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Abstract

We study the limit and initial behavior of the numerical functigik) = depthS/I¥. General
properties of this function together with concrete examples arising from combinatorics are discussed.
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Introduction

Let S be either a Noetherian local ring with maximal idea) or a standard graded
K -algebra with graded maximal ideml, whereK is any field, and lef C S be a proper
ideal, which we assume to be graded iis standard graded. We are interested in behavior
of the numerical function dept§y I¥. It is clear that this function is bounded by dimension
d of S. A classical result by Burch [3] says that

rr}{indepthS/lk <d -,
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wherel([I) is the analytic spread df, that is, the dimension (1) /mR(I). HereR(I) =
@, 1t~ is the Rees ring of .

By a theorem of Brodmann [2], depstiZ¥ is constant fok >> 0. We call this constant
value thelimit depth of7, and denote it by lin, o depthS/7¥. Brodmann improved the
Burch inequality by showing that

lim depthS/I* <d — (D),
k—00

Eisenbud and Huneke [6] showed that equality holds, if the associated graded,(isig gr

is Cohen—Macaulay. This is for example the casgd@indR (/) are Cohen—Macaulay, see
Huneke [15]. Recently Branco Correia and Zarzuela [4] proved similar results for Rees
powers of a module. In Section 1 we will give new and relatively short proofs for these
facts.

While the limit behavior of deptli/Z¥ is well understood, the initial behavior 6f 1%
is more mysterious. On the one hand, if one chooses a homogeneous ideal ‘randomly,’ one
can be quite sure that dej/* is a nonincreasing function. So this behavior seems to be
the normal one. On the other hand, Trung and Goto independently communicated to the
first author examples of graded ideals such 8ydf’ is Cohen—Macaulay, whil&/I is not
Cohen—Macaulay. In these cases, of course, defith< depthS /2.

In Section 2 we show that dep§ii/¥ is a nonincreasing function if all powers bhave
a linear resolution, and we show that all powers of a monomial ideal have linear quotients,
and hence have linear resolutions, if with respect to a suitable monomial order, the toric
ideal J of the Rees ring of satisfies the so-called-condition, which is a condition on
the Grobner basis af . If this condition is satisfied, one also obtains lower bounds for
depthS/I*. We also derive a formula for dep$ii/ when! has linear quotients.

We use the techniques developed in the first sections to compute the functioss g&pth
for classes of ideals arising in combinatorial contexts. By [10] we know thatxthe
condition is satisfied for all edge ideals of finite graphs whose complementary graph is
chordal. Thus all powers of such ideals have linear quotients.

We next consider polymatroidal ideals. Powers of polymatroidal ideals are again poly-
matroidal. Since polymatroidal ideals have linear quotients we can computeSiépth
for all k. Explicit formulas are given for special classes of polymatroidal ideals, namely
for ideals of Veronese type.

Finally we consider monomial ideals coming from finite posets. In this case, again
all powers have linear quotients. Choosing posets suitably we can show that, given a
nonincreasing functiorf : N — N with f(0) = 2lim;_, o f (k) + 1 for which Af is non-
increasing, there exists a monomial idéat S such that deptli/I* = £ (k) for all k > 1.
Here(Af)(k) = f(k) — f(k+ 1) forall k e N,

All examples considered in Section 3 have nonincreasing depth functions. However we
show in Section 4 that, given any bounded increasing numerical fungtidh\ {0} — N,
there exists a monomial ideélsuch that deptf/ 7% = f (k) for all k. In all cases men-
tioned so far, the depth function is monotonic. We conclude this paper with an example of
a monomial ideal whose depth function is not monotonic.

In view of the examples in this paper, we are tempted to conjecture that the depth func-
tion can be any convergent numerical nonnegative function.
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1. Thelimit behavior of depth S/I*

Let A be finitely generated a standard gradedlgebra, andz be a finitely generated
gradedA-module. Then each graded compongptof E is a finitely generated-module.

Theorem 1.1. The depth ofE; is constant foik > 0, and hencdim;_, ., depthE;, exists.
Moreover, one has

klim depthE, <dimE — dimE/mE,
—00
and equality holds i is Cohen—Macaulay.

Proof. Let x1,...,x, be a minimal set of generators of Then depttEy =n — maxi:
H;(x; Ey) # 0}, see [1]. Here we denote ¥ (x; M) the Koszul homology of a module
M with respect to a sequenge= x1, ..., x,.

Now consider the homology modulé$ (x; E). These modules are finitely generated
gradedA-modules with graded components

Hi(x; E) = H;(x; Ey).

Letc=maxXi: dimH;(x; E) > 0}. Then for alli > ¢, we have dinf{; (x; E) =0, so that
H;(x; E)y =0 foralli > ¢ and allk > 0. On the other hand, since difa(x; E) > 0 it
follows thatH.(x; E); # 0 for all k > 0. This implies that depthy =n — ¢ for all k > 0.

