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In the adult teleost brain, proliferating cells are observed in a broad area, while these cells have a restricted
distribution in adult mammalian brains. In the adult teleost optic tectum, most of the proliferating cells are
distributed in the caudal margin of the periventricular gray zone (PGZ). We found that the PGZ is largely
divided into 3 regions: 1 mitotic region and 2 post-mitotic regions—the superficial and deep layers. These
regions are distinguished by the differential expression of several marker genes: pcna, sox2,msi1, elavl3, gfap,
fabp7a, and s100β. Using transgenic zebrafish Tg (gfap:GFP), we found that the deep layer cells specifically
express gfap:GFP and have a radial glial morphology. We noted that bromodeoxyuridine (BrdU)-positive
cells in the mitotic region did not exhibit glial properties, but maintained neuroepithelial characteristics.
Pulse chase experiments with BrdU-positive cells revealed the presence of self-renewing stem cells within
the mitotic region. BrdU-positive cells differentiate into glutamatergic or GABAergic neurons and
oligodendrocytes in the superficial layer and into radial glial cells in the deep layer. These results
demonstrate that the proliferating cells in the PGZ contribute to neuronal and glial lineages to maintain the
structure of the optic tectum in adult zebrafish.
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Introduction

Adult neurogenesis in the mammalian brain occurs in a restricted
region of the telencephalon (Kempermann, 2006; Ming and Song,
2005). Previous studies have demonstrated that the ability to produce
new neurons in the adult brain plays an important role in the
maintenance of brain functions such as learning and memory
(Clelland et al., 2009; Drapeau et al., 2003; Garthe et al., 2009; Kee
et al., 2007). However, the underlying molecular mechanisms that
regulate this phenomenon are largely unknown (Alvarez-Buylla and
Lim, 2004). Non-mammalian vertebrates such as reptiles, amphibians,
and teleosts retain proliferating cells outside of the telencephalon in
the adult brain (Chapouton et al., 2007; Kaslin et al., 2008). In teleosts,
including zebrafish (Danio rerio), the entire brain continues to grow in
adulthood, and proliferating cells are still observed in a broad area of
the rostrocaudal axis (Adolf et al., 2006; Bernardos et al., 2007;
Chapouton et al., 2006; Grandel et al., 2006; Hinsch and Zupanc, 2007;
Kaslin et al., 2009; Marcus et al., 1999; Raymond et al., 2006). Müller
glia-derived progenitor cells generate rod photoreceptor lineage in
the adult retina (Bernardos et al., 2007). Progenitors derived from the
ventral subpallium in the adult telencephalon migrate into the
olfactory bulb through the rostral migratory stream, and then
differentiate into GABAergic or tyrosine hydroxylase (TH)-positive
neurons (Adolf et al., 2006). The hairy-related 5 (her5)-positive cell
population in the adult midbrain–hindbrain boundary differentiates
into neurons and glia (Chapouton et al., 2006). In the adult
cerebellum, neural stem cells possess neuroepithelial characteristics
and produce granule cell precursors depending on fibroblast growth
factor (Fgf) signaling (Kaslin et al., 2009). These studies demonstrated
that progenitor cells in the adult zebrafish brain retain neural stem
cell properties similar to those in the mammalian central nervous
system (CNS). Therefore, the adult teleost brain is considered to be an
excellent comparative model for adult neurogenesis in vertebrates
(Chapouton et al., 2007; Kaslin et al., 2008).

The optic tectum is a visual center of the teleost brain and
dominates the dorsal part of the mesencephalon, which corresponds
to the superior colliculus of the mammalian midbrain. The optic
tectum has a multilayered structure (from the superficial to the deep
layer) consisting of the stratum marginale (SM), stratum opticum
(SO), stratum fibrosum et griseum superficiale (SFGS), stratum
griseum centrale (SGC), stratum album centrale (SAC), and stratum
periventriculare (SPV) (Meek, 1983; Meek and Nieuwenhuys, 1998).
Most of the neurons of the optic tectum exist in the SPV layer, also
called the periventricular gray zone (PGZ). Neurons in the PGZ extend
their apical dendrites to the SO and SFGS layers and make
glutamatergic synapses with retinal axons thereby receiving visual
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information (Kinoshita et al., 2005; Kinoshita and Ito, 2006).
Proliferating cells have been identified in the PGZ of the optic tectum
in adult teleosts such as the brown ghost knifefish (Apteronotus
leptorhynchus), brown trout (Salmo trutta fario), three-spined stick-
leback (Gasterosteus aculeatus L.), goldfish (Carassius auratus),
medaka (Oryzias latipes), and zebrafish (Candal et al., 2005; Ekström
et al., 2001; Grandel et al., 2006; Hinsch and Zupanc, 2007; Marcus et
al., 1999; Nguyen et al., 1999; Raymond and Easter, 1983; Zupanc and
Horschke, 1995; Zupanc et al., 2005), suggesting continuous neuro-
genesis in the adult teleost optic tectum. In the optic tectum of adult
zebrafish, proliferating cells exist in the medial, lateral, and caudal
margins of the PGZ (Grandel et al., 2006; Marcus et al., 1999; Zupanc
et al., 2005). However, there is no evidence whether these
proliferating cells possess the molecular properties of neural stem
cells.

