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Abstract

We study the limit and initial behavior of the numerical functionf (k) = depthS/Ik . General
properties of this function together with concrete examples arising from combinatorics are disc
 2005 Elsevier Inc. All rights reserved.

Introduction

Let S be either a Noetherian local ring with maximal idealm, or a standard grade
K-algebra with graded maximal idealm, whereK is any field, and letI ⊂ S be a proper
ideal, which we assume to be graded ifS is standard graded. We are interested in beha
of the numerical function depthS/Ik . It is clear that this function is bounded by dimens
d of S. A classical result by Burch [3] says that

min
k

depthS/Ik � d − �(I ),
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where�(I ) is the analytic spread ofI , that is, the dimension ofR(I )/mR(I ). HereR(I ) =⊕
k I ktk is the Rees ring ofI .
By a theorem of Brodmann [2], depthS/Ik is constant fork � 0. We call this constan

value thelimit depth ofI , and denote it by limk→∞ depthS/Ik . Brodmann improved th
Burch inequality by showing that

lim
k→∞ depthS/Ik � d − �(I ),

Eisenbud and Huneke [6] showed that equality holds, if the associated graded ringI (S)

is Cohen–Macaulay. This is for example the case ifS andR(I ) are Cohen–Macaulay, se
Huneke [15]. Recently Branco Correia and Zarzuela [4] proved similar results for
powers of a module. In Section 1 we will give new and relatively short proofs for t
facts.

While the limit behavior of depthS/Ik is well understood, the initial behavior ofS/Ik

is more mysterious. On the one hand, if one chooses a homogeneous ideal ‘random
can be quite sure that depthS/Ik is a nonincreasing function. So this behavior seems t
the normal one. On the other hand, Trung and Goto independently communicated
first author examples of graded ideals such thatS/I2 is Cohen–Macaulay, whileS/I is not
Cohen–Macaulay. In these cases, of course, depthS/I < depthS/I2.

In Section 2 we show that depthS/Ik is a nonincreasing function if all powers ofI have
a linear resolution, and we show that all powers of a monomial ideal have linear quo
and hence have linear resolutions, if with respect to a suitable monomial order, th
ideal J of the Rees ring ofI satisfies the so-calledx-condition, which is a condition o
the Gröbner basis ofJ . If this condition is satisfied, one also obtains lower bounds
depthS/Ik . We also derive a formula for depthS/I whenI has linear quotients.

We use the techniques developed in the first sections to compute the function depS/Ik

for classes of ideals arising in combinatorial contexts. By [10] we know that thx-
condition is satisfied for all edge ideals of finite graphs whose complementary gra
chordal. Thus all powers of such ideals have linear quotients.

We next consider polymatroidal ideals. Powers of polymatroidal ideals are again
matroidal. Since polymatroidal ideals have linear quotients we can compute deptS/Ik

for all k. Explicit formulas are given for special classes of polymatroidal ideals, na
for ideals of Veronese type.

Finally we consider monomial ideals coming from finite posets. In this case, a
all powers have linear quotients. Choosing posets suitably we can show that, g
nonincreasing functionf :N → N with f (0) = 2 limk→∞ f (k) + 1 for which�f is non-
increasing, there exists a monomial idealI ⊂ S such that depthS/Ik = f (k) for all k � 1.
Here(�f )(k) = f (k) − f (k + 1) for all k ∈ N.

All examples considered in Section 3 have nonincreasing depth functions. Howev
show in Section 4 that, given any bounded increasing numerical functionf :N \ {0} → N,
there exists a monomial idealI such that depthS/Ik = f (k) for all k. In all cases men
tioned so far, the depth function is monotonic. We conclude this paper with an exam
a monomial ideal whose depth function is not monotonic.

In view of the examples in this paper, we are tempted to conjecture that the depth

tion can be any convergent numerical nonnegative function.
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1. The limit behavior of depthS/Ik

Let A be finitely generated a standard gradedS-algebra, andE be a finitely generate
gradedA-module. Then each graded componentEk of E is a finitely generatedS-module.

Theorem 1.1. The depth ofEk is constant fork � 0, and hencelimk→∞ depthEk exists.
Moreover, one has

lim
k→∞ depthEk � dimE − dimE/mE,

and equality holds ifE is Cohen–Macaulay.

Proof. Let x1, . . . , xn be a minimal set of generators ofm. Then depthEk = n − max{i:
Hi(x;Ek) �= 0}, see [1]. Here we denote byH(x;M) the Koszul homology of a modul
M with respect to a sequencex = x1, . . . , xn.