SinceE is finitely generated, we may assume tliat= 0, after a suitable shift of the
grading. LetE™) = @, E;, be therth Veronese submodule df. Note that dimE") =
dimE, dmE/mE =dimE® /mE® and that depttE "), = depthE;, is constant for
all k > 0. Moreover, ifE is Cohen—Macaulay, theB"”) is Cohen—Macaulay. Thus if we
replaceE by E for r big enough, we may assume that

gradém, E) =n —max{i: H;(x; E) #0} = klim depthEy.
—> 00

Since gradém, E) < dimE — dim E/mE with equality if E is Cohen—Macaulay (see [1,
Theorem 2.1.2]), the assertions followx

As a consequence we obtain the theorem of Brodmann [2] together with a statement on
limy_ o depth7*, as well as the result of Eisenbud and Huneke [6].

Theorem 1.2. Limits limy_, o depth/¥, lim;_, oo depthS/I* and lim;_, o, depthr*/1¥+1
exist, and

lim depths/1* < lim depth/* — 1= lim depthr*/I**1 <dims — ¢(1).
k— 00 k—o00 k— 00
If S is Cohen—Macaulay andeight/ > 0, then

lim depthS/7* = lim depth/* — 1.
k—o00 k—o00
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Moreover, all limits are equal taimS — £(1) if, in addition, the associated graded ring
gr;(S) is Cohen—Macaulay.

Proof. Let us takeE = R(I), the Rees ring, oFE = gr,(S), the associated graded ring
of 1. In the first case, Theorem 1.1 implies thatjlim,, depth/* exists; in the second case,
the theorem implies that lim, o, depth/* /1¥+1 exists.

The last inequality also follows from Theorem 1.1, since dipi§y = dimS and
dimgr; (R)/mgr; (S) = dimR () /mR(I) = £(I).

Now we show that lim_, ., depthS/I* exists. To this end we consider exact sequences

0—s Ik 1" — /1" 5 5/1F — 0.

Set f (k) = depthS/I*, and letc = lim;_, o, I*/I¥*1. Then there exists an integky such
that for allk > kg these exact sequences give rise to the following inequalities:

() fk+1) =minfc, f(k)},
(i) cZmin{fk+1), f(k)+1},

see [1, Proposition 1.2.9]. Suppose thfdk) > ¢ for somek > ko. Then (ii) implies that
f(k+1) <c.Then (i) yields thatf (k + 1) = c. It follows that f (¢) = c for all £ > k + 1.
Hence lim_ « f (k) = ¢ in this case.

We may henceforth assume thatk) < ¢ for all k. Then (i) implies thatf (k) is an
increasing function fok > ko, and that this function is bounded abovedyrhus the limit
f (k) exists, and it is less than or equaldo

Next, we want to prove the equation [im., depth/* — 1 = lim;_, o, depthr* /1¥+1,
The short exact sequence

0— Mk [k 10
yields fork > kg the inequalities
c> min{g(k +1) -1, g(k)},

whereg (k) = depthl*. Let g = limy_ o g(k). Then passing to the limit, we see tha
minfg —1,¢g} =g — 1.

Supposer > g — 1, and letn be the minimal number of generatorswf Then there
exists an integeko such thatd, _ (x; 1) # 0 andH,—g.1(x; I*/1¥*1) = 0 for all k > ko.
This implies that the natural mag, ¢ (x; I**1) — H,_,(x; I*) is injective for allk > ko.
Composing these maps, we see tHat , (x; Y - Hy_o(x; %) are injective fork > ko
and all¢ > k. However, the Artin—Rees lemma implies that for any finitely generéted
moduleM, the natural homomorphisifi;, _¢ (x; I'M) — H,_4(x; M) is the zero map for
£>> 0. Thus we conclude thaf, _, (x; 1Y) =0 for ¢ > 0, a contradiction.

Suppose now tha$ is Cohen—Macaulay, and that height 0. Then deptls/I* =
depthi* — 1, so that lim_ o S/I¥ = lim;_. o I* — 1. Finally, if gr;(S) is Cohen—
Macaulay, then lin, o 7¥/1¥*1 =dim S — ¢(I), by Theorem 1.1. O
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2. Theinitial behavior of depth §/I*

Let K be a field andS = K [x1, ..., x,] the polynomial ring im variables ovelk with
each deg; = 1. On support of the normal behavior, we show

Proposition 2.1. Let I be a graded ideal all of whose powers have a linear resolution.
ThendepthS/I* is a nonincreasing function @f.

The proposition is a consequence of Corollary 2.3 stated below. As usual, we denote by
Bij (M) the graded Betti numbers of a graded moduleover S. We call the least degree
of homogeneous generator &f, theinitial degree ofM.
Lemma2.2. LetJ C I be graded ideals, and let be the initial degree of . Then
Bii+a(J) < Bii+a(1) foralli.
Proof. The short exact sequence
O—J—I—1I1/J—0
yields the long exact sequence
coe—>Tor (K, I/ )iv1vr@—1 — Tohi(K, J)iyg —> ToR(K, Djyg — ---.