In this study, we demonstrated that the proliferating cells in the
adult zebrafish optic tectum function as neural stem/progenitor cells
in vivo. We found that bromodeoxyuridine (BrdU)-labeled prolifer-
ating cells in the mitotic region of the PGZ expressed neural stem/
progenitor cell markers such as proliferating cell nuclear antigen
(pcna), SRY-box containing gene 2 (sox2), musashi homolog 1
(Drosophila) (msi1) (Bravo and Macdonald-Bravo, 1987; Ferri et al.,
2004; Kaneko et al., 2000). BrdU-negative cells located in the ventral
edge of the PGZ, which we designated as deep layer cells, still
expressed several neural stem/progenitor cell markers and some glial
cell markers such as glial fibrillary acidic protein (gfap), fatty acid
binding protein 7, brain, a (fabp7a, also called brain lipid binding
protein, blbp), and S100 calcium binding protein, beta (neural) (s100β)
(Götz and Barde, 2005; Hartfuss et al., 2001; Liu et al., 2003;
Wainwright et al., 2004). Using a transgenic Tg (gfap:GFP) zebrafish
strain (Bernardos and Raymond, 2006), we showed that these gfap–
GFP-positive deep layer cells extended radial fibers, indicating that
these cells are radial glia. We were intrigued to note that BrdU-
positive proliferating cells did not exhibit glial properties, which are a
common feature of neural stem cells in the adult mammalian brain.
The proliferating cells that face the ventricle show a polarized
distribution of apical markers, including zona occludens protein 1
(ZO-1), γ-tubulin, and aPKC (Del Bene et al., 2008; Oteiza et al., 2008),
suggesting that these cells maintain neuroepithelial characteristics.
Cell lineage tracing, with BrdU pulse labeling, revealed that these
proliferating cells differentiated into the ELAV (embryonic lethal,
abnormal vision, Drosophila)-like3 (Hu antigen C) (elavl3, also called
Hu antigen C, huC)-positive neuronal cells, which finally differentiated
into glutamatergic or GABAergic neurons in the superficial layer of the
PGZ (Higashijima et al., 2004; Martin et al., 1998; Marusich et al.,
1994; Mueller and Wullimann, 2002), oligodendrocytes, and radial
glial cells in the deep layer of the PGZ. Each cell type differentiated at
least 2 weeks after the final division of their progenitors.

Materials and methods

Animals

Zebrafish (D. rerio) were bred and maintained according to
standard procedures (Westerfield, 2007). RIKEN Wako (RW) wild-
type strain was obtained from the Zebrafish National BioResource
Center of Japan (http://www.shigen.nig.ac.jp/zebra/). The Tg (gfap:
GFP)mi200 1 (Bernardos and Raymond, 2006) strain was obtained from
the Zebrafish International Resource Center (ZIRC). The Tg (elavl3
(huC):GFP) (Park et al., 2000) strain was provided from the Lab. for
Developmental Gene Regulation, BSI, RIKEN.

Bromodeoxyuridine labeling

Adult fish (age, 6–10 months; weight, 0.16–0.57 g; length, 28–
40 mm) were anesthetized in fish water containing 0.017% tricaine
(pH 7.0; Nacalai Tesque). They were then intraperitoneally injected
with 16 mM bromodeoxyuridine (BrdU; Sigma) solution diluted in E3
medium with 50 μl/g body weight and kept in fish water containing
10 mMBrdU for 72 h. For the BrdU pulse chase in Figs. 6A–H, 24-hour-
BrdU-labeled fish were incubated in fresh fish water for 2 weeks,
1 month, and 2 months. For the BrdU pulse chase in Figs. 6I–T and 7,
72-hour-BrdU-labeled fish were incubated in fresh fish water for
2 weeks (Figs. 6I–P) or 1 month (Figs. 6Q–T and 7). After incubation,
the fish were placed on ice and decapitated. The brains were dissected
and fixed in 4% paraformaldehyde (PFA; Wako) solution dissolved in
phosphate-buffered saline (PBS, pH 7.4) at 4 °C for 24 h and then
dehydrated gradually in ethanol and stored in 100% ethanol at−20 °C.

Bromodeoxyuridine and iododeoxyuridine double-labeling

BrdU and iododeoxyuridine (IdU; Sigma) double-labeling was
performed according to Burns and Kuan (2005) with some modifi-
cation. Intraperitoneal injection of 10 mM IdU at 80 μl/g body weight
was administered to anesthetized adult fish, which were then
maintained in fish water containing 10 mM IdU for 48 or 66 h.
Intraperitoneal injection of 16 mM BrdU at 50 μl/g body weight was
then administered, and the animals were maintained in fish water
containing 10 mM BrdU for 24 or 6 h, for a total labeling time of 72 h
for both samples.

Histology

For fluorescence in situ hybridization and immunohistochemistry,
fish were anesthetized in 0.017% tricaine and perfused intracardially
with Ringer's solution followed by 4% PFA solution. The brains were
dissected from the skulls and postfixed in 4% PFA solution overnight at
4 °C. To prepare frozen sections, whole brains were soaked in 20%
sucrose at 4 °C overnight and embedded in an embedding solution [O.
C.T. compound (Tissue-Tek): 20% sucrose=2:1]; 14-μm-thick sec-
tions were cut using a cryostat (Cryocut1800; Leica). For vibratome
sections, whole brains were embedded in 2% agarose and 60-μm-thick
sections were prepared using a micro slicer (DTK-1000, Zero1, Dosaka
EM). Plastic sections were prepared for counting cell numbers; a
whole brain, which was already stained with anti-BrdU and detected
by Histofine simple stain MAX-PO (M) (Nichirei) (see below), was
dehydrated gradually in ethanol and embedded using the JB-4
embedding kit (Polysciences). The brains were then cut into 10-μm-
thick serial sections using a rotary microtome (HM330; Microm). The
serial sections were mounted using Entellan (Merck).

Cell quantifications/cell counting

To quantify BrdU-positive cells, 10-μm-thick serial coronal plastic
sections through the whole tectal region were prepared as described
above (n=3). BrdU-positive cells were counted on a BX50 micro-
scope (Olympus) with UPlanFLN 60× (NA0.90) objectives. Since the
size of the teleost brain is slightly different between samples of the
same age, we divided all sections into 10 groups along the
rostrocaudal axis and calculated the mean cell number of each
group. This mean cell number was compared with the corresponding
group of samples. Means were expressed±SEM.

