

Topology and its Applications 128 (2003) 257-262

www.elsevier.com/locate/topol

Some notes on weakly Whyburn spaces

Franco Obersnel

University of Trieste, Department of Mathematical Sciences, Via A. Valerio 12/1, I-34127 Trieste, Italy Received 4 February 2002; received in revised form 18 April 2002

Abstract

We construct in ZFC two compact weakly Whyburn spaces that are not hereditarily weakly Whyburn, one of them is also sequential. We also construct a Hausdorff countably compact space and a Tychonoff topological group both of weight ω_1 that are not weakly Whyburn. We finally show that Whyburn and weakly Whyburn properties are not preserved by pseudo-open maps. © 2002 Elsevier Science B.V. All rights reserved.

MSC: 54A25; 54D55

Keywords: Weakly Whyburn space; WAP space

1. Introduction

A subset $F \subset X$ of a topological space X is almost closed if $|\overline{F} \setminus F| = 1$. If F is almost closed and $\overline{F} \setminus F = \{x\}$ we shall write $F \to x$. A topological space X is WAP [7], or, following the terminology suggested in [5], weakly Whyburn, if for any non-closed subset $A \subset X$ there exists a point $x \in \overline{A} \setminus A$ and an almost closed set $F \subset A$ such that $F \to x$. A topological space X is AP [6], or Whyburn, if for any non-closed subset $A \subset X$ and for any point $x \in \overline{A} \setminus A$ there exists an almost closed set $F \subset A$ such that $F \to x$. Clearly any Whyburn space is weakly Whyburn. A space X is hereditarily weakly Whyburn if any subspace $Y \subset X$ is weakly Whyburn. Any Whyburn space is hereditarily weakly Whyburn. The space $\omega_1 + 1$ is an example of a hereditarily weakly Whyburn space that is not Whyburn [8].

A space X is pseudoradial if for any non-closed subset A of X there is a (possibly transfinite) sequence of points of A converging to a point $x \notin A$. If a sequence converging to x can be selected for any point $x \in \overline{A}$ the space is radial.

E-mail address: obersnel@univ.trieste.it (F. Obersnel).

^{0166-8641/02/\$ –} see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0166-8641(02)00127-X

For any space X the space $C_p(X)$ denotes the space of all continuous functions on X endowed with the relative topology as a subspace of \mathbb{R}^X (with the Tychonoff topology).

A function $f: X \to Y$ is pseudo-open if for any $y \in Y$, and for any open set $U \subset X$ such that $f^{-1}(y) \subset U$ we have $y \in int(f(U))$.

In Section 2 we give two examples of weakly Whyburn spaces that are not hereditarily weakly Whyburn; one of them is sequential. We also construct a Hausdorff countably compact space of weight ω_1 that is not weakly Whyburn. In Section 3 we show that the space $C_p(\omega_1)$ is not weakly Whyburn. In Section 4 we show that properties Whyburn and weakly Whyburn are not preserved by quotient or even by pseudo-open maps. Theorems 2.5, 2.7, 2.3, 3.2 completely solve Problem 4.1 [8], Problem 4.2 [8], Problem 3.3 [5], Problem 3.4 [5], respectively.

2. Weakly Whyburn, non-hereditarily weakly Whyburn spaces

It is well-known that a space X is hereditarily pseudoradial if and only if it is radial. It is also known that all closed and all open subspaces of a pseudoradial space are pseudoradial, even if a characterization of all sub-pseudoradial spaces is still missing.

It is easily seen that any subspace of a Whyburn space is Whyburn, and that any closed subspace of a weakly Whyburn space is weakly Whyburn. Let us show that also any open subset of a weakly Whyburn space is weakly Whyburn.

Proposition 2.1. Let X be a weakly Whyburn space, $Y \subset X$ an open subset. Then Y is weakly Whyburn.

Proof. Let *A* be a subset of *Y* that is not closed in *Y*; then the set $A \cup (X \setminus Y)$ is not closed in *X*. Since *X* is weakly Whyburn, there exists an almost closed (in *X*) set $F \subset A \cup (X \setminus Y)$ such that

 $\operatorname{cl}_X(F) \setminus (A \cup (X \setminus Y)) = \{p\}.$

Clearly $p \in cl_Y(A) \setminus A$, moreover the set $F' = F \cap A$ is almost closed in Y and $F' \rightarrow p$. \Box

We have already remarked that the space $\omega_1 + 1$ is hereditarily weakly Whyburn but is not Whyburn.