Since the initial degree of/J is > d, it follows that Tof+1(K, I/J)i+1+@-1) = 0.
Hence Tor(K, J);+q — Tor; (K, I); 14 is injective. O

LetF be the graded minimal free resolutioniofand suppose thatis the initial degree
of I. Then the subcomplek of F with L; = S(—i — d)Pi+ is called thelowest linear
strand ofFF. We call its length thdinear projective dimension df.

Corollary 2.3. LetI C S be a graded ideal with initial degre#. Then
Biitterna (1K) = Biiska (1) forall k.
In particular, the linear projective dimension of is an increasing function of.

Proof. Let x € I be homogeneous of degrek Then xI* c I¥*1, It follows from
Lemma 2.2 thaB;.ika (1) = Biitw+a (1) < Britarpa . O

We now discuss graded ideals having linear quotients. fket.., f; be a sequence
of homogeneous elements §fwith 0 < degf; < degfs < --- < degf;. We say that
f1, ..., fs haslinear quotientsf, for each 2< j <s, the colonideal f1, fo,..., fj—1) : f;
is generated by linear forms. We say that a graded idealS has linear quotients if
I is generated by a sequence with linear quotients. It is known [5, Lemma 4.1] that if



J. Herzog, T. Hibi / Journal of Algebra 291 (2005) 534-550 539

f1,..., fs is a sequence with linear quotients and if gllhave the same degree, then the
ideal (f1, ..., fy) has a linear resolution.

Let I be a graded ideal generated by a sequefice. ., f; with linear quotients. Let
g;(I) denote the minimal number of linear forms generatifig fo, ..., fj—1) : fj, and
gy =maxeg s q; ().

As in the proof of [12, Corollary 1.6] we can show that the length of the minimal free
resolution ofS/I overS is equal tag (1) + 1. Hence

depthS/I =n—q(I) — 1. (2)

Thus in particular the integer(/) is independent of a particular choice of a sequence of
generators with linear quotients.

Corollary 2.4. Let I be a graded ideal generated in degréeavith linear resolution, and
let f1, ..., f; be a sequence with linear quotients which is part of a minimal system of gen-
erators of/. ThendepthS/I <n —q(J) — 1, whereJ is the ideal generated b, .. ., fs.

Proof. Since J and I both have a linear resolution, it follows from Lemma 2.2 that
projdimS/J < projdimS/I. Hence deptl§/I <depthS/J =n—¢q(J)—1. O

Our next goal is to discuss a Grobner basis condition that guarantees that all powers of
an ideal have linear quotients. LetC S be a monomial ideal generated in one degree and
G (1) its minimal system of monomial generators. Recall that the Rees al@&linaof 1
is

R(I) = K|[x1, ..., %0, {utluec] C SIt].

Let A =K[x1,...,x,, {yuluec] denote the polynomial ring im+ |G (I)| variables over
K with each deg; = degy, = 1. Thetoric ideal of R(I) is the kernel/r;, of the sur-
jective homomorphismr : A — R(I) defined by settingr (x;) = x; forall 1 <i <n and
7w (y,) =ut forallu e G(I).

Let <jex denote the lexicographic order aghinduced byx; > x2 > -+ > x,. FiX
an arbitrary monomial ordex” on K[{yuluec].- We then introduce a new mono-
mial order <{, on A defined as follows: For monomiat§ T/_y /") ([T,ec ) yi*) and

bi by i
([Trz1 x; )(]’[ueG(,) v,*) belonging toA, one has
n n
i " # b; by
(1) 1) <5 (1) ( 1T %)
i=1 ueG(I) i=1 ueG(I)

if either

1 u # bu

M) Tlieca ' < [luccy yu" or

. " by a; bi
() Tliec Yu =[Tuec yu" @and[ /g xi" <iex [Tizg %"
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Let G(Jr(1)) denote the reduced Grébner basis/gf,, with respect to<:,. We say that

I satisfies thec-conditionif each element belonging ©@(Jz () is at most linear in the
variablesxy, ..., x,.

Theorem 2.5. Suppose thal satisfies ther-condition. Then each power éfhas linear
guotients.

Proof. Fix k > 1. Eachw € G(I*) has a unique expression, called shandard expression
of the formw = uy - - - uy with eachu; € G(I) such thaty,, - - - y,, is a standard monomial
of A with respect to<*, that is, a monomial which does not belong to the initial ideal of
JRry. Let w* denote the standard monomigl, - - - y,, . Let G = {w1, ..., ws} with
wi <*o<Fwr