Immunohistochemistry

Immunohistochemistry was performed on 14-μm-thick cryosec-
tions and 60-μm-thick vibratome sections. Briefly, each sample were
washed several times in 0.1% PBST (PBS containing 0.1% Triton X-100)
and then blocked in 0.1% PBST with a 2% blocking regent (Roche) for
1 h at room temperature before application of the primary antibody.
For primary antibodies, we used mouse anti-BrdU (1:100; Roche), rat
anti-BrdU (1:500; Abcam), mouse anti-BrdU (1:500; Becton
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Dickindon) (this antibody can detect both BrdU and IdU), mouse anti-
PCNA (1:1000; Sigma), rabbit anti-PCNA (1:50; Santa Cruz), rabbit
anti-phospho-histone H3 (pH3) (1:500; Upstate biotech), rabbit anti-
Sox2 (1:200; Millipore), rabbit anti-Musashi 1–2 (1:1000; a gift from
Dr. Michael Brand and Dr. Jan Kaslin, Dresden University of
Technology, Germany) (Kaslin et al., 2009), mouse anti-HuC/D
(1:40; Molecular Probes), mouse anti-GFAP (1:500; zrf-1, ZIRC),
rabbit anti-S100 (1:500; Dako), rabbit anti-BLBP (1:1000; Abcam),
mouse anti-ZO-1 (1:1000; Invitrogen), mouse anti-γ-tubulin (1:500;
Sigma) and rabbit anti-aPKC (1:250; Santa Cruz), mouse anti-GFP
(1:200; Roche), and rabbit anti-GFP (1:100; Santa Cruz). For
secondary antibodies, we used Histofine simple stain MAX-PO (M)
(Nichirei) and Alexa Fluor 350-, 488-, 546-, 594-, and 647-conjugated
subclass-specific antibodies (1:500; Invitrogen). Sections were em-
bedded in PermaFluor (Thermo) or 70% glycerol. For immunodetec-
tion of BrdU, the samples were incubated in 2 M HCl for 30 min at
37 °C before blocking. For immunodetection of PCNA, antigen
retrieval was performed by incubating slides in 10 mM sodium citrate
for 30 min at 90 °C before treatment with the primary antibody. For
immunodetection of HuC/D, the slides were incubated in methanol
prior to treatment with the primary antibody. For nuclear staining, the
samples were incubated in SYTOX orange (1:3000; Invitrogen) for
several minutes after immunohistochemistry was performed.

Fluorescence in situ hybridization

Fluorescence in situ hybridization was performed according to a
previously described method with some modifications (Takahata
et al., 2006). Briefly, 14-μm-thick frozen sections were washed in 0.3%
H2O2 in methanol for 30 min at room temperature, followed by a brief
wash in sterile water. After washing in PBST, the sections were treated
with 1 μg/ml proteinase K in PBST for 7 min at 37 °C and postfixed in
4% PFA in PBS. After washing in PBST, the sections were acetylated in
0.25% acetic anhydride in 0.1 M triethanolamine for 15 min at room
temperature and washed in standard saline citrate (SSC). For prehy-
bridization, the sections were incubated in a hybridization buffer (5×
SSC, 2% blocking reagent, 50% formamide, 0.1% N-lauroylsarcosine
(NLS), and 0.1% SDS; pH 7.0) for 1 h at 65 °C. This was replacedwith the
hybridization buffer containing 1.0 μg/ml DIG-labeled RNA probes and
incubated at 65 °C overnight. After hybridization, sectionswere washed
twice in 2× SSC containing 50% formamide and 0.1% NLS for 20 min at
65 °C, and excess RNA probes were digested in an RNase A buffer
(10 mM Tris–HCl, 10 mM EDTA, and 0.5 mM NaCl containing 20 μg/ml
RNase A) for 15 min at 37 °C. The slides were washed twice in 2× SSC/
0.1% NLS for 20 min at 37 °C and in 0.2× SSC/0.1% NLS for 15 min at
37 °C. After blocking in 2% blocking solution in PBST for 1 h at room
temperature, the slides were incubated overnight in anti-digoxigenin-
horse radish peroxidase (DIG-POD) Fab fragments (1:100; Roche) at
4 °C. To detect the POD-labeled antibody, the signal was enhanced by
the tyramide signal amplification (TSA) plus dinitrophenyl (DNP)
system (PerkinElmer) and visualized by an Alexa Fluor 488-conjugated
anti-DNP-KLH antibody (1:500, Molecular Probes). After visualization,
immunohistochemistry for BrdU detection was performed as described
above. In addition to the cDNA clones that we independently isolated
(as described below), we also used the following plasmids as templates
to synthesize digoxigenin-labeled RNA probes: solute carrier family 17
(sodium-dependent inorganic phosphate cotransporter) member 6a
(slc17a6a, also called vglut2.2) (Higashijima et al., 2004), slc17a6b
(slc17a6b, also called vglut2.1) (Higashijima et al., 2004), glutamate
decarboxylase (gad) 1 (Martin et al., 1998), and gad2 (Martin et al.,
1998).

cDNA cloning

Total RNA was extracted from the whole brain of adult zebrafish
using a total RNA extraction kit (RNAiso Plus, TaKaRa), and cDNA was
synthesized using the SuperScript first-strand synthesis system for
RT-PCR (Invitrogen). The RT-PCR-amplified fragments were cloned
into pCRII-TOPO plasmids (Invitrogen). The following primer sets
were used to amplify coding sequence from cDNA: fabp7a sense: 5′-
TGTTTCATCATCTCTCAACATGGTC-3′ and antisense: 5′-GGTAATACT-
GAAACGTCCTGCGCTC-3′, elavl3 sense: 5′-AATGGTTACTATAATTAG-
CACCATG-3′ and antisense: 5′-GAAGGCCTAGTCACTATTGCTCTTT-3′,
myelin protein zero (mpz) sense: 5′-ACGTATACTGACCTGCGGGGAGAT-
3′ and antisense: 5′-TGAAAGTAGAAAAATGACCAGAAA-3′.