In [8] the authors note that it is difficult to construct a weakly Whyburn space which is not hereditarily weakly Whyburn and they give an example under the assumption of the Continuum Hypothesis of a countably compact weakly Whyburn space X with a dense subset Y that is not weakly Whyburn. We will show that such an example exists in ZFC, thus giving a positive answer to Problem 4.1 [8].

We begin with a simple example of a non-weakly Whyburn space.

Example 2.2. Let $L = D \cup \{\infty\}$ be the one-point lindelöfication of a discrete set D of cardinality ω_1 and let I = [0, 1] be the compact interval. Then the space $X = L \times I$ is not weakly Whyburn.

Proof. Let $\varphi : D \to I$ be any injection. Let $A \subset X$ be the graph of $\varphi : A = \{ \langle \alpha, \varphi(\alpha) \rangle : \alpha < \omega_1 \}$. The set *A* is not closed in *X*. Indeed let $x \in I$ be any complete accumulation point of the set $\varphi(D) \subset I$; then the point $\langle \infty, x \rangle$ is an accumulation point of *A* in *X*.

Let us show that *A* witnesses the fact that *X* is not weakly Whyburn. Let $F \subset A$ be a set such that $\overline{F} \setminus A \neq \emptyset$. Then $|F| = \omega_1$. The projection of *F* into *I* is therefore a subset of cardinality ω_1 of the compact set *I*, hence it has infinitely many complete accumulation points. Let x_1 and x_2 be two of them, we have $\langle \infty, x_i \rangle \in \overline{F} \setminus A$ for both i = 1 and i = 2. Hence *F* is not almost closed. \Box

We note that Example 2.2 is not countably compact. In fact, it is known that consistently a countably compact regular space of character not larger than ω_1 is weakly Whyburn (since by [1] any semiradial space is weakly Whyburn and by [2] any countably compact space of character $\leq \omega_1$ is semiradial under the assumption $\mathfrak{p} > \omega_1$). In Problem 3.3 of [5] the authors ask if under MA + \neg CH any Hausdorff (not necessarily regular) countably compact space of character $\leq \omega_1$ is weakly Whyburn. By a modification of Example 2.2 we will show that this is not the case even in ZFC.

Theorem 2.3. There exists in ZFC a Hausdorff (non-regular) countably compact nonweakly Whyburn space of weight ω_1 .

Proof. Denote by $Lim(\omega_1) \subset \omega_1$ the set of limit ordinals in ω_1 and by $Dis(\omega_1)$ the set $Dis(\omega_1) = \omega_1 \setminus Lim(\omega_1)$. Let $Y = \omega_1 \cup \{\infty\}$ be the space where the topology on ω_1 is the usual order topology and the open neighbourhoods at the point ∞ are of the form $([\gamma, \omega_1[\cap Dis(\omega_1)) \cup \{\infty\}$ for any $\gamma \in \omega_1$. The space Y is Hausdorff, non-regular, countably compact. Let $X = Y \times I$. We claim that X is not weakly Whyburn.

To prove our claim consider any injection $\varphi: Dis(\omega_1) \to I$ and define A to be the following subset of $X: A = \{ \langle \alpha, \varphi(\alpha) \rangle : \alpha \in Dis(\omega_1) \} \cup \bigcup \{ \{\gamma\} \times I : \gamma \in Lim(\omega_1) \} \}$. Let B be the projection into I of the set $A \cap Dis(\omega_1) \times I$. Since $|B| = \omega_1$ there are \mathfrak{c} complete accumulation points of B in I. Therefore A is not closed in X. Reasoning as in Example 2.2 we see that there are no almost closed subsets $F \subset A$ converging outside A. \Box

Remark 2.4. Let κ be a cardinal with uncountable cofinality and such that $\omega_1 \leq \kappa \leq 2^{\omega}$. Let D_{κ} be the discrete space of cardinality κ and let $L_{\kappa} = D_{\kappa} \cup \{\infty\}$ be the space described as follows: every point except ∞ is isolated and a basic neighbourhood of ∞ is of the form $L_{\kappa} \setminus C$ where $\infty \notin C$ and |C| < k. In a similar way as in Example 2.2 it is possible to show that the space $X = L_{\kappa} \times I$ is not weakly Whyburn.

