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Abstract

We construct in ZFC two compact weakly Whyburn spaces that are not hereditarily weakly
Whyburn, one of them is also sequential. We also construct a Hausdorff countably compact space
and a Tychonoff topological group both of weight that are not weakly Whyburn. We finally show
that Whyburn and weakly Whyburn properties are not preserved by pseudo-open maps.

0 2002 Elsevier Science B.V. All rights reserved.

MSC:54A25; 54D55

Keywords:Weakly Whyburn space; WAP space

1. Introduction

A subsetF c X of a topological spac# is almost closed ifF \ F| = 1. If F is almost
closed andF \ F = {x} we shall write F — x. A topological spaceX is WAP [7], or,
following the terminology suggested in [5], weakly Whyburn, if for any non-closed subset
A C X there exists a point € A \ A and an almost closed s€tc A such thatF — x.

A topological spaceX is AP [6], or Whyburn, if for any non-closed subsétc X and

for any pointx € A \ A there exists an almost closed get- A such thatF — x. Clearly
any Whyburn space is weakly Whyburn. A spaXds hereditarily weakly Whyburn if
any subspac& C X is weakly Whyburn. Any Whyburn space is hereditarily weakly
Whyburn. The space; + 1 is an example of a hereditarily weakly Whyburn space that is
not Whyburn [8].

A spaceX is pseudoradial if for any non-closed subgebf X there is a (possibly
transfinite) sequence of points Afconverging to a point ¢ A. If a sequence converging
to x can be selected for any pointe A the space is radial.
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For any spaceéX the spaceC,(X) denotes the space of all continuous functions¥on
endowed with the relative topology as a subspadg’6{with the Tychonoff topology).

A function f: X — Y is pseudo-open if for any € Y, and for any open sdf C X
such thatf ~1(y) c U we havey € int(f(U)).

In Section 2 we give two examples of weakly Whyburn spaces that are not hereditarily
weakly Whyburn; one of them is sequential. We also construct a Hausdorff countably
compact space of weight; that is not weakly Whyburn. In Section 3 we show that the
spaceC,(w1) is not weakly Whyburn. In Section 4 we show that properties Whyburn
and weakly Whyburn are not preserved by quotient or even by pseudo-open maps.
Theorems 2.5, 2.7, 2.3, 3.2 completely solve Problem 4.1 [8], Problem 4.2 [8], Problem 3.3
[5], Problem 3.4 [5], respectively.

2. Weakly Whyburn, non-hereditarily weakly Whyburn spaces

Itis well-known that a spac¥ is hereditarily pseudoradial if and only if it is radial. It is
also known that all closed and all open subspaces of a pseudoradial space are pseudoradial,
even if a characterization of all sub-pseudoradial spaces is still missing.

It is easily seen that any subspace of a Whyburn space is Whyburn, and that any closed
subspace of a weakly Whyburn space is weakly Whyburn. Let us show that also any open
subset of a weakly Whyburn space is weakly Whyburn.

Proposition 2.1. Let X be a weakly Whyburn spack,c X an open subset. Then is
weakly Whyburn.

Proof. Let A be a subset of that is not closed ifY'; then the sefA U (X \ Y) is not closed
in X. SinceX is weakly Whyburn, there exists an almost closed{jrsetFF c AU (X \Y)
such that

clx(F)\ (AU X\ 1)) = {p}.

Clearly p € cly(A) \ A, moreover the setf’ = F N A is almost closed inY and
F'—p. O

We have already remarked that the spage- 1 is hereditarily weakly Whyburn but is
not Whyburn.

In [8] the authors note that it is difficult to construct a weakly Whyburn space which is
not hereditarily weakly Whyburn and they give an example under the assumption of the
Continuum Hypothesis of a countably compact weakly Whyburn spaeéth a dense
subsett that is not weakly Whyburn. We will show that such an example exists in ZFC,
thus giving a positive answer to Problem 4.1 [8].

We begin with a simple example of a non-weakly Whyburn space.

Example 2.2. Let L = D U {oo0} be the one-point lindel6fication of a discrete getof
cardinalityw1 and let/ = [0, 1] be the compact interval. Then the spate- L x I is not
weakly Whyburn.



F. Obersnel / Topology and its Applications 128 (2003) 257-262 259

Proof. Lety: D — I be any injection. LeA C X be the graph op: A = {{o, p(@)): @ <
w1}. The setA is not closed inX. Indeed letr € I be any complete accumulation point of
the setp(D) C I, then the poin{oo, x) is an accumulation point of in X.