We claim that/* has linear quotients with the ordering, ..., w; of its generators. Let
f be a monomial belonging to the colon id€al, ..., w;_1) : w;. Thus fw; = gw; for
somei < j and for some monomigl. Letw; = uy - - - ux andw; = vy - - - v; be the standard
expressions ofv; andw;. The binomialfy,, - - - yu, — gyv, - - - yv, belONgs ta/r ;). Since
Yo Yo, <% Yuy -+ Yu,, it follows that the initial monomial off y,, - - Yu, — gV, - - Yo,
iS fyu; -+ yu, - Hence there is a binomial™ — 1= belonging toG(Jz ;) whose initial
monomialh™ divides fy,, - - - yu, . SiNCey,, - - - yu, iS a standard monomial with respect
to <#, it follows from the definition of the monomial orde{fgx that it remains to be a
standard monomial with respect {aq*gx. Hence the initial monomial of none of the bino-
mials belonging t@&j (Jz()) can dividey,, - - - y,,. As a consequence, the initial monomial
h™) must be divided by some variable, say, Sincek™) is at most linear in the vari-
ablesx, ..., x,, one hasi(P) = XaYup, -+ Yuy,; thenx, divides f and wherey,, -y,

dividesy,, - - - yu, - Leth(™) = XbYug, " Yug,» whereyvql o Vg, <# Vitpy =+ Vitp, One has
Xallpy ** Up, = XpVgy *** Vg, -

To complete our proof, we show that € (wy, ..., w;j_1) : w;. Sinceyup1 “ Vuy, di-
videsyy, -+ yu,, We Can Writeyu, -+ yu, = Yu,, =+ Yup, Yup, 1 " Yy, -

Sinceyu,, -+ Yu,, <" Yup, *+* Yuy, » it follows that

# %
Yogy = Yvg Yup, g " Yup, < Yur = Yup =W

Let wig = Vg Vg lpq - Up, € GUIX). Then x,w; = xpwj,. Since wi <*
Vugy * Yog Yitpy,y *** Yup,» ONE haSUEko <# w;‘. Henceig < j. Thusx, € (wy, ..., wj_1):
wj, as desired. O

We write in(Jg ;) for the initial ideal of Jz ;) with respect to the monomial orde:,
introduced above.

Letm = |G(I)|. For each multi-index = (ay, ..., a,) € N", we sefla| = Y _/L; a;.

Corollary 2.6. Suppose that the elements@fin(Jz())) are linear inxy, ..., x,. Let

p(a) = Hl xiya € In(JR(I))H
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Then

(@) depths/I* >n —maxXp(a): |a| =k} —1;
(b) limi_, oo depthS/ 1% > n — |{i: x;y* € G(in(Jr(;))) for somea}| — 1.

Proof. We conside = S[ys, ..., yn] abigraded -algebra with each deg = (1, 0) and
each deg; = (0,1). ThenJ = Jr(;) is a bigraded ideal. For eaéh Ji xy = P; Ji k) IS
a submodule of a fre§-moduleA . x) = @, = Sy*, and one has a free presentation

00— J ) —> A ) —> ¥ —o.

On the freeS-module A, ), we introduce the monomial order induced by the monomial
order <. Then we have

iN(Js,1)) = iNCT) .10y -
By a standard deformation argument, it follows therefore
projdimI* < projdimA ¢ 1)/ in(J) (x.k)-
We have

iNWDen= B Lay*,

a,lal=k
whereL, is generated by alt; such that; y* € in(J). Therefore
proj dimin(J) .y = max{p(a): la| =k} — 1.

Thus assertion (a) follows. Statement (b) is a simple consequence of (a), observing that
Lo C Ly if y* dividesy?. O

3. Classes of examplesarising in combinatorics

The function deptts /7% will be computed for certain classes of monomial ideals, viz.,
polymatroidal ideals, edge ideals of finite graphs, and monomial ideals of finite lattices.
(a) A typical example for which Theorem 2.5 can be applied arises from a finite graph.
Let G be a finite graph on a vertex set] = {1, ..., n}, having no loop and no multiple
edge, withE(G) its edge set. Let, as befor8,= K[x1, ..., x,] denote the polynomial
ring in n variables ovelk . Theedge ideabf G is the ideall (G) of S which is generated
by those quadratic monomiaisx; with {i, j} € E(G). It is known [7] that/(G) has a
linear resolution if and only if the complementary graphtbfs chordal. (Recall that the
complementary grapbf G is a finite graphG with E(G) = {{i, j} C [n]: {i, j} ¢ E(G)}.
On the other hand, a finite graph is callgtbrdalif each of its cycles of lengtk: 4 has
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a chord.) Moreover, in [10, Theorem 3.2] it is proved thaGiis chordal, ther! (G) has
linear quotients.
In the following, we assume thak is chordal. In this case the clique complex @f
is a quasi-forest and we order the vertices according to a leaf order of this quasi-forest,
see the proof of [10, Proposition 2.3]. LRI/ (G)) = K[x1, ..., Xu, {xix;t}{i j1eE(G)] de-
note the Rees algebra 6{G), A = K[x1, ..., xs, {yi,j}i, j)eE(G)] the polynomial ring in
n+|E(G)| variables ovek , andJ gy the toric ideal ofR (1 (G)). ThusJr ;) is the
kernel of the surjective homomorphism: A — R(I(G)) defined by settingr (x;) = x;
for all i andn(y;;) = x;x; for all {i, j} € E(G). We introduce an ordering of the vari-
ables ofA by setting

(i) yi,j > yp.q. Wherei < j andp < g, if eitheri < p or (i = p and; < ¢), and
(i) yi,j>x1>--->x,forall{i, j} € E(G).