Theorem 2.5. *There exists a compact weakly Whyburn space Y with a dense subspace X that is not weakly Whyburn.*

Proof. Let $Y = (\omega_1 + 1) \times I$. *Y* is weakly Whyburn as a product of a compact weakly Whyburn space with a sequential space [3]. It remains to observe that the space *X* defined in Example 2.2 is a dense subspace of *Y*. In fact let $D = \{\alpha \in \omega_1 : \alpha \text{ is not a limit ordinal}\}$. Then *D* is a discrete (in itself) subset of ω_1 of cardinality ω_1 , and is dense in $\omega_1 + 1$.

Clearly the set $D \cup \{\omega_1\}$ is homeomorphic to the one-point lindelöfication L as described in Example 2.2. \Box

It is known that the product of a compact weakly Whyburn space with either a compact Whyburn space or a compact semiradial space is weakly Whyburn [1]. Theorem 2.5 shows that such a product may fail however to be hereditarily weakly Whyburn.

Corollary 2.6. The product of a compact hereditarily weakly Whyburn space with the unit interval *I* is not necessarily hereditarily weakly Whyburn.

Proof. The space $\omega_1 + 1$ is hereditarily weakly Whyburn [8]. \Box

Theorem 2.5 shows that a subspace of a compact weakly Whyburn space may fail to be weakly Whyburn. In [8] (Problem 4.2) the authors ask if it is true that any subspace of a sequential space is weakly Whyburn. We show that this is not the case in the following example.

Theorem 2.7. *There exists a Hausdorff compact sequential space that is not hereditarily weakly Whyburn.*

Proof. Let *D* be a discrete space of cardinality ω_1 . Let $\mathcal{A} \subset [D]^{\omega}$ be a maximal almost disjoint family of countable subsets of *D*. Let $Y = D \cup \{p_A : A \in \mathcal{A}\}$ be the Ψ -space defined by \mathcal{A} , i.e., all points of *D* are isolated and a neighbourhood of the point p_A is of the form $\{p_A\} \cup A \setminus F$ where *F* is a finite set. The space *Y* is locally compact, hence we can consider its Alexandroff one-point compactification, say $X = Y \cup \{\infty\}$. We note that a typical neighbourhood of the point ∞ in *X* is of the form $X \setminus C$ where *C* is a finite union of sets of the form $\{p_A\} \cup A$.

The space X, as well as its square $X \times X$, is sequential and compact. We show that $X \times X$ is not hereditarily weakly Whyburn.

Let $Z = (D \cup \{\infty\}) \times X \subset X \times X$. We claim that Z is not weakly Whyburn. Let $E = \{\langle \alpha, \alpha \rangle : \alpha \in D\} \subset Z$. The set E is not closed, e.g., $\langle \infty, \infty \rangle \in \overline{E} \setminus E$. Let $F = \{\langle \alpha, \alpha \rangle : \alpha \in H\} \subseteq E$ be such that $\overline{F} \setminus E \neq \emptyset$. Since the unique non-isolated point of $D \cup \{\infty\}$ is ∞ we must have $\infty \in \overline{H}$ and $\langle \infty, \infty \rangle \in \overline{F}$. Clearly H is infinite. By maximality of \mathcal{A} there exists $A \in \mathcal{A}$ such that $A \cap H$ is infinite. Then $\langle \infty, p_A \rangle \in \overline{F}$. This shows that F is not almost closed. \Box

3. $C_p(\omega_1)$ is not weakly Whyburn

A cardinal κ is called ω -inaccessible if $\lambda^{\omega} < \kappa$ for any $\lambda < \kappa$. In [3] it is proved that the space $C_p(\kappa)$ is weakly Whyburn for any regular ω -inaccessible cardinal κ . This follows from the fact that such a space is semiradial, a property stronger than both pseudoradiality and weakly Whyburn property [1]. Let δ be an ordinal. It is known [4] that the space $C_p(\delta)$ is pseudoradial if and only if δ has countable cofinality or δ is an ω -inaccessible

260

regular cardinal. It is natural to ask if the same holds if we replace the property of being pseudoradial with the property of being weakly Whyburn.

Question 3.1. Let δ be an ordinal. Is it true that the space $C_p(\delta)$ is weakly Whyburn if and only if δ has countable cofinality or δ is an ω -inaccessible regular cardinal?

If δ is an ordinal with countable cofinality, then [4] the space $C_p(\delta)$ is Fréchet–Urysohn, hence it is Whyburn. In particular any space of the form $C_p(\delta+1)$ is Whyburn. We consider Question 3.1 for $\delta = \kappa$ a cardinal such that $\omega_1 \leq \kappa \leq 2^{\omega}$.

