
Theoretical Computer Science 310 (2004) 117–134
www.elsevier.com/locate/tcs

Minimal schedulability interval for real-time
systems of periodic tasks with o&sets

Annie Choquet-Geniet∗ , Emmanuel Grolleau
Laboratoire d’Informatique Scienti�que et Industrielle (LISI), Universit�e de Poitiers & E.N.S.M.A.,
BP 40109, T�el�eport 2, Site du Futuroscope, F-86961 Futuroscope Chasseneuil, C�edex, France

Received 12 November 2002; received in revised form 14 May 2003; accepted 2 June 2003
Communicated by D. Peleg

Abstract

We consider real-time systems in highly safety context where tasks have to meet strict dead-
lines. Tasks are periodic, may have o&sets, share critical resources and be precedence constrained.
O&-line scheduling should be of great help for such systems, but methods proposed in the litera-
ture cannot deal with them. Our aim is to extend and improve the well-known cyclicity result of
Leung and Merill to every scheduling algorithm and to systems of interacting tasks with o&sets.
One of the main bene7t of our result is to enable the use of o&-line scheduling methods for
those real-time critical systems.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Real-time systems; Schedulability analysis; Idle task; Acyclic idle slots; Processor request
diagram; Schedulability interval; Blocking chains

1. Introduction

1.1. The validation problem

We consider applications composed of interacting periodic tasks, submitted to hard
temporal constraints [15]. The core problem regarding real-time applications is the
temporal validation: the question is whether the application can meet all its temporal
constraints, and how this can be performed. Answering this question consists in proving
the feasibility by means of suitable analytical criteria or in de7ning a feasible schedule

∗ Corresponding author. Tel.: 33-5-49-49-80-68; fax: 33-5-49-49-80-64.
E-mail addresses: ageniet@ensma.fr (A. Choquet-Geniet), grolleau@ensma.fr (E. Grolleau).

0304-3975/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0304-3975(03)00362-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81969347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ageniet@ensma.fr
mailto:grolleau@ensma.fr

118 A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134

1st release 2nd release1st

deadline

Timeri

Offset

+
Ci

Di

Pi

Fig. 1. Temporal parameters of a periodic real-time task �i = (ri ; Ci; Di; Pi).

(which has to be in7nite, since the application must run in steady state), i.e. a schedule
which meets all its temporal and structural constraints. For the sake of studying the
schedulability of real-time applications, we adopt the mostly considered temporal model
[5,12,16]: each task �i is characterised by four temporal parameters: its �rst release
time or o;set ri, its worst-case computation time Ci, its relative deadline Di, which
is the maximum delay tolerated between the release of an instance of the task and
its completion, and its period Pi. In the following, we denote by r the maximum
o;set: r= Maxi=1;:::;n{ri} and P the hyper period: P=LCM 1 {Pi; i=1; : : : ; n} (see
Fig. 1).
The temporal validation of the application relies on the opportunity of choosing an

appropriate scheduling strategy. Such a strategy can be de7ned as an on-line scheduling
algorithm or be obtained through an o&-line analysis.

1.1.1. On-line methods
The scheduling policy is implemented within the scheduler. On-line algorithms are

usually priority driven: the processor is assigned to the pending task with the highest
priority. The priority assignment can be either decided by the designer, or computed
from the temporal parameters of the application (well-known strategies are priority as-
signment according to rate monotonic (RM), deadline monotonic (DM), earliest dead-
line 7rst (EDF) and least laxity (LL) orders [10,11,12,14]). In restricted contexts, these
algorithms are optimal in the sense that they answer the validation problem: if a fea-
sible schedule exists, the schedule computed by the considered algorithm is feasible.
Besides, if the tasks are synchronous (all the o&sets are equal) and independent, EDF
is optimal and the validation is performed by means of an analytical criterium, which
computation is polynomial in the number of tasks. But if critical resources are used,
the scheduling problem becomes NP-hard, and only suFcient feasibility conditions are
still ahead [2,10,13]. Furthermore, in such context, there is no optimal on-line algo-
rithm [13] and even for independent tasks systems with o&sets, the validation problem
is NP-hard [10].

1 LCM denotes the least common multiple.

A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134 119

1.1.2. O;-line methods
A schedule, already computed, is stored within a table used by the dispatcher, avoid-

ing the overhead caused by the execution of the scheduling algorithm. The main bene7t
comes from the raise of the scheduling power compared to on-line methods: on-line
scheduling algorithms make decisions according to the instantaneous state of the system,
meanwhile o&-line methods are clairvoyant (they are based on a complete knowledge
of the system). It follows that o&-line methods are not reduced to work-conserving
schedules (in a work-conserving schedule, a task never intentionally waits). This is
mandatory in order for an algorithm to be optimal, since in some cases where critical
resources are involved, the pending tasks have to wait in order to avoid a future block-
age of an urgent task. Furthermore, o&-line methods induce deterministic behaviours:
since every action is planned within the schedule, the Guctuations of computation times
do not a&ect the remainder of the schedule. Notice that such Guctuations may occur
since we consider worst-case computation times. On-line strategies, on the opposite, can
su&er of the instability problem: the decreasing of the computation time of a task of the
system can lead some task of the application to lateness. Therefore, o& line methods
are of great help for validating highly coupled applications. The methods that can be
found in the literature are usually exponential in time. Most of them rely on exhaus-
tive branch-and-bound enumeration techniques [1,4,17,18]. They all consider restricted
context. Either they deal with a 7nite set of aperiodic tasks, or, what is equivalent, a
set of synchronous periodic tasks: only the set of instances released within the time
interval [0::PPCM(Pi)) 2 has to be considered [10]. We prove in the present paper that
these methods can also be applied to systems of periodic interacting tasks with o&sets.