Microscopy and data analysis

For conventional light microscopy, we used an Axioplan 2
microscope (Zeiss) with Plan-Neofluar 20× (NA0.5) and Plan-
Neofluar 40× (NA0.75) objectives, and a BX50 microscope (Olympus)
with UPlanApo 20× (NA0.70), UPlanSApo 40× (NA0.95), and
UPlanFLN 60× (NA0.90) objectives. For laser scanning confocal
microscopy, we used an LSM510 Meta microscope (Zeiss) equipped
with Axioplan 2, with Plan-Apochromat 20× (NA0.75) and Plan-
Neofluar 40× (NA0.75) objectives, and a C-Apochromat 63× (NA1.2)
water-immersion objective, and an FV1000 microscope (Olympus)
equipped with BX61 (Olympus) with UPlanSApo 20× (NA0.75) and
UPlanSAPO 40× (NA0.90) objectives, and a UPlanSAPO 60× (NA1.35)
oil-immersion objective. Images were processed using Adobe Photo-
shop and Adobe Illustrator.

Anatomical nomenclature

Anatomical nomenclature and abbreviations were used in accor-
dance with Wullimann et al. (1996).

Results

Majority of proliferating cells are distributed in the caudal part of the
PGZ in the adult zebrafish optic tectum

Previous studies have shown that in the adult zebrafish optic
tectum, BrdU-labeled proliferating cells are equally distributed in the
dorsal, caudal, and ventral margins throughout the rostrocaudal
extent, except for the very caudal end of the PGZ, which has densely-
labeled clusters (Grandel et al., 2006; Marcus et al., 1999; Zupanc
et al., 2005). However, detailed quantitative data of proliferating cells
within the adult zebrafish optic tectum have not yet been reported.
Therefore, we performed a quantitative analysis of the distribution of
proliferating cells in the optic tectum of adult zebrafish (Fig. 1). We
found that the majority of BrdU-positive cells were located in the
caudal, dorsomedial and ventrolateral margins of the PGZ (Figs. 1A–C,
arrows, and E); some BrdU-positive cells were sparsely distributed in
the non-marginal area of the PGZ and tectum opticum (TeO) (data not
shown). In the PGZ region, a total of 775 BrdU-positive cells were
observed, and in the rostrocaudal axis, 80% of the rostral region had a
relatively small number of BrdU-positive cells (4.0 cells per section)
(Fig. 1D, Table 1). However, 20% of the caudal region had a large
cluster of BrdU-positive cells (11.7 cells per section) (Fig. 1D, Table 1).
In the dorsoventral axis, 92.6% of cells (718 cells) resided in the
dorsomedial margin, and only 7.4% of cells (57 cells) resided in the
ventrolateral margin (Fig. 1E). These results suggest that the most
actively proliferating area of the adult zebrafish optic tectum is the
dorsomedial area of the caudal part of the PGZ. Therefore, in the
following studies, we focused on the molecular properties of this area.

We also checked the labeling efficiency of proliferating cells with
the BrdU and IdU double-labeling method (Burns and Kuan, 2005)
(Fig. 1F). Adult fishes were injected with IdU and incubated in IdU
solution for 48 or 66 h; BrdU was then introduced in the same
manner, followed by incubation for 24 or 6 h, respectively (Fig. 1Fi).
Total labeling time for both samples was 72 h. We found that the



Fig. 1. Proliferating cells are distributed through the dorsomedial area of the caudal region of the PGZ in the adult zebrafish optic tectum. (A–C) Proliferating cells in the adult zebrafish
optic tectum. Proliferating cells are labeled by 72-hour BrdU administration (white). Cell Nuclei are stained by SYTOX orange (red). (A) Sagittal section of adult zebrafish optic tectum
(single plane, anterior left). A large cluster of BrdU-positive proliferating cells are distributed in the caudal region of the PGZ (arrow). (B) Transverse section of the caudal region of the
adult zebrafish optic tectum (single plane, dorsal top). BrdU-positive proliferating cells are distributed through the dorsomedial area of the PGZ (arrow). (C) A highmagnification view
of the dorsomedial area of the PGZ, indicated by the yellow box in B (single plane, dorsal top). BrdU-positive proliferating cells are located on the dorsomedial margin (arrows).
(D) Quantitative data of the distribution of BrdU-positive proliferating cells in the PGZ of the adult zebrafish optic tectum. The whole tectal region is divided into 10 parts along the
rostrocaudal axis. Large numbers of proliferating cells are distributed through the caudal region of the optic tectum PGZ. Data are expressed as means±SEM; n=3. (E) Schematic
drawing of the distribution of proliferating cells in the adult zebrafish optic tectum (dorsal view, anterior top, (a–c) transverse view, dorsal top). Proliferating cells are located along the
dorsomedial and ventrolateral margins of the PGZ. The majority of BrdU-positive proliferating cells reside in the dorsomedial area of the PGZ caudal region (c). (F) Dorsomedial
distribution of proliferating cells after 6 h (a–d) and 24 h of (e–h) BrdU labeling. One-third and one-half of the proliferating cells are labeled by 6 h and 24 h of BrdU administration,
respectively (a, b, e, f, arrowheads). Most of the PCNA-positive cells are labeled by 72 h of continuous administration of IdU or BrdU, and visualized by BrdU antibody which detects
both BrdU and IdU (c, g). Whole population of proliferating cells as visualized by immunohistochemistry with anti-PCNA antibody (d, h). IdU and BrdU double-labeling scheme is
illustrated in panel i. CCe, corpus cerebelli; PGZ, periventricular gray zone; Tel, telencephalon; TeO, tectum opticum; Va, valvula cerebelli. Scale bars: 200 μm in A, B; 20 μm in C; 10 μm
in F.
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proliferating cells in the PGZ were partially labeled by 6 or 24 h of
BrdU labeling (Figs. 1Fb and Ff), and most of the PCNA-positive
proliferating cells were labeled after 72 h with both BrdU and IdU
Table 1
Distribution of BrdU-positive cells in the PGZ of the adult zebrafish optic tectum.