Let <jex denote a lexicographic order eninduced by the ordering: andG (Jz(;(c))) the
reduced Grobner basis &(/ (G)) with respect to<|ex.
We quote the following result [10, Theorem 3.1]:

Theorem 3.1. Suppose that the complementary graplt@zas chordal. Then each element
belonging toG (Jr(1(cy)) is at most linear in the variables,, . . ., x,.

In [10, Theorem 3.2] it is proved that & is chordal, then each power 6{G) has a
linear resolution. By virtue of Theorem 2.5, we have:

Coroallary 3.2. Suppose that the complementary graplGok chordal. Then all power of
1(G) have linear quotients.

To demonstrate our theory, we consider the following exampleGLbe a finite graph
on the vertex sefl, 2, 3, 4, 5, 6} with edges

{{1,4}, (2,5}, {3, 6}, 14,5}, {4, 6}, {5, 6}}.

The complementary graph @f is chordal. Let/ = I(G) be the edge ideal off, andJ
be the toric ideal of the Rees algeli®a/). Then the initial ideal of/ with respect to the
lexicographic order introduced above is generated by

X5Y1, X4y2, X5Y3, X6Y4, X5)5, X4Y3, X6Y2, X6Y1, X2Y1Y6, X4y1Y6, X3Y2Y5.

It follows from Corollary 2.6 that deptbi// > 3, depths/I* > 0 for k > 2. Indeed, in this
example equality holds.

(b) Another important class of monomial ideals with linear quotients is the class of poly-
matroid ideals. Lef denote a monomial ideal of the polynomial rifg= K[x1, ..., x,]
generated in one degree, agd/) its uniqgue minimal system of monomial generators.
We say thatl/ is polymatroidalif the following condition is satisfied: For monomials

u=xy' - x," andv = xll’l ... xI" pelonging toG (1) and for eacti with a; > b;, one has
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with a; < b; such that;u/x; € G(I). The reason why we call such an ideal polymatroidal
is that the monomials of the ideal correspond to the bases of a discrete polymatroid [8].
The polymatroidal ideal is calledmatroidalif I is generated by square-free monomials.
Itis known [5, Theorem 5.2] that a polymatroidal ideal has linear quotients with respect
to the reverse lexicographic ordefey induced by the ordering; > x2 > --- > x,. More
precisely, ifI is a polymatroidal ideal and if1, ..., u; are the monomials belonging to
G (1) ordered by the reverse lexicographic order, ug.<rev - - - <rev 2 <revu1, then the
colonideal(uy, ..., u;_1) : u; is generated by a subsetiof, ..., x,}.
The product of polymatroidal ideals is again polymatroidal [5,8]. In particular each
power of a polymatroidal ideal is polymatroidal.
One of the most distinguished polymatroidal ideals is the ideal of Veronese type. Let
S = K|[x1,...,x,] and fix positive integerd andeq, ...,e, with 1 <e; <--- <e, <d.
The ideal of Veronese typef S indexed byd and (eq, ..., e,) is the idealli.c,,.. e,
which is generated by those monomials= x{* - - - x," of S of degreed with a; < ¢; for
each 1<i < n.

Theorem 3.3. Fix positive integers/ andes, ..., e, wWith1l<e1 < - <e, <d. Letr =
d+n—1-3%"_1¢ andletl = Iy..,, ., be the ideal of Veronese type $indexed by
d and(es,...,e;). Then one hadepthS/I =1.

Proof. Let ug = xil_l---x,‘;”_*ll*lxﬁ” andu = x,_;Xp_141- - xp_1ug € G(I). For each
1<i<n—1t—-1,onehasqu/x, € GU) with u <ey x;u/x,. Let one takeJ = ({w €
G(I): u<pyw}). Foreach Ki <n—t—1,onehas;u/x, € G(I) with u <eyx;ju/x,.
Hencex; € J :u for all 1 <i <n —1t — 1. Moreover, one has;u/x;, ¢ G(I) for
all n —t < j<nand for all jo# j. Hencex; ¢ J : u for all n — ¢ < j < n. Thus
J:iu=(x1,...,x,——1). On the other hand, for eaeh=x;* - - - x;," € G(I) with m(v) =
max{i: a; # 0}, the number of < m(v) with a; < ¢; is at most: — ¢ — 1. Thus the num-
ber of variables required to generate the colon idéale G(I): v <rey w}) : v is at most
n—t—1.Henceg(/)=n—1t— 1. ThusdeptlS/I =¢t. O

Thesquare-free Veronese ideafl degreed in the variables;,, . .., x;, is the ideal ofS
which is generated by all square-free monomials;in. .., x;, of degreed. The square-
free Veronese ideal is matroidal and Cohen—Macaulay.