1.2. Our contribution

Two questions must be answered before any o&-line methodology can be used to
schedule such systems:
(1) Since only 7nite schedules can be computed and stored in the table used by the

dispatcher, what is the (optimal) length of a feasible schedule that has to be stored?
(2) How can a steady state be got from this 7nite schedule?
These questions must be answered for any scheduling policy, since o&-line methodolo-
gies propose most of the time an exhaustive computation of all the feasible schedules
(see e.g. the method proposed in [9]). Our only assumption is that the scheduling
policy is deterministic: if the system is in the same state at two di&erent times, the
scheduling decisions are the same.
Besides, answering these questions can help in performance study of schedules com-
puted by on-line scheduling policies.
We de7ne a schedulability interval as an interval [0; a) such that the computation
of a schedule on this interval provides enough informations for de7ning the in7nite
schedule. We prove the existence of such intervals, and show how to compute the
shortest of them.

2 [a; b) is the set of values that are not less than a but less than b.

120 A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134

These problems have been studied by Leung and Merill [10] for the special case of
EDF scheduling policy, and systems of independent tasks. They have shown that the
time interval [0; r+2∗P) is a schedulability interval (not necessarily the shortest one),
and that the schedule computed in the interval [r+P; r+2∗P) can be repeated in7nitely
often, de7ning a steady state. Goosens and Devillers [8] answer the cyclicity problem
for systems of independent tasks with 7xed priorities. They determine an upper bound
for the time of entrance in the steady state.
The results presented in this paper extend and generalize these two results: we de-

termine the minimal length of the schedule required for validation, for any scheduling
policy (or, what is equivalent, the earliest time at which the cyclic behaviour of the
system begins), and our results hold for systems with o;sets, using resources and
precedence constraints.
Our approach consists in proving the cyclicity of any deterministic feasible schedule,

and in de7ning an algorithm which computes the time at which the cyclic behaviour
begins. For that purpose, we pay special attention to the processor idleness, and we
introduce the notions of cyclic and acyclic idle slots.
The paper is organised as follows: in Section 2, we de7ne the idle task, the notion

of acyclic idle slot and the processor request diagram, which helps to the location of
the idle slots. In Section 3, we study systems of independent tasks with o&sets. We
7rst consider systems which fully load the processor, and work-conserving policy, and
then, we get ride of both limitations considering systems with processor load less than
1 and non-work-conserving policies. Finally, in Section 4, we prove that the cyclicity
result also holds for systems of interacting tasks.

2. Processor inactivity

2.1. The temporal model

We adopt the classical modelling of real-time tasks, as described in Fig. 1. We
consider only systems of which the temporal parameters are a priori known. Such
systems are the only ones for which the respect of the temporal parameters can be
guaranteed. We suppose that Di6Pi: an instance must be completed before the next
one is released. We also suppose that the scheduling policy is deterministic, that is,
the scheduling decisions depend only on the state of the system.
The processor activity is characterised by the processor utilisation factor

U=
∑n

i=1 Ci=Pi. If U¿1, no feasible schedule can exist [5]. Now, if U¡1, the proces-
sor is not fully loaded, but remains idle P(1−U) time units each hyper period. These
idle slots are called cyclic idle slots, they are modelled by a periodic task �0, the idle
task. Its temporal parameters are C0 =P(1−U), D0 =P0 =P. Its o&set is discussed
later.

2.2. Acyclic idle slots

The following example shows that, besides cyclic idle slots, some further idle slots
may occur. Consider the task system S1={�1(0; 1; 4; 4); �2(1; 3; 6; 6); �3(3; 1; 4; 4)}. Its

A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134 121

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

τ3

τ2

τ1

idle
slots

Fig. 2. EDF schedule for task system S1 = {�1(0; 1; 4; 4); �2(1; 3; 6; 6); �3(3; 1; 4; 4)}.

processor utilisation factor is U = 1
4 + 3

6 + 1
4 = 1, the processor is fully loaded. Nev-

ertheless, considering the schedule produced by the earliest deadline 7rst policy 3

(see Fig. 2), we notice an idle slot at time 6. We can also notice that at time 7,
the system adopts a cyclic behaviour (the cyclic part is delimited by the vertical
dashed lines in Fig. 2). Finally, the length of the cyclic schedule is the hyper period
P=12. It follows that the (in7nite) EDF schedule, denoted �, can be expressed as
�= �[0:::7)�∗

[7:::19) where �[a:::b) is the restriction of � to the time interval [a:::b), and
∗ the Kleene star [7]. The shortest schedulability interval is thus of length 19. This
can be compared to the size of Leung and Merill’s schedulability interval, which is of
size 27.
The previous example points out the existence of some idle slots, that are not

included within the idle task. They are called acyclic idle slots. Their existence can
be deduced from an accurate study of the processor load.