Now consider the homology modulesHi(x;E). These modules are finitely generat
gradedA-modules with graded components

Hi(x;E)k = Hi(x;Ek).

Let c = max{i: dimHi(x;E) > 0}. Then for alli > c, we have dimHi(x;E) = 0, so that
Hi(x;E)k = 0 for all i > c and allk � 0. On the other hand, since dimHc(x;E) > 0 it
follows thatHc(x;E)k �= 0 for all k � 0. This implies that depthEk = n − c for all k � 0.

SinceE is finitely generated, we may assume thatE0 = 0, after a suitable shift of th
grading. LetE(r) = ⊕

i Eir be ther th Veronese submodule ofE. Note that dimE(r) =
dimE, dimE/mE = dimE(r)/mE(r), and that depth(E(r))k = depthEkr is constant for
all k � 0. Moreover, ifE is Cohen–Macaulay, thenE(r) is Cohen–Macaulay. Thus if w
replaceE by E(r) for r big enough, we may assume that

grade(m,E) = n − max
{
i: Hi(x;E) �= 0

} = lim
k→∞ depthEk.

Since grade(m,E) � dimE − dimE/mE with equality if E is Cohen–Macaulay (see [
Theorem 2.1.2]), the assertions follow.�

As a consequence we obtain the theorem of Brodmann [2] together with a statem
limk→∞ depthI k , as well as the result of Eisenbud and Huneke [6].

Theorem 1.2. Limits limk→∞ depthI k , limk→∞ depthS/Ik and limk→∞ depthI k/I k+1

exist, and

lim
k→∞ depthS/Ik � lim

k→∞ depthI k − 1= lim
k→∞ depthI k/I k+1 � dimS − �(I ).

If S is Cohen–Macaulay andheightI > 0, then

k k
lim
k→∞ depthS/I = lim

k→∞ depthI − 1.
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Moreover, all limits are equal todimS − �(I ) if, in addition, the associated graded rin
grI (S) is Cohen–Macaulay.

Proof. Let us takeE = R(I ), the Rees ring, orE = grI (S), the associated graded rin
of I . In the first case, Theorem 1.1 implies that limk→∞ depthI k exists; in the second cas
the theorem implies that limk→∞ depthI k/I k+1 exists.

The last inequality also follows from Theorem 1.1, since dim grI (S) = dimS and
dimgrI (R)/mgrI (S) = dimR(I )/mR(I ) = �(I ).

Now we show that limk→∞ depthS/Ik exists. To this end we consider exact sequen

0−→ I k/I k+1 −→ S/Ik+1 −→ S/Ik −→ 0.

Setf (k) = depthS/Ik , and letc = limk→∞ I k/I k+1. Then there exists an integerk0 such
that for allk � k0 these exact sequences give rise to the following inequalities:

(i) f (k + 1) � min{c, f (k)},
(ii) c � min{f (k + 1), f (k) + 1},

see [1, Proposition 1.2.9]. Suppose thatf (k) � c for somek � k0. Then (ii) implies that
f (k + 1) � c. Then (i) yields thatf (k + 1) = c. It follows thatf (�) = c for all � � k + 1.
Hence limk→∞ f (k) = c in this case.

We may henceforth assume thatf (k) � c for all k. Then (i) implies thatf (k) is an
increasing function fork � k0, and that this function is bounded above byc. Thus the limit
f (k) exists, and it is less than or equal toc.

Next, we want to prove the equation limk→∞ depthI k − 1 = limk→∞ depthI k/I k+1.
The short exact sequence

0−→ I k+1 −→ I k −→ I k/I k+1 −→ 0

yields fork � k0 the inequalities

c � min
{
g(k + 1) − 1, g(k)

}
,

whereg(k) = depthI k . Let g = limk→∞ g(k). Then passing to the limit, we see thatc �
min{g − 1, g} = g − 1.

Supposec > g − 1, and letn be the minimal number of generators ofm. Then there
exists an integerk0 such thatHn−g(x; I k) �= 0 andHn−g+1(x; I k/I k+1) = 0 for all k � k0.
This implies that the natural mapHn−g(x; I k+1) → Hn−g(x; I k) is injective for allk � k0.
Composing these maps, we see thatHn−g(x; I �) → Hn−g(x; I k) are injective fork � k0
and all� > k. However, the Artin–Rees lemma implies that for any finitely generateS-
moduleM , the natural homomorphismHn−g(x; I �M) → Hn−g(x;M) is the zero map fo
� � 0. Thus we conclude thatHn−g(x; I �) = 0 for � � 0, a contradiction.