Let 2< d <n and letl = I, 4 be the square-free Veronese ideal of degtda the
variablesy, ..., x,. Since each powel* is the ideal of Veronese type indexed by and
(k,k, ..., k), by using Theorem 3.3, we have

Corollary 3.4. Let2 < d <n and letl = I, 4 be the square-free Veronese ideals of degree
d in the variablesyy, ..., x,. Then

depthS/I* = max{0, n — k(n — d) — 1}.

Corollary 3.5. Given nonnegative integersandr with r < d there exists a polymatroidal
ideal I C S withdepthS/I =¢ anddimS/I =d.
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Proof. Let I =1, ,_1 be the square-free Veronese ideal of degreel in the variables
X1,...,X,. ThendimS/I* = n — 2 and deptts /1¥ = max0, n — k — 1}. Hence by setting
n=d+2andk =n —t — 1, the desired example arisest

(c) Finally we consider a class of monomial ideals arising from finite posetsp Lt
a finite partially ordered sepésetfor short) and write7 (P) for the finite poset which
consists of all poset ideals &f, ordered by inclusion. Here,@oset ideabf P is a subset
I C Psuchthatifxel, ye P andy < x, theny € I. In particular, the empty set as
well as P itself is a poset ideal of. If follows that ;7 (P) is a finite distributive lattice
[16, p. 106]. Conversely, Birkhoff's fundamental structure theorem [16, Theorem 3.4.1]
guarantees that, for an arbitrary finite distributive lattibehere exists a unique poset
such thatl = 7 (P).

Let P ={p1,..., py} be afinite poset withP| = n, andS = K[x1, ..., Xn, Y1, - - Yu)
the polynomial ring in 2 variables over a field with each deg; = degy; = 1. We
associate each poset iddadf P with the square-free monomial

()11

piel

of S of degreen. In particularup = x1---x, andug = y1---y,. We write Hp for the
square-free monomial ideal 6fgenerated by all monomialg with I € [7(P), that is,

Hp = ({ur}iegp))-

In the previous paper [9], it was proved that each powér has a linear resolution.
Moreover, it is known [11] that{p has linear quotients. It was expected, but unclear if all
powers ofHp have linear quotients. Fortunately, the expectation now turns out to be true.

Theorem 3.6. Each powerHIIE has linear quotients.

Proof. By virtue of [14, p. 99] each monomial belonging GJ(HI’;) possesses a unique
expression of the form,uy, ---uy,, where each; is a poset ideal oP, with Iy C I C
... C Ir. We fix an ordering< of the monomials:;, where! is a poset ideal oP, with
the property that one hag < u if J C I. We then introduce the lexicographic ordegx
of the monomials belonging tG(H,’é) induced by the ordering: of the monomials;.
We claim thatHf, has linear quotients. More precisely, we show that, for each monomial
w=upup,--uy, € G(HY), the colon ideal{v e G(HY): w <iex v}) : w is generated by
those variableg; for which there is I< j <k with p; € I; such that/; \ {p;} is a poset
ideal of P.

First, lety; be a variable withp; € I; and suppose that = I; \ {p;} is a poset ideal
of P. One haSﬁMI_i = x;uy. Hence

ViWw =XiUpy - UL UJUT g U
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Since all poset idealdy,...,7;—1 and J are subsets ofi;, it follows from [14,
(2.1), p. 98] that the monomial,, ---u;; ,u,; can be expressed uniquely in the form
wppcup Uy suchthat’; C --- C I;._l - Ij’. C I;. Moreover, one hagy, - - uy;_yu; <iex

J= J .

w1 ur.. Hencey; belongs to the colon

Wy up g Thusw <jex Wy Uy U
ideal ({v e G(HE): w <jexv}) : w.

Second, les be a monomial belonging to the colon ideal
({v S G(Hf)): w <lex v}) Tw.

Thus one hagw = pv for monomialsy andv with w <jex v. Say,v = wp Uy with

I; C --- C I}. What we must prove is that the monoméais divided by a variabley; for
which there is K j < k suchthatl; \ {p;} is a poset ideal oP. Sincew <jex v, it follows
that there isjp for which 7, < I’ In particularl;, ¢ I’ Thus there is a maximal element
Pio Of I, with p;, ¢ I Thenpl0 belongs to each of the poset ided)s 1,41, ..., Irx and
belongs tahoneof the poset ideals;, .. I’ Hence the power of;, in the monom|ab is

at leastjp, but that inw is at mostjg — 1 Henceyo must divides. Sincep;, is a maximal
element off ,, the subsel, \ {p;,} of P is a poset ideal oP, as desired. O

By using Theorem 3.6 we can now compute d@tﬂf; in terms of combinatorics
on P. Recall that arantichainof P is a subsetA C P any two of whose elements are
incomparable inP. Given an antichaim of P, we write (A) for the poset ideal ofP
generated byA, which consists of those elementse P such that there ig € A with
p<a.Foreachk=1,2,...,we writed(P; k) for the largest integeN for which there is
a sequenceéAs, Ay, ..., A,) of antichains ofP with » < k such that