2.3. The processor request diagram

In this section, we study the acyclic idle slots, which are closely related to the
cyclicity problem. We assume that the system is scheduled by means of a work-
conserving policy. 4 We assume furthermore that the tasks are independent. The re-
quest diagram represents the evolution of the cumulated requested processor load over
the time (see Fig. 3). Let us introduce two functions: Release(t) is the sum of the
computing times of the tasks that are released at time t; and Request(t) is the sum
of the remaining computing times of the pending tasks at time t. The request diagram
represents the function Request, which can be computed according to the following

3 The priority of a task increases when its deadline becomes closer.
4 A work-conserving policy never lets the processor idle when there are some pending tasks to process,

e.g. EDF and RM scheduling policies are work-conserving.

122 A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134

C
um

ul
at

ed
 r

eq
ue

st
ed

pr
oc

es
so

r
lo

ad

Time
0 1 4 73 8 11 13 15 16 1912 202 5 6 9 10 14 17 18

Fig. 3. Processor request diagram for system S1.

rules:

Request(0) = Release(0)

Request(t) = if Request(t − 1) ¿ 0

then Request(t − 1)− 1 + Release(t)

else Release(t):

• Each time unit, since the scheduling policy is work-conserving, one unit of request
is processed, if there are pending tasks.

• Each time a task is released, the cumulated requested load is increased of its com-
putation time.

An idle slot occurs only when the cumulated requested load is zero (see time 6 in
Fig. 3), what does not depend on the choice of the work-conserving policy. In order
to focus on the acyclic idle slots, we 7rst consider fully loaded systems.

Lemma 1. If the processor is fully loaded and if the tasks are independent, the number
and the location of acyclic idle slots within schedules are independent of the chosen
work-conserving policy.

The proof is straightforward. Furthermore, the number of acyclic idle slots is bounded.

Lemma 2. If the processor is fully loaded, the number nc of acyclic idle slots in a
feasible schedule is bounded.

Proof. Let us consider a time interval [0:::r + NP), where N is an arbitrary positive
integer. A task �i completes execution at least �(r − ri)=Pi� + (N ∗ P)=Pi times within
this interval (where �x� is the greatest integer least or equal to x). Thus, the execution
of task �i requires at least (�(r − ri)=Pi� + (N ∗ P)=Pi) ∗ Ci processing time units. It
follows that the processor is busy at least during

∑n
i=1(�(r − ri)=Pi� + (N ∗ P)=Pi) ∗

Ci =
∑n

i=1�(r− ri)=Pi� ∗Ci +N ∗ P time units (remember that U is 1). There are thus
at most r+N ∗P− (

∑n
i=1�(r− ri)=Pi� ∗Ci +N ∗P)= r−∑n

i=1�(r− ri)=Pi� time units

A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134 123

left for idle periods. Since it is independent of N , this number holds for the in7nite
schedule too. nc is thus bounded.

As a consequence, no acyclic idle slots occur within the steady state, which is
characterised by a cyclic schedule, of period P. The acyclic idle slots come only from
build-up of the system. In the next section, we go further into the study of the acyclic
idle slots, for systems of independent tasks, and determine the start time of the periodic
behaviour of the system. More precisely, we show that the last acyclic slot determines
the end of the build-up phasis and the beginning of the steady state.

3. Independent task systems

3.1. Fully loaded task systems

3.1.1. The last acyclic idle slot
We focus on independent task systems and we establish the link between the time

point of the last idle slot (it exists since the number of acyclic idle slots is bounded)
and the time point of the beginning of the cyclic behaviour of the schedule. In the
following, tc denotes the time point of the last acyclic idle slot.

Proposition 3. If the processor is fully loaded, the last acyclic idle slot occurs at the
latest at r + P−1.

Proof. The proof relies on an accurate study of the properties of the functions Release
and Request. In the following, � denotes a natural integer. We need the three following
results:
(a) After r, the cumulated release requirement within any interval of size P is exactly

P : ∀�¿0,
∑P−1

t=0 Release(r + �+ t)=P.
This results from U =1 and from the fact that within the time interval [r + �;

r + �+ P), a task �i is released exactly P=Pi times.
Thus, we have

∑P−1
t=0 Release(r + �+ t)=

∑n
i=1 P=Pi ∗ Ci =P ∗ U =P.

(b) After r, the cumulated processor request cannot decrease over an hyper period:
∀�¿0, Request(r + �+ P)¿Request(r + �).
The proof is straightforward from the previous point. Between times r +� and

r + �+ P−1, P processing time units have been requested by the released tasks,
and at most P can have been processed. Furthermore, the released tasks are the
same at times r + � and r + �+ P.

(c) If an acyclic idle slot occurs after r, no acyclic idle slot can occur an hyper
period later: ∀�¿0, Request(r + �)= 0⇒Request(r + �+ P)¿0.
Between r + � and r + � + P, if an idle slot occurs at time r + �, at most

P−1 units of request can have been processed. Thus since between r + � and
r+�+P the cumulated request due to releases of tasks is P, there is at least one
remaining unit of request to process. The processor cannot then be idle, since we
use a work-conserving policy.