Suppose now thatS is Cohen–Macaulay, and that heightI > 0. Then depthS/Ik =
depthI k − 1, so that limk→∞ S/Ik = limk→∞ I k − 1. Finally, if grI (S) is Cohen–

k k+1
Macaulay, then limk→∞ I /I = dimS − �(I ), by Theorem 1.1. �
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2. The initial behavior of depthS/Ik

Let K be a field andS = K[x1, . . . , xn] the polynomial ring inn variables overK with
each degxi = 1. On support of the normal behavior, we show

Proposition 2.1. Let I be a graded ideal all of whose powers have a linear resolut
ThendepthS/Ik is a nonincreasing function ofk.

The proposition is a consequence of Corollary 2.3 stated below. As usual, we den
βij (M) the graded Betti numbers of a graded moduleM overS. We call the least degre
of homogeneous generator ofM , theinitial degree ofM .

Lemma 2.2. LetJ ⊂ I be graded ideals, and letd be the initial degree ofI . Then

βi,i+d(J ) � βi,i+d(I ) for all i.

Proof. The short exact sequence

0−→ J −→ I −→ I/J −→ 0

yields the long exact sequence

· · · −→ Tori+1(K, I/J )i+1+(d−1) −→ Tori (K,J )i+d −→ Tori (K, I)i+d −→ · · · .

Since the initial degree ofI/J is � d , it follows that Tori+1(K, I/J )i+1+(d−1) = 0.
Hence Tori (K,J )i+d → Tori (K, I)i+d is injective. �

Let F be the graded minimal free resolution ofI , and suppose thatd is the initial degree
of I . Then the subcomplexL of F with Li = S(−i − d)βi,i+d is called thelowest linear
strand ofF. We call its length thelinear projective dimension ofI .

Corollary 2.3. Let I ⊂ S be a graded ideal with initial degreed . Then

βi,i+(k+1)d

(
I k+1) � βi,i+kd

(
I k

)
for all k.

In particular, the linear projective dimension ofI k is an increasing function ofk.

Proof. Let x ∈ I be homogeneous of degreed . Then xIk ⊂ I k+1. It follows from
Lemma 2.2 thatβi,i+kd(I k) = βi,i+(k+1)d (xI k) � βi,i+(k+1)d (I k+1). �

We now discuss graded ideals having linear quotients. Letf1, . . . , fs be a sequenc
of homogeneous elements ofS with 0 < degf1 � degf2 � · · · � degfs . We say that
f1, . . . , fs haslinear quotientsif, for each 2� j � s, the colon ideal(f1, f2, . . . , fj−1) : fj

is generated by linear forms. We say that a graded idealI ⊂ S has linear quotients i

I is generated by a sequence with linear quotients. It is known [5, Lemma 4.1] that if
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f1, . . . , fs is a sequence with linear quotients and if allfi have the same degree, then
ideal(f1, . . . , fs) has a linear resolution.

Let I be a graded ideal generated by a sequencef1, . . . , fs with linear quotients. Le
qj (I ) denote the minimal number of linear forms generating(f1, f2, . . . , fj−1) : fj , and
q(I) = max2�j�s qj (I ).

As in the proof of [12, Corollary 1.6] we can show that the length of the minimal
resolution ofS/I overS is equal toq(I) + 1. Hence

depthS/I = n − q(I) − 1. (1)

Thus in particular the integerq(I) is independent of a particular choice of a sequenc
generators with linear quotients.

Corollary 2.4. Let I be a graded ideal generated in degreed with linear resolution, and
let f1, . . . , fs be a sequence with linear quotients which is part of a minimal system of
erators ofI . ThendepthS/I � n− q(J )−1, whereJ is the ideal generated byf1, . . . , fs .

Proof. Since J and I both have a linear resolution, it follows from Lemma 2.2 t
proj dimS/J � proj dimS/I . Hence depthS/I � depthS/J = n − q(J ) − 1. �

Our next goal is to discuss a Gröbner basis condition that guarantees that all pow
an ideal have linear quotients. LetI ⊂ S be a monomial ideal generated in one degree
G(I) its minimal system of monomial generators. Recall that the Rees algebraR(I ) of I

is

R(I ) = K
[
x1, . . . , xn, {ut}u∈G(I)

] ⊂ S[t].