Sectionsa 1 2 3 4 5

Right PGZ 0 0.7±0.53 2.5±0.95 3.2±1.43 3.1±1.55
Left PGZ 0 0.5±0.42 1.6±0.79 1.8±1.13 1.2±1.15

a 10-μm-thick serial coronal sections of all the tectal area are divided into 10 groups alon
expressed ±SEM.
(Figs. 1Fc, Fd, Fg and Fh). Therefore, in subsequent studies (except for
Figs. 6A–H), we labeled proliferating cells in the PGZ by BrdU
incubation for 72 h.
6 7 8 9 10

2.2±1.29 1.8±1.47 7.0±1.00 11.6±3.89 10.6±6.24
1.5±1.16 2.1±1.01 4.3±1.33 9.0±4.87 12.8±5.26

g the rostrocaudal axis and calculated the mean cell number of each group. Means are
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Proliferating cells in the mitotic region of the PGZ express several neural
stem/progenitor cell markers

Immunohistochemistry was used to study the expression of neural
stem/progenitor cell markers in BrdU-positive proliferating cells
located in the dorsomedial area of the caudal region of the PGZ was
assessed (Fig. 2). These BrdU-positive cells expressed the proliferation
marker PCNA (Figs. 2A–D); most of the PCNA-positive cells were
labeled by 72-hour incubation with BrdU. Outside of the PGZ
dorsomedial area, PCNA expression was rarely observed (data not
shown). Therefore, we designated this PCNA or BrdU-positive area as
the mitotic region of the PGZ. Sox2 and Msi1, known to play an
important role in the self-renewal of neural precursors in the adult
mammalian brain, were also expressed in the mitotic region (Kaneko
et al., 2000; Wegner and Stolt, 2005) (Figs. 2E–L, arrowheads). These
data suggest that the BrdU-positive cells in the PGZ mitotic region
could be neural progenitor cells.
Fig. 2. Proliferating cells in the dorsomedial area of the PGZ express neural stem/progeni
dorsomedial area of the PGZ of the adult zebrafish optic tectum (60 μm transverse sectio
incubation. Insets in E–L showmagnified views of the yellow-boxed areas. (A–D)Most PCNA
BrdU-positive proliferating cells (insets, arrowheads), and the cells that reside in the ventr
(insets, arrowheads), and the cells that reside in the ventral edge of the PGZ (yellow arro
opticum. Scale bars: 10 μm in A, insets of E, I; 30 μm in E, I.
Post-mitotic cells in the ventral edge of the PGZ possess radial glial
properties

Interestingly, we found that neural stem/progenitor marker Msi1
and Sox2were also observed in the ventral edge of the PGZ (Figs. 2E–L,
yellow arrows). To address the correct localization of these cells, we
examined the distribution of neuronal and glial cells in the PGZ using
Tg (elavl3:GFP) strains which label the majority of neuronal cells with
GFP under the control of the elavl3 promoter (Park et al., 2000), and Tg
(gfap:GFP) strains, which can label gfap-positive glial cells with GFP
under the control of the gfap promoter (Bernardos and Raymond,
2006) (Figs. 3A–D). We also examined the immunostaining of several
glial and neural progenitor markers such as GFAP, S100β, Fabp7a, and
Sox2 (Figs. 3E–T). In Tg (elavl3:GFP) strains, only a few cells expressed
a strong elavl3:GFP signal and extended a dendrite-like processes
toward upper layer structures (Figs. 3A and B, arrowheads); however,
themajority of cells showed aweak expression of elavl3:GFP andwere
tor cell markers. (A–L) Expression of PCNA (A–D), Sox2 (E–H), and Msi1 (I–L) in the
ns, single planes, dorsal top). Proliferating cells are labeled with BrdU after 72 h of
-positive cells incorporate BrdU after 72 h of BrdU administration. (E–F) Themajority of
al edge of the PGZ (yellow arrows) express Sox2. (I–L) A subset of BrdU-positive cells
ws) express Msi1. CCe, corpus cerebelli; PGZ, periventricular gray zone; TeO, tectum



31Y. Ito et al. / Developmental Biology 342 (2010) 26–38
abundant in the PGZ, except for the mitotic region and the cells in the
ventral edge of the PGZ, which specifically expressed S100β (Figs. 3A
and B).

In contrast, inTg(gfap:GFP) strains, gfap:GFP-positive glial cellswere
specifically observed in the ventral edge of the PGZ (Figs. 3C and D).
Remarkably, these cells produced thin layer structure and extended
radial fibers to the surface of the optic tectum (Figs. 3C and D,
arrowheads); all gfap:GFP-positive cells expressed GFAP, S100β,
Fabp7a, and Sox2 (Figs. 3E–T). According to these results, we
determined that the cells in the ventral edge of the PGZ possess radial
glial properties. We designated these gfap:GFP-positive radial glial
populations and elavl3:GFP-positive neuronal populations as the deep
and superficial layers of the PGZ, respectively.