124 A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134

Assume now that the last acyclic idle time occurs after r+P−1, that is to say, there is
some natural integer � such that tc = r+P+�. We have Request(r+P+�)= 0. Using
point b, we have Request(r + �)= 0 too, i.e. an idle slot occurs at time r + �. But
then, according to point c, no idle slot can occur at time r + �+ P, what contradicts
our assumption.

3.1.2. The cyclicity result
If no acyclic idle slot occurs at all, we state tc =−1, and the periodicity begins at

time 0. We have the following proposition:

Proposition 4. If the processor is fully loaded, the system is in the same state at
times tc + 1 and tc + P + 1.

Proof. At time tc+1, since no requested processing time units were left by previously
released tasks (else, no idle slot would have occurred at tc), the cumulated requested
processor load consists only of the released processor load:

Request(tc + 1) = Release(tc + 1): (1)

After tc, the cumulated processor request within any time interval of size P is equal to
P processing time units, If it was less, an other idle time would occur, and it cannot
be more, since the processor utilisation factor is U=1. We thus have

∑P
i=1 Release(tc+

i + 1)=P. Furthermore, the cumulated requested processor load can never be zero,
since no idle slot occurs after tc. We have then, using the de7nition of function
Request given in Section 2.3:

P∑

i=1
Request(tc + i + 1) =

P∑

i=1
[Release(tc + i + 1) + Request(tc + i)− 1]

= P +
P∑

i=1
Request(tc + i)− P

=
P∑

i=1
Request(tc + i):

We deduce that

Request(tc + P + 1) = Request(tc + 1): (2)

Furthermore, we have

Release(tc + P + 1)¿ Release(tc + 1): (3)

All the tasks that are released at time tc + 1 are also released one hyper period later,
but some tasks may have an o&set greater than tc. Finally, according to the de7nition
of Request, we have

Request(tc + P + 1)¿ Release(tc + P + 1): (4)

A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134 125

Combining Eqs. (1)–(4), we get

Release(tc + P + 1)6 Request(tc + P + 1)

= Request(tc + 1)

= Release(tc + 1)

6Release(tc + P + 1):

It follows that Request(tc+P+1)=Release(tc+P+1)=Request(tc+1)=Release(tc+
1). This means that, at both time points, the only pending tasks are the tasks that have
just been released, and these tasks are the same at tc + 1 and tc + P + 1. The system
is therefore in the same state at both times.

Corollary 1. (1) The minimal schedulability interval is the interval [0; tc + P + 1).
(2) The earliest cyclic part of the schedule begins at time tc, and the schedule

computed on the time interval [tc + 1; tc + P + 1) de�nes the steady state of the
system.
(3) tc¡r + P, and tc can be deduced from the processor request diagram.
(4) If no acyclic idle slot occurs within the interval [0; P) then tc =−1.

Proof. Point (1) results from the fact that no acyclic idle slot occurs within the cyclic
part that cannot therefore start before tc+1 (2), and from Proposition 4. Point 2 comes
from Proposition 4 and point (3) from Proposition 3.
In order to prove point (4), we 7rst notice that in this case, Release(0)=Release(P).

Indeed, since no idle slot occurs, we have
∑P−1

i=0 Release(i)=P. We also have Release
(0)6Release(P). Thus P¿

∑P
i=1 Release(i)=

∑P−1
i=0 Release(i)+Release(P)−Release

(0)=P + Release(P)− Release(0)¿P.
It comes Release(P)−Release(0)= 0. We then use the same arguments as for Propo-

sition 4.

3.2. Systems with processor utilization factor less than 1

We show in this section that we can in fact deal with any scheduling policies, for
any systems, either fully loaded or not. Our proof relies on the introduction of the
idle task within the set of the tasks to schedule.
We assume thus now that U¡1. As stated in Section 2, cyclic idle slots appear regu-

larly and can be handled by the idle task �0. Scheduling the task system S =(�1; : : : ; �n)
is equivalent to scheduling the task system S0 = (�0; �1; : : : ; �n) which fully loads the
processor. We make no assumption about any priority which could be attached to the
idle task. In this way, the idle task can possibly be scheduled, i.e. the processor may
be idle, even if there are some other pending tasks. It follows that we can thus produce
work-conserving as well as non-work-conserving policies. This is a strong requirement
if we wish to establish properties for any schedule produced by o& line strategies.

126 A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134

The results of Section 3.1 hold for the task system S0, and can be extended to system
S provided:
(a) we de7ne the o&set r0 of the idle task,
(b) we can distinguish cyclic and acyclic idle slots, thus we can compute tc.
The o&set r0 has an impact on tc so, in order to minimize the size of the schedulability
interval, we have to accurately choose r0 in order to minimize tc. The 7rst idle slots
have to be acyclic, and once the idle task has been released, no more acyclic idle slot
may occur. We again use the processor request diagram. It points out the idle slots, we
just have to determine which ones are acyclic and which ones cyclic. We proceed in
the following way: we 7rst consider the interval [0; P). If there are only P(1−U) idle
slots, they are all cyclic, and, according to Corollary 1, we state tc =−1 and r0 = 0.
Else, if n denotes the number of occurring idle slots, the n − P(1−U) 7rst idle slots
are acyclic, and we consider next the time interval of length P starting after the last of
these acyclic slots (occurring at tlast). We proceed in the same way: if only P(1−U)
idle slots occur, they are all cyclic, and we state tc = tlast and r0 = tc +1. Else, the 7rst
idle slots are acyclic, and we go on moving the time interval until we reach an interval
containing only P(1−U) idle slots.
The algorithm is given in Appendix A and is illustrated in Fig. 4 and 5.