Let A = K[x1, . . . , xn, {yu}u∈G(I)] denote the polynomial ring inn+|G(I)| variables over
K with each degxi = degyu = 1. Thetoric ideal of R(I ) is the kernelJR(I ) of the sur-
jective homomorphismπ :A → R(I ) defined by settingπ(xi) = xi for all 1 � i � n and
π(yu) = ut for all u ∈ G(I).

Let <lex denote the lexicographic order onS induced byx1 > x2 > · · · > xn. Fix
an arbitrary monomial order<# on K[{yu}u∈G(I)]. We then introduce a new mon
mial order<#

lex on A defined as follows: For monomials(
∏n

i=1 x
ai

i )(
∏

u∈G(I) y
au
u ) and

(
∏n

i=1 x
bi

i )(
∏

u∈G(I) y
bu
u ) belonging toA, one has

(
n∏

i=1

x
ai

i

)( ∏
u∈G(I)

yau
u

)
<#

lex

( n∏
i=1

x
bi

i

)( ∏
u∈G(I)

ybu
u

)

if either

(i)
∏

u∈G(I) y
au
u <# ∏

u∈G(I) y
bu
u or∏ ∏ ∏ ∏
(ii) u∈G(I) y
au
u = u∈G(I) y

bu
u and n

i=1 x
ai

i <lex
n
i=1 x

bi

i .
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Let G(JR(I )) denote the reduced Gröbner basis ofJR(I ) with respect to<#
lex. We say that

I satisfies thex-condition if each element belonging toG(JR(I )) is at most linear in the
variablesx1, . . . , xn.

Theorem 2.5. Suppose thatI satisfies thex-condition. Then each power ofI has linear
quotients.

Proof. Fix k � 1. Eachw ∈ G(Ik) has a unique expression, called thestandard expression,
of the formw = u1 · · ·uk with eachui ∈ G(I) such thatyu1 · · ·yuk

is a standard monomia
of A with respect to<#, that is, a monomial which does not belong to the initial idea
JR(I ). Let w∗ denote the standard monomialyu1 · · ·yuk

. Let G(Ik) = {w1, . . . ,ws} with
w∗

1 <# · · · <# w∗
s .

We claim thatI k has linear quotients with the orderingw1, . . . ,ws of its generators. Le
f be a monomial belonging to the colon ideal(w1, . . . ,wj−1) : wj . Thusf wj = gwi for
somei < j and for some monomialg. Letwj = u1 · · ·uk andwi = v1 · · ·vk be the standard
expressions ofwj andwi . The binomialfyu1 · · ·yus − gyv1 · · ·yvs belongs toJR(I ). Since
yv1 · · ·yvs <# yu1 · · ·yus , it follows that the initial monomial offyu1 · · ·yus − gyv1 · · ·yvs

is fyu1 · · ·yus . Hence there is a binomialh(+) − h(−) belonging toG(JR(I )) whose initial
monomialh(+) dividesfyu1 · · ·yus . Sinceyu1 · · ·yus is a standard monomial with respe
to <#, it follows from the definition of the monomial order<#

lex that it remains to be a
standard monomial with respect to<#

lex. Hence the initial monomial of none of the bin
mials belonging toG(JR(I )) can divideyu1 · · ·yus . As a consequence, the initial monom
h(+) must be divided by some variable, say,xa . Sinceh(+) is at most linear in the vari
ablesx1, . . . , xn, one hash(+) = xayup1

· · ·yupt
; thenxa dividesf and whereyup1

· · ·yupt

dividesyu1 · · ·yus . Let h(−) = xbyvq1
· · ·yvqt

, whereyvq1
· · ·yvqt

<# yup1
· · ·yupt

. One has
xaup1 · · ·upt = xbvq1 · · ·vqt .

To complete our proof, we show thatxa ∈ (w1, . . . ,wj−1) : wj . Sinceyup1
· · ·yupt

di-
videsyu1 · · ·yus , we can writeyu1 · · ·yus = yup1

· · ·yupt
yupt+1

· · ·yupk
.

Sinceyvq1
· · ·yvqt

<# yup1
· · ·yupt

, it follows that

yvq1
· · ·yvqt

yupt+1
· · ·yupk

<# yu1 · · ·yuk
= w∗

j .