Proliferating cells in the mitotic region of the PGZ does not have glial
properties but have neuroepithelial characteristics

In the adult mammalian brain, neural stem/progenitor cells show
astroglial or radial glial characteristics (Doetsch, 2003). Therefore, we
examined whether these cells expressed gfap:GFP and S100β, which
are usually expressed in astrocytes and radial glia, and Fabp7a, which
is expressed in radial glia (Fig. 4) (Götz and Barde, 2005; Hartfuss
et al., 2001; Liu et al., 2003; Wainwright et al., 2004). In the mitotic
region, gfap:GFP, and S100βwere not expressed (Figs. 4A–D and I–L),
while expression of fabp7a was observed (Figs. 6E–H), however we
could not detect Fabp7a-positive cells in this region by immunohis-
tochemistry (Figs. 4E–H). These results suggest that the neural stem/
progenitor cells residing in the mitotic region do not have glial
characteristics.

In the adult zebrafish cerebellum, neural stem cells show not glial
but neuroepithelial characteristics (Kaslin et al., 2009). These stem
cells maintain ventricular contact and apical–basal polarity. According
to these observations, we examined the localization of apical markers
such as ZO-1, γ-tubulin and aPKC in the mitotic region of the PGZ
(Fig. 5). We found polarized distribution of apical markers in the most
medial PCNA-positive cells which face the ventricle (Figs. 5A, B, E, F, I
and J, arrow heads). These results suggest that these cells have
neuroepithelial characteristics.

Progenitor cells in the mitotic region of the PGZ contribute to both
neuronal and glial cell lineages

To investigate whether the proliferating cells in the mitotic
region of the PGZ contribute to both neuronal and glial cell
lineages, we performed BrdU pulse label analysis (Fig. 6). In each
stage, we examined the distribution of BrdU-positive cells along
with fluorescent in situ hybridization by using elavl3 and fabp7a as
markers for neuronal cells in the superficial layer and glial cells in
the deep layer of the PGZ, respectively (Figs. 6A–H and U). We
found that the majority of BrdU-positive cells showed a strong
elavl3 expression at 2 weeks post-BrdU administration (Figs. 6B
and I–L, arrowheads), and then maintained weak elavl3 expression
till at least 2 months post-BrdU administration, suggesting that
these cells differentiated into neuronal cells in the superficial layer
of the PGZ. We also found that some BrdU-positive cells were
elavl3-negative but fabp7a-positive in the ventral edge of the PGZ
(Figs. 6C, D, G and H, arrowheads). To confirm this observation,
we examined BrdU incorporation in the gfap–GFP-positive cells at
2 weeks post-BrdU administration (Figs. 6M–P). We found that
some gfap–GFP-positive cells, located close to the mitotic region,
incorporated BrdU, suggesting that these BrdU-positive cells
differentiated into glial cells in the deep layer of the PGZ
(Figs. 6M–P, arrowhead). These results suggest that the progenitor
cells in the mitotic region contributed to both neuronal and glial
cell lineages (Figs. 6V and W). To address the existence of self-
renewing stem cells, we examined the distribution of BrdU-
positive cells by immunostaining with the proliferating cell marker
pH3, which is phosphorylated in the M-phase, at 1 month post-
BrdU administration (Figs. 6Q–T). We found that some BrdU-
positive cells still remained in the most medial part of the PCNA-
positive region and showed pH3 immunoreactivity even though
most of the BrdU-positive cells were localized in the pH3-negative
post-mitotic region (Figs. 6R and S). These results suggest the
existence of self-renewing stem cells in the mitotic region of the
PGZ (Fig. 7).

To determine the final differentiation status of BrdU-positive cells,
we examined the expression of several neurotransmitter markers
(Figs. 7A–P) 1 month after BrdU administration. Some BrdU-positive
cells expressed glutamatergic neuronal markers slc17a6a (also called
vglut2.2) and slc17a6b (also called vglut2.1) (Higashijima et al., 2004)
(Figs. 7A–H, arrowheads), and GABAergic neuronal markers gad1 and
gad2 (Martin et al., 1998) (Figs. 7I–P, arrowheads). We also examined
the expression of the immunoglobulin superfamily molecule, myelin
protein zero (mpz also called P0) (Schweitzer et al., 2003) (Figs. 7Q–T).
In zebrafish, mpz is expressed in CNS oligodendrocytes (Schweitzer
et al., 2003; Yoshida and Macklin, 2005), while mpz expression in the
mammalian PNS is restricted to Schwann cells (Spiryda, 1998). We
found that some BrdU-positive cells express mpz (Figs. 7Q and T,
arrowheads). Alongside the results shown in Fig. 6, these results
demonstrate that the proliferating cells in the mitotic region of the
PGZ differentiate into multiple cell lineages.
Discussion

In this study, we characterized neural stem/progenitor cells in the
adult zebrafish optic tectum. Proliferating cells, located in the
dorsomedial area of the caudal part of the PGZ, expressed several
neural stem/progenitor cell markers. These proliferating cells gener-
ated both neuronal and glial cell lineages in the PGZ (Fig. 8). In
addition, some of these cells retained their self-renewal capacity in
the most medial part of the mitotic region, suggesting the existence of
neural stem cells. Interestingly, these neural stem/progenitor cells did
not express any astrocyte/radial glial cell markers, which are usually
expressed in neural stem/progenitor cells in adult mammalian brains
but show neuroepithelial characteristics. These cells differentiate into
multiple lineages. We also found that the radial glial cells in the deep
layer of the PGZ retained the expression of neural stem/progenitor
cell markers, which were observed in the proliferating cells of the
mitotic region, suggesting the possibility that these glial cells also
have the potential to be neural progenitors.
Active proliferating region of optic tectum in adult brain

In this study, we quantitatively analyzed the distribution of
proliferating cells within the optic tectum of adult zebrafish.
Previously, several studies had reached different conclusions regard-
ing the distribution of proliferating cells in this region.