Let us show thatd witnesses the fact th& is not weakly Whyburn. LeF C A be a
set such thaF \ A # ¢). Then|F| = w;. The projection ofF into I is therefore a subset
of cardinalityw1 of the compact set, hence it has infinitely many complete accumulation
points. Letx; andx, be two of them, we havéo, x;) € F \ A for bothi =1 andi = 2.
HenceF is not almost closed. O

We note that Example 2.2 is not countably compact. In fact, it is known that consistently
a countably compact regular space of character not largerdhaa weakly Whyburn
(since by [1] any semiradial space is weakly Whyburn and by [2] any countably compact
space of charactet w1 is semiradial under the assumptips- w1). In Problem 3.3 of [5]
the authors ask if under MA- —CH any Hausdorff (not necessarily regular) countably
compact space of charact€rw; is weakly Whyburn. By a modification of Example 2.2
we will show that this is not the case even in ZFC.

Theorem 2.3. There exists iZFC a Hausdorff(non-regula) countably compact non-
weakly Whyburn space of weight.

Proof. Denote byLim(w1) C w1 the set of limit ordinals inw1 and byDis(w1) the set
Dis(w1) = w1 \ Lim(w1). Let Y = w1 U {co} be the space where the topology en
is the usual order topology and the open neighbourhoods at the poiate of the
form ([y, w1[NDis(w1)) U {oo} for any y € w1. The space’ is Hausdorff, non-regular,
countably compact. LeX =Y x I. We claim thatX is not weakly Whyburn.

To prove our claim consider any injectian: Dis(w1) — I and defineA to be the
following subset ofX: A = {{«, ¢(®)): « € Dis(w1)} U J{{y} x I: y € Lim(w1)}. Let
B be the projection intd of the setA N Dis(w1) x I. Since|B| = w; there are complete
accumulation points aB in 7. Therefored is not closed in. Reasoning as in Example 2.2
we see that there are no almost closed subiSetsA converging outsidel. O

Remark 2.4. Let « be a cardinal with uncountable cofinality and such that « < 2%.

Let D, be the discrete space of cardinaktyand letL, = D, U{oco} be the space described
as follows: every point excepb is isolated and a basic neighbourhoo@ofs of the form

L, \ C whereoco ¢ C and|C| < k. In a similar way as in Example 2.2 it is possible to show
that the spac& = L, x I is not weakly Whyburn.

Theorem 2.5. There exists a compact weakly Whyburn spgceith a dense subspace
that is not weakly Whyburn.

Proof. LetY = (w1 + 1) x I. Y is weakly Whyburn as a product of a compact weakly
Whyburn space with a sequential space [3]. It remains to observe that theXpedmed
in Example 2.2 is a dense subspac& oln fact letD = {« € w1: « is nota limit ordinaj.
Then D is a discrete (in itself) subset af; of cardinalityw;, and is dense i1 + 1.
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Clearly the seth U {w1} is homeomorphic to the one-point lindeltficatibras described
in Example 2.2. O

It is known that the product of a compact weakly Whyburn space with either a compact
Whyburn space or a compact semiradial space is weakly Whyburn [1]. Theorem 2.5 shows
that such a product may fail however to be hereditarily weakly Whyburn.

Corollary 2.6. The product of a compact hereditarily weakly Whyburn space with the unit
interval I is not necessarily hereditarily weakly Whyburn.

Proof. The spacev; + 1 is hereditarily weakly Whyburn [8]. O

Theorem 2.5 shows that a subspace of a compact weakly Whyburn space may fail to
be weakly Whyburn. In [8] (Problem 4.2) the authors ask if it is true that any subspace of
a sequential space is weakly Whyburn. We show that this is not the case in the following
example.

Theorem 2.7. There exists a Hausdorff compact sequential space that is not hereditarily
weakly Whyburn.

Proof. Let D be a discrete space of cardinality. Let A c [D]* be a maximal almost
disjoint family of countable subsets @. Let Y = D U {pa: A € A} be thew-space
defined byA, i.e., all points ofD are isolated and a neighbourhood of the pgintis of
the form{ps} U A \ F whereF is a finite set. The spacé is locally compact, hence we
can consider its Alexandroff one-point compactification, Xay Y U {oo}. We note that a
typical neighbourhood of the point in X is of the formX \ C whereC is a finite union
of sets of the forn{p4} U A.