τ1

τ2

Idle
slots 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 4. RM schedule for the system S2 = {�1(0; 1; 4; 4); �2(4; 4; 6; 6)}.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
um

ul
at

ed
 r

eq
ue

st
ed

pr

oc
es

so
r

lo
ad

1st interval
Nb_i = 3 - last = 2

Nb_i = 1 => tc = 2 r0 = 3

2nd interval

Fig. 5. The two 7rst idle slots are acyclic, and the cyclic part starts at time 2. Only the coloured parts of
the intervals have to be investigated.

A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134 127

Example. Consider the task system S2 = {�1(0; 1; 4; 4); �2(4; 4; 6; 6)}.
We have U = 11

12 thus C0 = 1, D0 =P0 = 12. The system can e.g. be scheduled by the
RM policy (see Fig. 4). The characteristics of the idle task are determined in Fig. 5
which shows the processor request diagram of system S2. The algorithm considers 7rst
the interval [0; 12), it contains 3 idle slots, the two 7rst ones are acyclic, and the second
acyclic slot occurs at time 2. The second considered interval is then [3; 15) but only
the part [12; 15) is further investigated. It contains only one idle slot, which is cyclic.
The algorithm completes, and has computed tc =2 and r0 = 3. The upper bound for tc
was r + P=16, which is improved, since tc =2. The optimal schedulability interval
is thus [0; 15) instead of [0; 28) using the upper bound. Only the computation of the
diagram for the 15th 7rst time units is required, the same holds for any schedule, and
this is optimal. Note that the gain is still noticeable for on-line scheduling performance
study, but that it can be huge for o&-line methods that are often exponential in the
length of the schedule.

4. System of interacting tasks

O&-line methodologies are particularly interesting for systems of interacting tasks.
Therefore, we need to extend our results to such systems.
The use of critical resources, which must be used in mutual exclusion, has no in-

Guence on the results of Section 3: it just determines which of the pending tasks has
to be processed, for a suitable resources management. Thus, the results established for
independent tasks can be extended to task system using critical resources. The main
diFculty comes from precedence constraints : some of the tasks cannot be executed
in arbitrary order, but have to respect some precedence relations de7ned at the design
step [3,6]. They represent synchronisation and communication relations. We note �i → �j
(�i preceeds �j) if for any positive k, the kth instance of �i must have completed
execution before the kth instance of �j can be processed. If �i → �j, we further assume
that Pi =Pj.

4.1. First example

Consider the task system S3 = {�1(0; 1; 4; 4); �2(1; 1; 4; 4); �3(2; 1; 4; 4); �4(0; 1; 4; 4)},
with the precedence relation de7ned by �2 → �1 and �1 → �4. Using EDF policy, we
get the schedule of Fig. 6. We have U =1 thus there is no cyclic idle slot, but an
acyclic idle slot occurs at time 0. Considering now the processor request diagram (see
Fig. 7), we can see that the cumulated requested processor load is nevertheless positive
at time 0. It follows that the previously used characterisation of idle slots does not hold
anymore if precedence constraints are involved. In the case of system S3, the idle slot
comes from the fact that the already released task �1 waits for the not yet released
task �2 and task �4, which is released too, waits for the completion of �1.

In precedence constrained systems, the cumulated processor load can be divided
into two parts: the request of pending tasks, that can be processed immediately, and
the request of waiting tasks, that cannot be processed at once. An idle slot occurs
when there is no pending task: either all the previously released tasks have completed

128 A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134

τ1

τ2

τ3

0 1 4 7
Idle slots

3 8

τ4

Fig. 6. EDF schedule for system S3 = {�1(0; 1; 4; 4); �2(1; 1; 4; 4); �3(2; 1; 4; 4); �4(0; 1; 4; 4)}.

Time

C
um

ul
at

ed
 p

ro
ce

ss
or

re
qu

es
te

d
lo

ad

τ1, τ4

τ2

τ3

τ1, τ4

τ2

τ3

Fig. 7. The processor request diagram of system S3. The newly released tasks are indicated.

execution; or all the released but not completed tasks are waiting for completion of
another task, which is itself either not yet released, or waiting.