Zupanc et al. (2005) reported that at 2 h post-BrdU administration,
most of the BrdU-labeled cells were equally distributed throughout
the whole tectal region in the rostrocaudal extent, except for the
caudal end of the PGZ. However, Grandel et al. (2006) showed that the
tectal proliferating zone was only observed in the medial margin of
the PGZ. In the present study, we found that the majority of BrdU-
labeled cells were located in the dorsomedial area of the PGZ, in
agreement with the finding of Grandel et al. In the rostrocaudal axis,
quantitative analysis demonstrated that 20% of the caudal region of
the dorsomedial area of the PGZ had a large cluster of BrdU-labeled
cells. According to these results, we concluded that the majority of
neuronal and glial cells are generated from this actively proliferating
region of the optic tectum in the adult zebrafish brain.
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Fig. 4. Proliferating cells in the PGZ do not express glial markers. (A–L) Expression of gfap:GFP (A–D), Fabp7a (E–H), and S100β (I–L) in the PGZ of the adult zebrafish optic tectum
(60 μm transverse sections, single planes, dorsal top). Proliferating cells are labeled after 72 h of BrdU administration. In the medial region of the PGZ, BrdU-positive proliferating
cells (blue) do not express the glial markers, gfap:GFP, Fabp7a and S100β (green); these glial markers are expressed in the deep layer cells. CCe, corpus cerebelli; PGZ, periventricular
gray zone; TeO, tectum opticum. Scale bars: 10 μm.
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Neural stem/progenitor cells in the mitotic region of adult zebrafish
optic tectum maintain neuroepithelial characteristics

In this study, we revealed the characteristics of proliferating cells
in the PGZ of the optic tectum. These cells expressed several neural
stem/progenitor cell markers such as sox2 and msi1 generated
neuronal and glial cell lineages, and were self-renewing. These
properties are in accordance with the standard definition of neural
stem/progenitor cells. In addition to these characteristics, canonical
neural stem/progenitor cells in the adult brain possess glial identities
(Doetsch, 2003). In the mammalian telencephalon, neural stem cells
in the subventricular zone of the lateral ventricles and the subgranular
Fig. 3. Cells constitute the deep layer of the PGZ are radial glia. (A–D) Distribution of elavl3:GF
optic tectum (60 μm transverse sections, dorsal top). (A, B) The elavl3:GFP-positive cells are
Only a few cells express strong GFP signal and extend dendrite-like processes toward the
distributed along the ventral edge of the PGZ, and extend radial fibers (arrowheads). (E–T) M
transverse section, dorsal top). The gfap:GFP-positive cells constitute the deep layer of the P
Fabp7a (E–P), and the neural stem/progenitor marker Sox2 (Q–T). Scale bars: 10 μm in A,
zone in the hippocampus possess astroglial properties; in the adult
zebrafish brain, ventricular telencephalic progenitors also possess
glial molecular characteristics and form a rostral migratory stream
towards the olfactory bulb, similar to that observed in the subven-
tricular zone of the adult mammalian brain (Adolf et al., 2006). In the
midbrain, her5:GFP-positive neural stem cells lining the midbrain–
hindbrain boundary express the glial marker GFAP (Chapouton et al.,
2006; Doetsch, 2003). Surprisingly, we found that the neural stem/
progenitor cells in the mitotic region of the PGZ did not express glial
markers, and some of them which face the ventricle were highly
polarized. A similar type of neural stem/progenitor cells is the
neuroepithelial stem cells in the ventricular zone of the developing
P-positive cells (A, B) and gfap:GFP-positive cells (C, D) in the PGZ of the adult zebrafish
distributed through a broad area of the PGZ, except for the S100β-positive ventral edge.
surface layers of the optic tectum (arrowheads). (C, D) The gfap:GFP-positive cells are
agnified views of the gfap:GFP-positive cells along the ventral edge of the PGZ (60 μm
GZ. These cells show immunoreactivities with glial markers, such as GFAP, S100β and
C; 5 μm in E, I, M, Q.



Fig. 5. Proliferating cells which face the ventricle maintain apical–basal polarity. (A–L) Localization of apical markers, ZO1 (A–D), γ-tubulin (E–H), and aPKC (I–L) in the proliferating
cells of the PGZ of the adult zebrafish optic tectum (60 μm transverse sections, single planes, dorsal top). The proliferating cells are visualized by immunohistochemistry with anti-
PCNA antibody. The proliferating cells which localize near the ventricle show highly polarized expression of apical markers such as ZO1 (A, B, arrowheads), γ-tubulin (E, F,
arrowheads), and aPKC (I, J, arrowheads). Scale bars: 10 μm.
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vertebrate brain. Neuroepithelial cells are apical–basal polarized and
contact both the apical (ventricular) and basal (pial) surfaces (Merkle
and Alvarez-Buylla, 2006). Recently, Kaslin et al. (2009) reported that
cerebellar stem cells in adult zebrafish did not possess radial glial
properties but instead displayed neuroepithelial properties. These
cells maintained their apical–basal polarity and ventricular contact
throughout the embryonic to adult stages. These findings, including
ours, suggest that the adult teleost brain has 2 types of neural/
progenitor cells—one has canonical glial properties similar to
Fig. 6. Neural stem/progenitor cells in the mitotic region of the PGZ generate both neurona
superficial layer (A–D), and the fabp7a-positive deep layer (E–H) of the PGZ in the adult ze
post-BrdU administration (14 μm transverse sections, stacked images, dorsal top). After 2 w
however, some BrdU-positive cells express fabp7a but not elavl3 (C, D, G, H, arrowheads). (I
post-BrdU administration (60 μm transverse sections, single planes, dorsal top). Insets in M–

expressed the neuronal marker Elavl3 (I–L), and some BrdU-positive cells expressed the glia
the PGZ at 1 month post-BrdU administration (60 μm transverse sections, single planes, dors
BrdU administration, majority of BrdU-positive cells leave the dorsomedial margin (Q, R), w
M-phase marker, pH3 (Q–T, insets). (U) BrdU pulse labeling scheme. (V, W) Summaries of th
(W) post-BrdU administration. CCe, corpus cerebelli; PGZ, periventricular gray zone; TeO, t
mammalian neural progenitors, while the other has non-radial glial
properties and is unique to the adult teleost brain.