0) A mA _Qifi;éj;
(i) (A1) C(A2)C---C(A));
(i) N |A1|+|A2|+ -+ A

We call such a sequence of antichairisacceptable sequence

It follows from the definition tha$(P; 1) is the maximal cardinality of antichains of
P ands(P;1) <8(P;2) <--- < 8(P;rankP) + 1). Moreover,5(P; k) =n for all k >
rank(P) + 1. Here rankP) is therank [16, p. 99] of P. Thus rankP) + 1 is the maximal
cardinality of chains (totally ordered sets) contained®in

Corollary 3.7. Let P be an arbitrary finite poset with?| =n. Then
depthS/HS =2n — §(P;k) —1 forallk >1

Proof. We work with the same notation as in the proof of Theorem 3.6. Recall that, for
a monomialw = upup,---u; € G(HY), the colon ideal{v € G(HS): w <jex v}) 1 w

is generated by those variables for which there is 1< j < k with p; € I; such that

I; \ {pi} is a poset ideal ofP. Note thatl; \ {p;} is a poset ideal of? if and only if

pi is a maximal element of;. Let B; denote the set of maximal elementsiof Then
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the number of variables required to generate the colon ideal G(H1’§): W <lex V}) 1w
is |U’;:l Bj|. Let O, = U’;Zl Bj. One hasr =rank(Q,) + 1 < k. We then define a
sequencels, Ao, ..., A, of subset ofB,, as follows:A1 is the set of minimal elements of
Oy and, for 2< j <r, A; is the set of minimal elements ¢f,, \ (A1U---UA;_1). Then
(A1, ..., A,) is k-acceptable withQ,,| = Z;zl |A;]. Hence| Q.| < 8(P; k).

On the other hand, there iskaacceptable sequen¢di, Ao, ..., A,) with §(P; k) =
Y i—1lAjl Letw = ug_ru(Al) ---u(a,y € G(HE). Then the number of variables required
to generate the colon idedlv € G(Hf,): w <jex V}) :wis§(P; k).

Consequently, one hagH%) = §(P; k). Thus deptts/HS = 2n — §(P; k) — 1, as re-
quired. O

Since{x;, y;} is a vertex cover ofHp for each 1< i < n, it follows that dimS/Hp =
2n — 2. HenceHp is Cohen—Macaulay if and only &(P; 1) = 1. In other wordsHp is
Cohen—Macaulay if and only iP is a chain.

Corollary 3.8. Let P be an arbitrary finite poset with?| =n. Then

(i) depthS/Hp > depthS/H2 > - .. > depthS/H2"™" > depths/H 2"+,
(i) depthS/H} =n — 1for all k > rank(P);
(iii) 1im o depthS/HE = n — 1.

Corollary 3.9. Given an integer. > 0 and given a finite sequencey, ax, ..., a,) of posi-
tive integers withuy > ap > - - - > a, and withag + - - - + a, = n, there exists a square-free
monomial ideall ¢ S = K[x1,...,Xs, y1,..., yu] such that

(i) depthS/I*=2n—(ar+ - 4+ar) — L, k=1,2,....r —1;

(i) depthS/I¥=n—1forall k >r;
(iii) 1im s o0 depthS/ 1% =n — 1.
Proof. Let A(a;) denote the antichain witii (¢;)| = a; and P the ordinal sum [16, p. 100]
ofthe antichainsi (a1), A(a2), ..., A(a,). ThusrankP) =r —1.Sincen1 > a» > --- > a,
andai +---+a, =n, it follows that§(P; k) =ay1 +ax+---+a, if 1 <k<r-1and
thats(P;k)=nforallk>r. O

In general, given a functiofi : N — N, we introduce functiom\ f by setting(Af) (k) =
f(k)— f(k+1) forall ke N.

Coroallary 3.10. Given a nonincreasing functiofi: N — N with

FO=2lim f(k)+1

for which A f is nonincreasing, there exists a monomial idéat S such thatdepthS /7% =
f(k) forall k > 1.
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Proof. Letlimi_ o f(k)=n—1andf(0)=2n— 1. Letay =(Af)(k—1) forallk >1
Thus f(k) =2n — (a1 + --- +a;) — 1 for all k > 1. Sincef is nonincreasing, one has
ax > 0 for all k. SinceAf is nonincreasing, one hag > az > ---. Letr > 1 denote the
smallest integer for whichy + a2 + - - - +a, = n. Thusa; > 0 for 1 <i <r anda; =0 for
all i > r. It then follows from Corollary 3.9 that there exists a monomial ideal S for
which depths/ 1% = f(k) forallk > 1. O

4. A class of ideals whose depth function depth S/I* isincreasing

Note that if/ is a square-free monomial ideal, then depitit* < depths/I for all &,
see for example [13]. This suggests the following question: Is it true that d¢pths a
nonincreasing function df, if I is a square-free monomial ideal? As we shall see now, for
a general monomial ideal the function degii* may also be nondecreasing. In fact, we
even show

Theorem 4.1. Given a bounded nondecreasing functipnN \ {0} — N. There exists a
monomial ideall such thatdepthS/I* = f (k) for all k.

