ 0 for every f ∈ F .
This yields a contradiction. �

Let k = n − α0 be as in the above proof, and let S = {vi | i > k} be the set of special vertices. For
each special vertex vi we choose a color fvi ∈ L(vi) so that fvi ≠ fvj whenever i ≠ j. This is possible
since |L(vi)| > |S| = α0. Define new lists of admissible colors for the remaining vertices v ∈ V (G)−S:

L′(v) = L(v) − {fvi | i > k}.

Note that |L′(v)| ≥ |L(v)| − α0 and by Claim 0, degG0(vk) ≤ ∆0. If degG0(vk) ≤ 144, then we color
the graph induced by vertices v1, . . . , vk by a distance-two list coloring with 1442 colors, where the
distance-two coloring is a proper list coloring of G0 such that any two vertices at distance two are
colored differently. If degG0(vk) > 144, then we give the graph induced by vertices v1, . . . , vk a
degenerate star list coloring with ⌈1000∆3/2

0 ⌉ colors, where the color for vi is taken from the list
L′(vi) (see Theorem 2.3). This is possible since max{1442, 1000∆3/2

0 } ≤ |L′(vi)|. Since ∆0 > 144,
Theorem2.3 assures that each vertex of degree atmost 12 has its neighbors colored by different colors.
Thenwe color each special vertex vi (i > k) with the color fvi , which completes the coloring ofG0. Note
that each color used for special vertices has been used only once altogether, since it has been deleted
from the lists. Therefore the coloring of G0 is a degenerate star coloring, because the subgraph G0 − S
was given a degenerate star coloring.

Now we extend this coloring to a coloring of G. Observe that while contracting an edge uv (where
v was a reducible vertex in Gt ) when going from Gt+1 to Gt , all vertices preserve their neighbor set
except for the common neighbors of u and v and for the new vertex (which is again denoted by u)
obtained after the contraction. Observe that degGt (u) ≤ 12.

When we go back from Gt to Gt+1, we add the vertex v ∈ V (Gt+1) − V (Gt). By induction,
the coloring of Gt is a degenerate star coloring. Therefore, we can orient the edges of Gt so that
|N−(x)| = |C−(x)| and C−(x) ∩ C+(x) = ∅ for each vertex x ∈ V (Gt).

We color the vertex v by a color in L′(v) so that the neighbors of each vertex x ∈ NGt+1(v) with
degGt+1

(x) ≤ 12 receive pairwise different colors and so that the color of v is different from the
colors of its neighbors and the colors in C−(x), where x ∈ NGt+1(v). We extend the orientation of
Gt to an orientation of Gt+1 by orienting all edges incident to v towards v. Observe that by doing so
|C−(x)−{fvi | i > k}| remains bounded by∆0 for each x ∈ V (Gt+1)−S. Since |L′(v)| > 4(∆0+1)+12,
there is always an available color.

We claim that so defined coloring of Gt+1 is a degenerate star coloring with neighbors of each
vertex of degree at most 12 colored by different colors. Suppose that Gt was obtained from Gt+1 by
contracting the edge vu, where degGt+1

(v) = 5 − i and degGt+1
(u) ≤ 9 + i for some i ∈ {0, 1, 2}.

Then degGt (u) ≤ 12. Therefore u ∈ V (Gt) has all neighbors colored by pairwise different colors
and hence also v ∈ V (Gt+1) has all neighbors colored by pairwise different colors. The same is also
true if the reduced vertex v is of degree 1 or 2. It follows from Observation 2.1 that the coloring of
Gt+1 is degenerate. We infer from the definition of the coloring (and orientation) that the set of in-
colors and the set of out-colors of each vertex are disjoint and, moreover, the in-neighbors of a vertex
receive pairwise different colors. This shows that the coloring is also a star coloring and completes the
proof. �

4. Lower bounds

In this section we provide lower bounds which show that the upper bound given in Theorem 3.3
is asymptotically tight up to a polylogarithmic factor. It is interesting to note that the lower bound
construction is also based on the probabilistic method, although in an essentially different way as in
the proof of Theorem 2.3 used to establish the upper bound.

Let F be a family of connected bipartite graphs, each of order at least three. A proper coloring of G
is F -free if it contains no two-colored subgraph isomorphic to a graph F ∈ F . The least n such that G
admits an F -free coloring with n colors is denoted by χF (G).
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Special cases of the following lemma have appeared in [1–3]. Here |G| and ‖G‖ denote the number
of vertices and the number of edges of G, respectively.

Lemma 4.1. Let F be a family of connected bipartite graphs on at least three vertices and let F ∈ F be a
graph with ‖F‖ minimum. Let G = Gn,p be the random graph on n vertices where each pair of vertices is
connected by an edge, randomly and independently, with probability

p = 9

log n
n

1/‖F‖

.

Then almost surely (that is, with probability tending to one as n tends to infinity), G has at most

9n(2‖F‖−1)/‖F‖(log n)1/‖F‖

edges and χF (G) > 1
2|F |

n.

Proof. It is a standard observation that the number of edges of a random graph with edge probability
p is almost surely less than pn2 (see, e.g., [4]). This proves the claim about ‖G‖.

Let A ∪ B be the bipartition of the vertex set of F . Set a = |A| and b = |B| and assume that a ≥ b.
Suppose that V1, . . . , Vk is a partition of the vertex set of G into k ≤

1
2n/|F | parts. Then we delete at

most a−1 vertices in each Vi so that there is a partition of each Vi into setsU i
1, . . . ,U

i
k of size a or b and

so that (in all partitions together) the number of sets of size a equals (or differs by one) the number of
sets of size b. The number of deleted vertices will be at most 1

2 (a− 1)n/|F | < n/2 and therefore there
are at least n/2a pairwise disjoint setsU j

ℓ whose size is a or b and each of them is a subset of amember
of the partition V1, . . . , Vk. Since the number of a-sets is essentially the same as the number of b-sets
we conclude that there are at least n/4a sets of size a and at least n/4a sets of size b. The probability
that the partition V1, . . . , Vk is an F -free coloring is at most

(1 − p‖F‖)(n/4a)
2

< exp(−(9‖F‖/16a2)n log n) ≤ n−81n/64.

The last inequality follows from ‖F‖ ≥ a ≥ 2. Since there are less than nn partitions of the vertex
set of an n-vertex graph into at most n/(2|F |) classes we conclude that the probability that an F -free
coloring with at most n/(2|F |) colors exists tends to 0 as n tends to infinity. �

Theorem 4.2. For every large enough g, there is a graph G embeddable in an orientable (resp. non-
orientable) surface of genus g, such that χsd(G) ≥ χs(G) ≥

1
32g

3/5/(log g)1/5.

Proof. LetF = {P4} and letGbe a graph of ordernwith atmost 9n5/3(log n)1/3 edges andχs(G) ≥ n/8
(see Lemma 4.1). It is easy to see that G embeds in an orientable (resp. non-orientable) surface of Euler
genus g0 = ‖G‖−1 ≤ ⌈9n5/3(log n)1/3⌉ =: g (in fact, every 2-cell embedding ofG satisfies this bound).
Since g > n5/3, it follows that log g > 5

3 log n. Substituting this to

g < 9n5/3(log n)1/3 + 1

we conclude that

n >
1
4
g3/5/(log g)1/5

(for large enough g) and hence the theorem follows from χs(G) ≥ n/8. �
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