Radial glial cells in the deep layer of the PGZ express several neural stem
cell markers

Our study revealed that the radial glial cells in the deep layer of the
PGZ continued to express several neural stem cell markers such as
sox2 and msi1 which are also expressed by proliferating cells in the
l and glial cell lineages. (A–H) Distributions of BrdU-positive cells in the elavl3-positive
brafish optic tectum at 24 h (A, E), 2 weeks (B, F), 1 month (C, G), and 2 months (D, H)
eeks post-BrdU administration, most of the BrdU-positive cells express elavl3 (B–D),

–P) Expression of Elavl3 (I–L) and gfap:GFP (M–P) in the BrdU-positive cells at 2 weeks
P show magnified views of the yellow-boxed areas. The majority of BrdU-positive cells
l maker gfap:GFP (M–P, insets, arrowheads). (Q–T) Distribution of pH3-positive cells in
al top). Insets in Q–T showmagnified views of the yellow-boxed areas. At 1 month post-
hile BrdU-positive cells facing the ventricle still undergo cell division and expresses the
e distribution of BrdU-positive cells at 24 h to 2 weeks (V), and at 1 month to 2 months
ectum opticum. Scale bars: 50 μm in A–H; 10 μm in I, M, Q; 3 μm in inset of M, Q.
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Fig. 8. Schematic drawings of the cell lineage of neural stem/progenitor cells in the PGZ of the adult zebrafish optic tectum. (A) Distribution of neural stem cells (red), progenitor cells
(orange), immature neuronal cells (dark blue), mature neuronal cells (light blue), radial glial cells (light green), and oligodendrocyte (dark green) in the PGZ of the adult zebrafish
optic tectum. (B) Cell lineage of neural stem/progenitor cells in the adult zebrafish optic tectum. 1: The neural stem cells in the mitotic region of the PGZ facing to the ventricle
generate progenitor cells. 2: Most progenitor cells differentiate into immature neuronal cells, and show strong elavl3 expression around 2 weeks after final cell division. 3: Strong
expression of elavl3 in immature neuronal cells is reduced, and they differentiate into mature glutamatergic or GABAergic neurons. 4: Some progenitor cells differentiate into radial
glial cells at least 2 weeks after final cell division. 5: A small portion of progenitor cells differentiate into oligodendrocytes. 6: Radial glial cells maintain expression of neural stem/
progenitor cell markers; therefore, we assume that these cells possess the potential of progenitor cells.
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mitotic region of the PGZ. These properties partially fulfill the
definition for canonical neural stem/progenitor cells except for their
self-renewing capacity and the generation of multiple cell types such
as neurons and glia. We did not observe BrdU incorporation in these
radial glial cells after at least 24-hour BrdU labeling. However, we
found that a few cells showed PCNA immunoreactivity (data not
shown), suggesting the possibility that some of these cells are long-
lasting proliferating cells. So far, several studies have reported the
existence of radial glia in the deep layer of the PGZ in adult teleosts
(Arochena et al., 2004; Kalman, 1998; Kinoshita et al., 2005;
Stevenson and Yoon, 1981; Stevenson and Yoon, 1982). These radial
glial cells showed intermediate filaments vimentin or GFAP immu-
noreactivities (Arochena et al., 2004; Kalman, 1998). Interestingly,
Stevenson and Yoon (1978, 1980, 1981, 1982) reported the existence
ofmitotic radial glia-like cells (periependymal (PE) cells) in the PGZ of
the adult goldfish optic tectum. In their study, the mitotic activity of
PE cells was enhanced by regeneration of the optic nerve. A similar
correlation between tectal cell proliferation and optic nerve input to
the optic tectum during retinal fiber regeneration was also reported
by Raymond et al. (1983). These studies, including ours, imply the
potential of radial glial cells in the adult teleost optic tectum to
function as neural stem/progenitor cells.
Fig. 7. Neural stem/progenitor cells in the mitotic region of the PGZ differentiate into
glutamatergic and GABAergic neuronal markers in the BrdU-positive cells in the PGZ of the
sections, stacked images, dorsal top). (A–H) Some of the BrdU-positive cells express glutam
(B–D: high magnification of yellow-boxed area in A, F–H: high magnification of yellow-boxe
gad1 (I–L, arrowheads) and gad2 (M–P, arrowheads) (J–L: high magnification of yellow-box
oligodendrocyte marker,mpz in the BrdU-positive cells in the PGZ of the adult zebrafish optic
stacked images, dorsal top) (R–T: high magnification of the yellow-boxed area in Q). CCe, cor
A, E, I, M, Q; 5 μm in B, F, J, N, R.
We hypothesize that there are 2 types of neural stem/progenitor
cells in the optic tectumof theadult teleost—fast-proliferating cells in the
marginal area of the PGZ, which possess non-glial properties, and slow-
proliferating cells in the deep layer of the PGZ, which possess canonical
radial glial properties. The fast-proliferating cells produce large numbers
of neuronal and glial cells for the continuous growth of the optic tectum.
The slow-proliferating cellsmaintain thealready established structure of
the optic tectum. Recently, Suh et al. (2007) reported that in mice, the
Sox2, GFAP, BLBP, and Musashi1-positive radial glia-like cells in the
subgranular zone of the hippocampus proliferated only when the mice
were stimulated by voluntary running. We assume that a similar
activity-dependent mechanism may also function in the regulation of
neural stem/progenitor cells in the optic tectum of the adult teleost.
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