4.2. Blocking chains

The blocking chains express the cascade waitings induced by a not released instance
of a task.
We call t-blocking chain a sequence �i1 ; �i2 ; : : : ; �ik such that the current released

instance of �ik waits for completion of the current instance of �ik−1 ; : : :, the current
instance of �i3 waits for completion of the current instance of �i2 , the current released
instance of �i2 waits for an instance of �i1 which has not yet been released. This can
be formally expressed by:
• �i1 → �i2 , �i2 → �i3 ; : : : ; �ik−1 → �ik (we thus have Pi1 =Pi2 = · · · =Pik =T),
• ri2¿t; ri3¿t; : : : ; rik¿t,

A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134 129

• there is some q(q= �(t− ri2)=T�= �(t− ri3)=T�= �(t− rik)=T�) such that the qth in-
stances of tasks �i2 ; �i3 ; : : : ; �ik have been released, but not the qth instance of task �i1 .
This last point can itself be expressed by the following inequalities:
t¿ri2 + �(t − ri2)=T� ∗ T; : : : ; t¿rik + �(t − rik)=T� ∗ T (where rij + �(t − rij)=T� ∗ T

is the release time of the current instance of task �ij) and t¡ri1 + �(t − ri1)=T� ∗ T
(the qth instance of �i1 is not yet released).
Example. If we consider system S2, the sequence �2; �1; �4 is a 0-blocking chain.
We de7ne the t-blocking set as the set B(t) of all the t-blocking chains.
An idle slot occurs at time t when the processor requested load comes only from

tasks belonging to t-blocking chains.
The extension of the cyclicity result to precedence constrained systems relies on the

cyclicity of t-blocking sets, which is stated in Proposition 5.

Proposition 5. After r, the blocking sets are periodic, with period P.

Proof. In the following, � denotes a natural integer.
• We 7rst prove that a �-blocking chain is also a (�+P)-blocking chain: B(�)⊆B(�+

P): Let �i1 ; �i2 ; : : : ; �ik be a �-blocking chain. At time �, the qth instances of tasks
�i2 ; : : : ; �ik have been released, with q= �(�− ri2)=T�= �(�− ri3)=T�= �(�− rik)=T�,
but not the qth instance of �i1 . An hyper period later, the (q + P=T)th instances of
tasks �i2 ; �i3 ; : : : ; �ik have been released, but not the (q+P=T)th instance of �i1 . Thus
�i1 ; �i2 ; : : : ; �ik is a (�+ P)-blocking chain too.

• We then prove that a (r + P + �)-blocking chain is also a (r + �)-blocking chain:
B(r + �+ P)⊆B(r + �).
We 7rst notice that at time r+�, all tasks have been 7rst released. We consider a

(r+�+P)-blocking chain �i1 ; �i2 ; : : : ; �ik . The instances number q= �(r+�+P−ri2)=T�
of tasks �i2 ; : : : ; �ik are released, but not these of task �i1 . For each task, the (q−P=T)th
instance is released P time units sooner than the qth one, thus it is already released
at time r+�, for tasks �i2 ; : : : ; �ik , but not yet for task �i1 . Thus �i1 ; �i2 ; : : : ; �ik is also
a (r + �)-blocking chain.

Remark. It follows from this proof that after r, a blocking chain �i1 ; �i2 ; : : : ; �ik is
periodic of period T . Thus the whole set B admits P as period.

4.3. Idle slots and cyclicity result

We want again to determine an upper bound for the last acyclic idle slot, and prove
that after it, the system enters its steady state.
We decompose the function Request in two functions : Request=Pending+Waiting.

• Pending(t) is the sum of the remaining computation times of tasks that have been
released before or at t, and that do not belong to a t-blocking chain (such tasks are
the pending tasks).

• Waiting(t) is the sum of the remaining computation times of tasks that have been
released before or at t, and that belong to a t-blocking chain (such tasks are called
waiting tasks).

130 A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134

An idle slot occurs when pending(t) is zero, and thus Request(t)=Waiting(t): the
whole processor requested time comes from waiting tasks.
Since the releases of tasks and the blocking chains are periodic, with period P, the

function Waiting is periodic, with period P after r.
We prove now that the acyclic idle slots, due to blocking chains, occur before r+P.

Proposition 6. If the processor is fully loaded and the system precedence constrained,
the last acyclic idle slot occurs at the latest at r + P − 1.

Proof.
• We 7rst prove that, if there is no pending task at time r + � (� being a natural
integer), there is at least one remaining pending task at time r + �+ P.
Indeed, after r, the cumulated release requirement on the interval [r+�; r+�+P) is

P, since U =1. But only P−1 processor time units can have been processed, since
Pending(r + �)= 0 by assumption. Now, Waiting is periodic, thus Waiting(r +
�)=Waiting(r + �+ P). Thus we have:

Request(r+�+P)¿Request(r+�)+P− (P−1) (the term P corresponds to the
cumulated released load and (P−1) to the maximal amount of time units processed),
i.e.

Request(r+�+P)¿Request(r+�)+1, and, because of the periodicity of Waiting,
we have Pending(r + �+ P)¿Pending(r + �) + 1=1.

• We then prove that, if there is at least one pending task at time r + �, there is
also at least one pending task at time r + �+ P.
We use the same arguments: here, the maximum number of processed time units

is P, thus we have Pending(r + �+ P)¿Pending(r + �)¿0.
It follows that Pending(r + � + P) can never be equal to zero, thus no idle slot can
occur after r + P − 1.

We can now extend the cyclicity result to systems of interacting tasks, the proof being
the same as for independent tasks.

Proposition 7. If the processor is fully loaded and the system precedence constrained,
the system is in the same state at times tc + 1 and tc + P + 1.