Let wi0 = vq1 · · ·vqt upt+1 · · ·upk
∈ G(Ik). Then xawj = xbwi0. Since w∗

i0
�#

yvq1
· · ·yvqt

yupt+1
· · ·yupk

, one hasw∗
i0

<# w∗
j . Hencei0 < j . Thusxa ∈ (w1, . . . ,wj−1) :

wj , as desired. �
We write in(JR(I )) for the initial ideal ofJR(I ) with respect to the monomial order<#

lex
introduced above.

Let m = |G(I)|. For each multi-indexa = (a1, . . . , am) ∈ N
m, we set|a| = ∑m

i=1 ai .

Corollary 2.6. Suppose that the elements ofG(in(JR(I ))) are linear inx1, . . . , xn. Let

∣{ }∣

ρ(a) = ∣ i: xiy

a ∈ in(JR(I )) ∣.
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(a) depthS/Ik � n − max{ρ(a): |a| = k} − 1;
(b) limk→∞ depthS/Ik � n − |{i: xiy

a ∈ G(in(JR(I ))) for somea}| − 1.

Proof. We considerA = S[y1, . . . , ym] a bigradedK-algebra with each degxi = (1,0) and
each degyj = (0,1). ThenJ = JR(I ) is a bigraded ideal. For eachk, J(∗,k) = ⊕

i J(i,k) is
a submodule of a freeS-moduleA(∗,k) = ⊕

a, |a|=k Sya , and one has a free presentation

0−→ J(∗,k) −→ A(∗,k) −→ I k −→ 0.

On the freeS-moduleA(∗,k), we introduce the monomial order induced by the monom
order<#

lex. Then we have

in(J(∗,k)) = in(J )(∗,k).

By a standard deformation argument, it follows therefore

proj dimI k � proj dimA(∗,k)/ in(J )(∗,k).

We have

in(J )(∗,k) =
⊕

a, |a|=k

Lay
a,

whereLa is generated by allxi such thatxiy
a ∈ in(J ). Therefore

proj dim in(J )(∗,k) = max
{
ρ(a): |a| = k

} − 1.

Thus assertion (a) follows. Statement (b) is a simple consequence of (a), observi
La ⊂ Lb if ya dividesyb. �

3. Classes of examples arising in combinatorics

The function depthS/Ik will be computed for certain classes of monomial ideals, v
polymatroidal ideals, edge ideals of finite graphs, and monomial ideals of finite lattic

(a) A typical example for which Theorem 2.5 can be applied arises from a finite g
Let G be a finite graph on a vertex set[n] = {1, . . . , n}, having no loop and no multipl
edge, withE(G) its edge set. Let, as before,S = K[x1, . . . , xn] denote the polynomia
ring in n variables overK . Theedge idealof G is the idealI (G) of S which is generated
by those quadratic monomialsxixj with {i, j} ∈ E(G). It is known [7] thatI (G) has a
linear resolution if and only if the complementary graph ofG is chordal. (Recall that th
complementary graphof G is a finite graphḠ with E(Ḡ) = {{i, j} ⊂ [n]: {i, j} /∈ E(G)}.

On the other hand, a finite graph is calledchordal if each of its cycles of length� 4 has
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a chord.) Moreover, in [10, Theorem 3.2] it is proved that ifḠ is chordal, thenI (G) has
linear quotients.

In the following, we assume that̄G is chordal. In this case the clique complex ofḠ

is a quasi-forest and we order the vertices according to a leaf order of this quasi-
see the proof of [10, Proposition 2.3]. LetR(I (G)) = K[x1, . . . , xn, {xixj t}{i,j}∈E(G)] de-
note the Rees algebra ofI (G), A = K[x1, . . . , xn, {yi,j }{i,j}∈E(G)] the polynomial ring in
n+|E(G)| variables overK , andJR(I (G)) the toric ideal ofR(I (G)). ThusJR(I (G)) is the
kernel of the surjective homomorphismπ : A → R(I (G)) defined by settingπ(xi) = xi

for all i andπ(yij ) = xixj for all {i, j} ∈ E(G). We introduce an ordering< of the vari-
ables ofA by setting

(i) yi,j > yp,q , wherei < j andp < q, if either i < p or (i = p andj < q), and
(ii) yi,j > x1 > · · · > xn for all {i, j} ∈ E(G).

Let <lex denote a lexicographic order onA induced by the ordering< andG(JR(I (G))) the
reduced Gröbner basis ofR(I (G)) with respect to<lex.

We quote the following result [10, Theorem 3.1]:

Theorem 3.1. Suppose that the complementary graph ofG is chordal. Then each eleme
belonging toG(JR(I (G))) is at most linear in the variablesx1, . . . , xn.