Proof. Letlim;_, o f(k) =n and suppose that(k) =n fork > d — 1. We set
ca—k=n— f(k) fork=1,....,d -2 2)

Let K be a field, ands = K[x1, x2, y1, ..., y»] be the polynomial ring im + 2 variables
over K. We definel C S to be the ideal generated by the set of monomials

d+1 _d d+1 k d-1 k
{xl xlxz,xlxz,xz U x2y1,...,x1 Xzyck}~

Note that this set of monomials is in general not a minimal set of generatdrd\éd claim
that

depths/I* = f(k) forall k.

Fork=1,...,d —2,letJg) C Sy = K[x1,x2, 1, ..., Y, ] be the ideal generated by the
set of monomials

d+1 _d d+1 d-1
{xl xlxz,xlxz,xz U xéyl,.. ,X] xzycr}

and set = Jg_1) = (¢, x{xo, x1xd, x3 ). We will show:

() JGyS=1rfork=1,....d -1,
(i) xkd g te sk fork=1,....d -2 and

(iii) xkd 1y d 1(x1,x2 yl,...,ycdfk)eJ&).
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Assuming (i), (ii) and (iii), the assertion follows. Indeed, if we set= 0, then (i) implies
depths/1* = depthS/J§, S = depthSc/ I, + (n — ca—p). (3)

fork=1,...,d — 1, and (ii) and (iii) imply that deptlSk/J(’;{) =0. Thus (2) and (3) yield
the desired result.

Before proving (i), (i) and (iii) we notice that* is generated in degré€d + 1), and
that for anyr > k(d + 1) one has

(1), = [ 58) " Gea. x2)* Jorn, )™ = (. x5) e, )

id+s  r—(id+:
= (i Y o, » ). 4

Proof of (i): The desired equality follows once we can show foraH 1, ..., k the ideal
J*=" multiplied with a product of elements from the set

d-1

d-1_k d—-1_k
U{xl X2 Y1, ...,xl nyCk},
k=2

with at least one factor of the formf‘lxgy,- with » > d — k + 1, belongs ta/¥. This
will be the case if/¥~ (x¢~ 20t - (¢ 1xly c Jk for all t = 1,...,k and allr; with
2<r1<rp<---<r; with at least one; > d — k + 1. For this it suffices to consider the
most critical case, namely that=r,=--- =r,_1 =2 andr; =d — k + 1. Thus we have
to show that/*~ (x4~ 1x2)' -1 (x§1x§~**1) ¢ J*. By (4) it amounts therefore to show
that

°= xidﬂxék—t)(d+l)—(id+s)xi(d—l)x22t+d7kfl c (Jk)r’
wherer =k —t)d+1D)+ (¢ -1Dd-D+2¢t—-1)+d—-1+d—k+1=kd+d—-1
is the degree of the monomia) and where G<i < k — ¢ and 0< s < k — ¢. Again using
(4) we see that e (J%), if and only if

i+t—-Dd+d—-t+s)e{jd+a:0<j<k, 0<a<d-1}.
Since 0< i <k —1t itfollows that 0<i + ¢ — 1 < k is in the allowed range. We also have
2<d—k<d—t+s<2d-1
If i +t =k, thent =k ands =0, so thatd — 7 + s =d — k < d — 1. On the other hand, if
i+t <k, theniG+0d+(d—1t+s)=(GU+1t+1Dd+ (-t +s) has the desired form.

Proof of (ii): It suffices to show that;*xg~* ¢ J*, because the ideals® and J{,,
coincide moduloyy, . .., yu.
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Supposert? x4t e ¥, thenxf? x4~ € (J¥)1at@—2)- It follows from (4), that
kd—1e{id+s:i=0,...,kands =0, ...,d — 2}.

Hence we must havied — 1 =id + s for some 0< i < k. Thisyields(k —i)d =s + 1<
d — 1, a contradiction.
Proof of (iii): The element (x¥~1xd~1) = x’{"x2 ! belongs to(J%) a1 a—1) C T+

Also, by (4), the elemento(x¥1xd~1) = xk=1xd belongs t0(J*)kat@-1), Since

kd —1=(k—1d+ (d—-1). Flnally, we note that foir =1,...,cq_r One has

(g = (g (6] g ).

By (4), the first factor belongs tOI"‘l)(k 1)d+1), and the second factor belongsAg).

Thusy; (xf9xd=h =7 J},, as desired. O

All examples we have considered so far had the property that the functiongjdfth
is monotonic. We conclude this paper with an example that shows that this depth function
can be more general. We consider the ideal

I = (aG, a5b, abs, b6, a4b4c, a4b4d, a4ezf3, b4e3f2)

inS=Kla,b,c,d, e, . Then we have dep8y/ = 0, depths/72 = 1, depths/I3 =
depthS /1% =2 and deptts/1° =

In view of the examples considered in this paper, we are tempted to conjecture that the
function deptts/I* can beanyconvergent nonnegative integer valued function.
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