4.4. Non-fully loaded processor

If the processor utilization factor is less than one, we proceed in the same way as
for systems of independent tasks, and we again get ride of the restriction to work-
conserving policies. The only di&erence comes from the computation of tc and r0.
We use the same algorithm as in Section 3.2, but we replace the test If Req=0,
which determines the occurrence of an idle slot (acyclic or cyclic) by the test If
Req=Waiting(t): an idle slot occurs when the whole requested load comes from the
waiting tasks. We thus have to compute Waiting(t). For that sake, we 7rst compute
the set W (t) of the released blocked tasks (i.e. the set of the waiting tasks at time t).

A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134 131

We use a width 7rst construction of the t-blocking chains. We 7rst compute the set of
released tasks directly blocked by other non-released tasks: �i belongs to W0(t) if there
exists a task �j such that the current instance of �i waits for a non-released instance
of �j:
• �i → �j,
• �(t − ri)=Pi� ¡ �(t − rj)=Pj� (the number of the current instance of �i is less than

the number of the current instance of �j).
Then we consider tasks that are blocked because they are waiting for completion of
one of the tasks of W0, and we go on until all the waiting tasks have been found. This
is achieved by the algorithm given in Appendix B.
Example. consider system S3. Since U =1, there is no cyclic idle slot. In order to

determine tc, we 7rst compute
• Release(0)= 2 (tasks �1 and �4 are released).
• Request(0)= 2=Release(0).
• Computation of W :

◦ W0 = {�1} (�1 is released, and waits for �2 which is not released),
◦ W = {�1; �4} (�4 waits for completion of �1 which is in W0).

• Waiting(0)= 2.
There is thus an idle slot at time 0. The computation of Waiting on the interval
[1; 5] shows that no further idle slot takes place. The optimal schedulability interval is
thus [1; 5].

5. Conclusion

We have shown that systems of periodic interacting tasks with o&sets behave cycli-
cally after a build up phasis, and that the beginning of the steady state is independent
of the scheduling policy. In a 7rst time, we have paid special attention to the processor
idleness. Two kinds of idleness have been observed: regular idleness, which can be de-
duced from the system load and occasional idleness. Regular idleness can be modelled
by the (periodic) idle task. Its adjunction to other tasks leads to a processor utilisation
factor equal to 100%. The main advantage of the introduction of the idle task �0 is
that it enables to deal with any scheduling policies, work-conserving or not, for any
systems, fully loaded or not. Notice further that this adjunction is only instrumental
for the proofs, but that the user just has to focus on the processor diagram in order to
determine the cycle of the tasks system. The remainder (occasional) idle slots are the
acyclic idle slots. We have proven that:
• The number of acyclic idle slots is 7nite in any feasible schedule.
• The date of the last acyclic idle slot, denoted by tc, is bounded by r + P− 1 and is
independent of the scheduling policy.

• The system is in the same state at times tc + 1 and tc + 1+ P, what means that the
schedule behaves cyclically after tc.

• Furthermore, a suitable choice of the o&set of the idle task leads to an optimal value
for tc.

132 A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134

It follows from these results that the schedule must be computed on the time interval
[0:::tc+P+1) and that the part of the schedule de7ned on the interval [tc+1; tc+1+P)
de7nes a steady state.
This result was mandatory in order to perform o&-line schedulability analysis.
It enables the extension of methods that have been developed in literature for sys-

tems of aperiodic tasks or of periodic tasks without o&sets. Since the schedulability
interval is [0; tc+P+1), only the instances of tasks released within this interval have to
be considered. Our results generalise those already known for systems of independent
tasks with o&sets scheduled by means of 7xed priority algorithms, or by the earliest
deadline policy. Furthermore, we have determined the optimal schedulability interval.
The o& line study can be performed together with the computation of this interval,
and, although the schedulability problem remains NPhard, we have here optimised its
temporal complexity. This results have been used in [9] where an o& line scheduling
methodology based on a modelling by Petri nets of real-time systems has been devel-
oped. The schedulability of the application relied on the construction of the marking
graph, whose depth could thus be bounded.

Appendix A. Algorithm of computation of tc and r0

Req:= 0;
idle_slots:= empty queue; -- contains the dates of the idle
slots occurring within the interval [tfirst, t]
nb_i:= 0; -- number of idle slots within the considered
interval, i.e. length of idle slots
tfirst := 0; -- begining of the considered interval
t:= 0; -- end of the considered interval
last := -1; --date of the last known acyclic idle slot
found := false;

While (t < r + P) and not found DO
Req:= Req + Release(t);
IF Req = 0

THEN -- There is an idle slot
nb_i:= nb_i + 1;
queue (idle_slots, t);

ELSE Req:= Req - 1; -- the processor runs for one time unit
END IF;
IF t - tfirst + 1 = P -- the considered interval is of size P
THEN

IF nb_i > P(1 - U) -- some of the idle slots are acyclic
THEN

last := idle_slots[nb_i - P(1 - U)] -- the first idle
slots of the interval are acyclic

ELSE -- the interval contains no acyclic idle slots. The last

A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134 133

acyclic idle slot has already been found
found := true;

END IF;
tfirst := tfirst + 1; -- the begining of the interval is moved

of one time unit
IF head(idle_slots) = tfirst - 1 -- the first idle slot in
the queue does no more belong to the considered interval, thus
it must be removed from the queue

THEN
unqueue(idle_slots);
nb_i := nb_i- 1;

END IF;
END IF;
t := t + 1; -- the end of the interval is moved
of one time unit

END DO;
t_c:= last;
r_0:= last + 1;
Note that the construction of the queue idle slots can be achieved on the Gy e.g.

when simulating a scheduling algorithm.