In [10, Theorem 3.2] it is proved that if̄G is chordal, then each power ofI (G) has a
linear resolution. By virtue of Theorem 2.5, we have:

Corollary 3.2. Suppose that the complementary graph ofG is chordal. Then all power o
I (G) have linear quotients.

To demonstrate our theory, we consider the following example: LetG be a finite graph
on the vertex set{1,2,3,4,5,6} with edges

{{1,4}, {2,5}, {3,6}, {4,5}, {4,6}, {5,6}}.
The complementary graph ofG is chordal. LetI = I (G) be the edge ideal ofG, andJ

be the toric ideal of the Rees algebraR(I ). Then the initial ideal ofJ with respect to the
lexicographic order introduced above is generated by

x5y1, x4y2, x5y3, x6y4, x5y5, x4y3, x6y2, x6y1, x2y1y6, x4y1y6, x3y2y5.

It follows from Corollary 2.6 that depthS/I � 3, depthS/Ik � 0 for k � 2. Indeed, in this
example equality holds.

(b) Another important class of monomial ideals with linear quotients is the class of
matroid ideals. LetI denote a monomial ideal of the polynomial ringS = K[x1, . . . , xn]
generated in one degree, andG(I) its unique minimal system of monomial generato
We say thatI is polymatroidal if the following condition is satisfied: For monomia

u = x

a1
1 · · ·xan

n andv = x
b1
1 · · ·xbn

n belonging toG(I) and for eachi with ai > bi , one hasj
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with aj < bj such thatxju/xi ∈ G(I). The reason why we call such an ideal polymatroi
is that the monomials of the ideal correspond to the bases of a discrete polymatro
The polymatroidal idealI is calledmatroidal if I is generated by square-free monomia

It is known [5, Theorem 5.2] that a polymatroidal ideal has linear quotients with re
to the reverse lexicographic order<rev induced by the orderingx1 > x2 > · · · > xn. More
precisely, ifI is a polymatroidal ideal and ifu1, . . . , us are the monomials belonging
G(I) ordered by the reverse lexicographic order, i.e.,us <rev · · · <rev u2 <rev u1, then the
colon ideal(u1, . . . , uj−1) : uj is generated by a subset of{x1, . . . , xn}.

The product of polymatroidal ideals is again polymatroidal [5,8]. In particular e
power of a polymatroidal ideal is polymatroidal.

One of the most distinguished polymatroidal ideals is the ideal of Veronese typ
S = K[x1, . . . , xn] and fix positive integersd ande1, . . . , en with 1 � e1 � · · · � en � d .
The ideal of Veronese typeof S indexed byd and (e1, . . . , en) is the idealI(d;e1,...,en)

which is generated by those monomialsu = x
a1
1 · · ·xan

n of S of degreed with ai � ei for
each 1� i � n.

Theorem 3.3. Fix positive integersd and e1, . . . , en with 1 � e1 � · · · � en � d . Let t =
d + n − 1− ∑n

i=1 ei and letI = I(d;e1,...,en) be the ideal of Veronese type ofS indexed by
d and(e1, . . . , en). Then one hasdepthS/I = t .

Proof. Let u0 = x
e1−1
1 · · ·xen−1−1

n−1 x
en
n and u = xn−t xn−t+1 · · ·xn−1u0 ∈ G(I). For each

1 � i � n − t − 1, one hasxiu/xn ∈ G(I) with u <rev xiu/xn. Let one takeJ = ({w ∈
G(I): u <rev w}). For each 1� i � n − t − 1, one hasxiu/xn ∈ G(I) with u <rev xiu/xn.
Hencexi ∈ J : u for all 1 � i � n − t − 1. Moreover, one hasxju/xj0 /∈ G(I) for
all n − t � j � n and for all j0 �= j . Hencexj /∈ J : u for all n − t � j � n. Thus
J : u = (x1, . . . , xn−t−1). On the other hand, for eachv = x

a1
1 · · ·xan

n ∈ G(I) with m(v) =
max{i: ai �= 0}, the number ofi < m(v) with ai < ei is at mostn − t − 1. Thus the num
ber of variables required to generate the colon ideal({w ∈ G(I): v <rev w}) : v is at most
n − t − 1. Henceq(I) = n − t − 1. Thus depthS/I = t . �

Thesquare-free Veronese idealof degreed in the variablesxi1, . . . , xit is the ideal ofS
which is generated by all square-free monomials inxi1, . . . , xit of degreed . The square
free Veronese ideal is matroidal and Cohen–Macaulay.