The spaceX, as well as its squar& x X, is sequential and compact. We show that
X x X is not hereditarily weakly Whyburn.

Let Z=(DU{o0}) x X C X x X. We claim thatZ is not weakly Whyburn. Let
E = {{a,a): @ € D} C Z. The setE is not closed, e.g.(co,o0) € E \ E. Let F =
{{a,): @ € H} C E be such thatF \ E # @. Since the unique non-isolated point of
DU{oo} is oo we must haveo € H and(oo, oo) € F. Clearly H is infinite. By maximality
of A there existsA € A such thatA N H is infinite. Then(oco, p4) € F. This shows thaF
is not almost closed. O

3. Cp(wy) isnot weakly Whyburn

A cardinalk is calledw-inaccessible ik < k foranyx < «. In[3] itis proved that the
spaceC,(«) is weakly Whyburn for any regulap-inaccessible cardinal. This follows
from the fact that such a space is semiradial, a property stronger than both pseudoradiality
and weakly Whyburn property [1]. Let be an ordinal. It is known [4] that the space
C,(8) is pseudoradial if and only i has countable cofinality af is anw-inaccessible
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regular cardinal. It is natural to ask if the same holds if we replace the property of being
pseudoradial with the property of being weakly Whyburn.

Question 3.1. Let § be an ordinal. Is it true that the spa€g(§) is weakly Whyburn if and
only if § has countable cofinality dris anw-inaccessible regular cardinal?

If 8 is an ordinal with countable cofinality, then [4] the sp&Ggs) is Fréchet-Urysohn,
hence itis Whyburn. In particular any space of the f@rpis + 1) is Whyburn. We consider
Question 3.1 fob = « a cardinal such thad1 < « < 2¢.

Theorem 3.2. Letx be a cardinal with uncountable cofinality such that< « < 2“. Then
the spaceC), (v ) is not weakly Whyburn.

Proof. We prove the theorem for the case= w;. We show that the spacgé = L x [
described in Example 2.2 can be embedded if¢w1) as a closed space. Since any
closed subspace of a weakly Whyburn space is weakly Whyburn, this implies that the
spaceC),(w1) is not weakly Whyburn.

As in Example 2.2 we denote by = D U {oo} the one-point lindeléfication of the
discrete setD of cardinality w;. Since C,(w1) is homeomorphic toCp(w1) x R it
suffices to embed the spageinto C,(w1) as a closed subspace (this simple observation,
suggested by the referee, permits a consistent shortening of my original proof ). This can
be easily done by considering the functién L — C,(w1) defined by® () = x(0,],
the characteristic function a, «], for « < w1, and by® (co0) = 1, the constant function
on w1 with value 1.

For the general case: < ¥ < 2%, if k has uncountable cofinality, the statement can
be proved in a similar way, by showing that the space described in Remark 2.4 can be
embedded intd@, (x) as a closed space.O

We note thatC,(w1) is a Tychonoff space of weighb;. In [5] Problem 3.4 the
authors ask if under MA- =CH any Tychonoff space of weighi; is weakly Whyburn.
Example 2.2 shows that this is false in ZFC. Theorem 3.2 shows that there are even
topological groups of this form.

4. Whyburn-preserving maps

Itis well known that radiality and pseudoradiality are preserved respectively by pseudo-
open or closed maps and by quotient maps. As it is easily seen [8], properties Whyburn
and weakly Whyburn are preserved by closed maps. It is not known if these properties are
also preserved by open maps.

It has beenremarked in [8] that the quotient of a Whyburn space may fail to be Whyburn.
We will see that the situation is even worse, since the quotient and even a pseudo-open
image of a Whyburn space may fail to be even weakly Whyburn.



262 F. Obersnel / Topology and its Applications 128 (2003) 257-262

Theorem 4.1. Any topological spaceX is the image of a Whyburn space under a
continuous pseudo-open map.

Proof. Let X be any space. Denote 13, the prime factor ofX at p, i.e., the spac&,
has X as the underlying set, the topology at any paintt p is discrete and the
neighbourhoods gt in X, are the same as the neighbourhoodp &t X. Let Z be the
topological sum o, for p € X. ThenZ is the topological sum of spaces having a unique
non-isolated point, hencg is Whyburn. Clearly the projectiorf : Z — X defined by
flx,(x) = x is a pseudo-open map.0
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