Appendix B. Computation of the waiting tasks

We recall that W0 is the set of the released tasks that are directly blocked by a non
released task.

Remaining tasks := {�1; �2; : : : ; �n} \W0
5

REPEAT
W := W0;
FOR each tasks �i in Remaining task DO

IF there is some task �j in W0 such that

� t − ri
Ti

� = � t − rj
Tj

� and �j → �j

THEN
W0 := W0

⋃ {�i};
Remaining tasks := Remaining tasks \ {�i}
END IF;

END DO;
UNTIL W = W0;

The function Waiting(t) is then de7ned by Waiting(t)=
∑

�i∈W0
Ci.

5 A\B is the set of the elements of A which do not belong to B.

134 A. Choquet-Geniet, E. Grolleau / Theoretical Computer Science 310 (2004) 117–134

References

[1] T.P. Baker, Z.S. Su, Sequencing with due-dates and early start times to minimize maximum tardiness,
Nav. Res. Logist. Quat. 21 (1974) 171–176.

[2] S.K. Baruah, L.E. Rosier, R.R. Howell, Algorithms and complexity concerning the preemptive
scheduling of periodic, real-time tasks on one processor, Real-Time Systems 2 (1990) 301–324.

[3] J. Blazewicz, Scheduling dependent tasks with di&erent arrival times to meet deadlines, in: E. Gelenbe,
H. Bellner (Eds.), Modelling and Performance Evaluation of Computer Systems, North-Holland,
Amsterdam, 1976, pp. 57–65.

[4] P. Bratley, M. Florian, P. Robillard, Scheduling with earliest start and due date constraints on multiple
machines, Nav. Res. Logist. Quat. 22 (1) (1975).

[5] G.C. Buttazzo, Hard Real-Time Computing Systems, Kluwer Academic Publishers, Dordrecht, 1997.
[6] F. Cottet, J.P. Babau, O&-line temporal analysis of hard real-time applications, in: Second IEEE

Workshop on Real-Time Applications, 1994.
[7] S. Eilenberg, Automata Languages and Machines, Vol. A, Academic Press, New York, 1976.
[8] J. Goosens, R. Devillers, The non-optimality of the monotonic priority assignment for hard real-time

o&sets free systems, J. Real Time Systems 13 (2) (1997) 107–126.
[9] E. Grolleau, A. Choquet-Geniet, O& line computation of real time schedules by means of petri nets,

J. Discrete Event Dyn. Systems 12 (2002) 311–333.
[10] J.Y.T. Leung, M.L. Merill, A note on preemptive scheduling of periodic real-time tasks, Inform. Process.

Lett. 11 (3) (1980) 115–118.
[11] J. Leung, J. Whitehead, On the complexity of 7xed-priority scheduling of periodic real-time tasks,

Performance Evaluation 2 (1982) 237–250.
[12] C.L. Liu, J.W. Layland, Scheduling algorithms for multiprogramming in a hard real-time environment,

J. ACM 20 (1) (1973) 46–61.
[13] A.K. Mok, Fundamental design problems for the hard real-time environments, Ph.D. Thesis, MIT, 1983.
[14] A.K. Mok, M.L. Dertouzos, Multi processor scheduling in a hard real-time environment, in: Proc. of

Seventh Texas Conf. on Computer Systems, 1978.
[15] J.A. Stankovic, Misconception about real-time computing: a serious problem for the next generation

systems, IEEE Compu. Magaz. 21 (10) (1988) 0–19.
[16] A. Stankovic, M. Spuri, K. Ramamritham, G.C. Buttazzo, Deadline Scheduling for Real-Time Systems,

Kluwer Academic Press, Dodrecht, 1998.
[17] J. Xu, D.L. Parnas, Scheduling processes with release times, deadlines, precedence and exclusion

relations, IEEE Trans. Software Eng. 16 (3) (1990) 360–369.
[18] J. Zamorano, A. Alonso, J.A. De La Puente, Automatic generation of cyclic schedules, in: WRTP’97—

22nd IFAC/IFIP Workshop on Real Time Programming, 1997, pp. 145–151.

	Minimal schedulability interval for real-time systems of periodic tasks with offsets
	Introduction
	The validation problem
	On-line methods
	Off-line methods

	Our contribution

	Processor inactivity
	The temporal model
	Acyclic idle slots
	The processor request diagram

	Independent task systems
	Fully loaded task systems
	The last acyclic idle slot
	The cyclicity result

	Systems with processor utilization factor less than 1

	System of interacting tasks
	First example
	Blocking chains
	Idle slots and cyclicity result
	Non-fully loaded processor

	Conclusion
	Appendix A. Algorithm of computation of tc and r0
	Appendix B. Computation of the waiting tasks
	References