Let 2 � d < n and letI = In,d be the square-free Veronese ideal of degreed in the
variablesx1, . . . , xn. Since each powerI k is the ideal of Veronese type indexed bykd and
(k, k, . . . , k), by using Theorem 3.3, we have

Corollary 3.4. Let 2� d < n and letI = In,d be the square-free Veronese ideals of deg
d in the variablesx1, . . . , xn. Then

depthS/Ik = max
{
0, n − k(n − d) − 1

}
.

Corollary 3.5. Given nonnegative integersd and t with t � d there exists a polymatroida

ideal I ⊂ S with depthS/I = t anddimS/I = d .
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Proof. Let I = In,n−1 be the square-free Veronese ideal of degreen − 1 in the variables
x1, . . . , xn. Then dimS/Ik = n− 2 and depthS/Ik = max{0, n− k − 1}. Hence by setting
n = d + 2 andk = n − t − 1, the desired example arises.�

(c) Finally we consider a class of monomial ideals arising from finite posets. LetP be
a finite partially ordered set (posetfor short) and writeJ (P ) for the finite poset which
consists of all poset ideals ofP , ordered by inclusion. Here, aposet idealof P is a subse
I ⊂ P such that ifx ∈ I , y ∈ P andy � x, theny ∈ I . In particular, the empty set a
well asP itself is a poset ideal ofP . If follows that J (P ) is a finite distributive lattice
[16, p. 106]. Conversely, Birkhoff’s fundamental structure theorem [16, Theorem 3
guarantees that, for an arbitrary finite distributive latticeL, there exists a unique posetP

such thatL= J (P ).
Let P = {p1, . . . , pn} be a finite poset with|P | = n, andS = K[x1, . . . , xn, y1, . . . yn]

the polynomial ring in 2n variables over a fieldK with each degxi = degyi = 1. We
associate each poset idealI of P with the square-free monomial

uI =
( ∏

pi∈I

xi

)( ∏
pi∈P \I

yi

)

of S of degreen. In particularuP = x1 · · ·xn and u∅ = y1 · · ·yn. We write HP for the
square-free monomial ideal ofS generated by all monomialsuI with I ∈ J (P ), that is,

HP = ({uI }I∈J (P )

)
.

In the previous paper [9], it was proved that each powerHk
P has a linear resolution

Moreover, it is known [11] thatHP has linear quotients. It was expected, but unclear i
powers ofHP have linear quotients. Fortunately, the expectation now turns out to be

Theorem 3.6. Each powerHk
P has linear quotients.

Proof. By virtue of [14, p. 99] each monomial belonging toG(Hk
P ) possesses a uniqu

expression of the formuI1uI2 · · ·uIk
, where eachIj is a poset ideal ofP , with I1 ⊂ I2 ⊂

· · · ⊂ Ik . We fix an ordering< of the monomialsuI , whereI is a poset ideal ofP , with
the property that one hasuI < uJ if J ⊂ I . We then introduce the lexicographic order<lex
of the monomials belonging toG(Hk

P ) induced by the ordering< of the monomialsuI .
We claim thatHk

P has linear quotients. More precisely, we show that, for each mono
w = uI1uI2 · · ·uIk

∈ G(Hk
P ), the colon ideal({v ∈ G(Hk

P ): w <lex v}) : w is generated by
those variablesyi for which there is 1� j � k with pi ∈ Ij such thatIj \ {pi} is a poset
ideal ofP .

First, letyi be a variable withpi ∈ Ij and suppose thatJ = Ij \ {pi} is a poset idea
of P . One hasyiuIj

= xiuJ . Hence
yiw = xiuI1 · · ·uIj−1uJ uIj+1 · · ·uIk
.
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Since all poset idealsI1, . . . , Ij−1 and J are subsets ofIj , it follows from [14,
(2.1), p. 98] that the monomialuI1 · · ·uIj−1uJ can be expressed uniquely in the fo
uI ′

1
· · ·uI ′

j−1
uI ′

j
such thatI ′

1 ⊂ · · · ⊂ I ′
j−1 ⊂ I ′

j ⊂ Ij . Moreover, one hasuI1 · · ·uIj−1uJ <lex

uI ′
1
· · ·uI ′

j−1
uI ′

j
. Thusw <lex uI ′

1
· · ·uI ′

j−1
uI ′

j
uIj+1 · · ·uIk

. Henceyi belongs to the colon

ideal({v ∈ G(Hk
P ): w <lex v}) : w.