Theorem 3.2. Let κ be a cardinal with uncountable cofinality such that $\omega_1 \leq \kappa \leq 2^{\omega}$. Then the space $C_p(\kappa)$ is not weakly Whyburn.

Proof. We prove the theorem for the case $\kappa = \omega_1$. We show that the space $X = L \times I$ described in Example 2.2 can be embedded into $C_p(\omega_1)$ as a closed space. Since any closed subspace of a weakly Whyburn space is weakly Whyburn, this implies that the space $C_p(\omega_1)$ is not weakly Whyburn.

As in Example 2.2 we denote by $L = D \cup \{\infty\}$ the one-point lindelöfication of the discrete set *D* of cardinality ω_1 . Since $C_p(\omega_1)$ is homeomorphic to $C_p(\omega_1) \times \mathbb{R}$ it suffices to embed the space *L* into $C_p(\omega_1)$ as a closed subspace (this simple observation, suggested by the referee, permits a consistent shortening of my original proof). This can be easily done by considering the function $\Phi: L \to C_p(\omega_1)$ defined by $\Phi(\alpha) = \chi_{[0,\alpha]}$, the characteristic function on $[0, \alpha]$, for $\alpha < \omega_1$, and by $\Phi(\infty) = 1$, the constant function on ω_1 with value 1.

For the general case $\omega_1 \leq \kappa \leq 2^{\omega}$, if *k* has uncountable cofinality, the statement can be proved in a similar way, by showing that the space described in Remark 2.4 can be embedded into $C_p(\kappa)$ as a closed space. \Box

We note that $C_p(\omega_1)$ is a Tychonoff space of weight ω_1 . In [5] Problem 3.4 the authors ask if under MA + \neg CH any Tychonoff space of weight ω_1 is weakly Whyburn. Example 2.2 shows that this is false in ZFC. Theorem 3.2 shows that there are even topological groups of this form.

4. Whyburn-preserving maps

It is well known that radiality and pseudoradiality are preserved respectively by pseudoopen or closed maps and by quotient maps. As it is easily seen [8], properties Whyburn and weakly Whyburn are preserved by closed maps. It is not known if these properties are also preserved by open maps.

It has been remarked in [8] that the quotient of a Whyburn space may fail to be Whyburn. We will see that the situation is even worse, since the quotient and even a pseudo-open image of a Whyburn space may fail to be even weakly Whyburn. **Theorem 4.1.** Any topological space X is the image of a Whyburn space under a continuous pseudo-open map.

Proof. Let X be any space. Denote by X_p the prime factor of X at p, i.e., the space X_p has X as the underlying set, the topology at any point $x \neq p$ is discrete and the neighbourhoods at p in X_p are the same as the neighbourhoods at p in X. Let Z be the topological sum of X_p for $p \in X$. Then Z is the topological sum of spaces having a unique non-isolated point, hence Z is Whyburn. Clearly the projection $f: Z \to X$ defined by $f|_{X_p}(x) = x$ is a pseudo-open map. \Box

References

- A. Bella, On spaces with the property of weak approximation by points, Comment. Math. Univ. Carolin. 35 (2) (1994) 357–360.
- [2] A. Bella, Few remarks and questions on pseudoradial and related spaces, Topology Appl. 70 (1996) 113–123.
- [3] A. Bella, I.V. Yashenko, On Whyburn and weakly Whyburn spaces, Comment. Math. Univ. Carolin. 40 (3) (1999) 531–536.
- [4] J. Gerlits, Z. Nagy, Z. Szentmiklòssy, Some convergence properties in function spaces, in: General Topology and Its Relations to Modern Analysis and Algebra, VI, Prague 1986, in: Res. Exp. Math., Vol. 16, Heldermann, Berlin, 1988, pp. 211–222.
- [5] J. Pelant, M.G. Tkachenko, V.V. Tkachuk, R.G. Wilson, Pseudocompact Whyburn spaces need not be Fréchet, PAMS, to appear.
- [6] A. Pultr, A. Tozzi, Equationally closed subframes and representation of quotient spaces, Cahiers Topologie Géom. Différentielle Categoriques 34 (1993) 167–183.
- [7] P. Simon, On accumulation points, Cahiers Topologie Géom. Différentielle Categoriques 35 (1994) 321–327.
- [8] V.V. Tkachuk, I.V. Yashenko, Almost closed sets and topologies they determine, Comment. Math. Univ. Carolin. 42 (2) (2001) 395–405.