Second, letδ be a monomial belonging to the colon ideal

({
v ∈ G(Hk

P ): w <lex v
}) : w.

Thus one hasδw = µv for monomialsµ andv with w <lex v. Say,v = uI ′
1
· · ·uI ′

k
with

I ′
1 ⊂ · · · ⊂ I ′

k . What we must prove is that the monomialδ is divided by a variableyi for
which there is 1� j � k such thatIj \ {pi} is a poset ideal ofP . Sincew <lex v, it follows
that there isj0 for whichIj0 < I ′

j0
. In particularIj0 �⊂ I ′

j0
. Thus there is a maximal eleme

pi0 of Ij0 with pi0 /∈ I ′
j0

. Thenpi0 belongs to each of the poset idealsIj0, Ij0+1, . . . , Ik and
belongs tononeof the poset idealsI ′

1, . . . , I
′
j0

. Hence the power ofyi0 in the monomialv is
at leastj0, but that inw is at mostj0 − 1. Hencey0 must divideδ. Sincepi0 is a maximal
element ofIj0, the subsetIj0 \ {pi0} of P is a poset ideal ofP , as desired. �

By using Theorem 3.6 we can now compute depthS/Hk
P in terms of combinatorics

on P . Recall that anantichainof P is a subsetA ⊂ P any two of whose elements a
incomparable inP . Given an antichainA of P , we write 〈A〉 for the poset ideal ofP
generated byA, which consists of those elementsp ∈ P such that there isa ∈ A with
p � a. For eachk = 1,2, . . . , we writeδ(P ; k) for the largest integerN for which there is
a sequence(A1,A2, . . . ,Ar) of antichains ofP with r � k such that

(i) Ai ∩ Aj = ∅ if i �= j ;
(ii) 〈A1〉 ⊂ 〈A2〉 ⊂ · · · ⊂ 〈Ar 〉;

(iii) N = |A1| + |A2| + · · · + |Ar |.

We call such a sequence of antichains ak-acceptable sequence.
It follows from the definition thatδ(P ;1) is the maximal cardinality of antichains o

P andδ(P ;1) < δ(P ;2) < · · · < δ(P ; rank(P ) + 1). Moreover,δ(P ; k) = n for all k �
rank(P ) + 1. Here rank(P ) is therank [16, p. 99] ofP . Thus rank(P ) + 1 is the maximal
cardinality of chains (totally ordered sets) contained inP .

Corollary 3.7. LetP be an arbitrary finite poset with|P | = n. Then

depthS/Hk
P = 2n − δ(P ; k) − 1 for all k � 1.

Proof. We work with the same notation as in the proof of Theorem 3.6. Recall tha
a monomialw = uI1uI2 · · ·uIk

∈ G(Hk
P ), the colon ideal({v ∈ G(Hk

P ): w <lex v}) : w

is generated by those variablesyi for which there is 1� j � k with pi ∈ Ij such that
Ij \ {pi} is a poset ideal ofP . Note thatIj \ {pi} is a poset ideal ofP if and only if

pi is a maximal element ofIj . Let Bj denote the set of maximal elements ofIj . Then
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the number of variables required to generate the colon ideal({v ∈ G(Hk
P ): w <lex v}) : w

is |⋃k
j=1 Bj |. Let Qw = ⋃k

j=1 Bj . One hasr = rank(Qw) + 1 � k. We then define a
sequenceA1,A2, . . . ,Ar of subset ofBw as follows:A1 is the set of minimal elements o
Qw and, for 2� j � r , Aj is the set of minimal elements ofQw \ (A1 ∪ · · · ∪Aj−1). Then
(A1, . . . ,Ar) is k-acceptable with|Qw| = ∑r

j=1 |Aj |. Hence|Qw| � δ(P ; k).
On the other hand, there is ak-acceptable sequence(A1,A2, . . . ,Ar) with δ(P ; k) =∑r
j=1 |Aj |. Let w = uk−r

∅ u〈A1〉 · · ·u〈Ar 〉 ∈ G(Hk
P ). Then the number of variables requir

to generate the colon ideal({v ∈ G(Hk
P ): w <lex v}) : w is δ(P ; k).

Consequently, one hasq(Hk
P ) = δ(P ; k). Thus depthS/Hk

P = 2n − δ(P ; k) − 1, as re-
quired. �

Since{xi, yi} is a vertex cover ofHP for each 1� i � n, it follows that dimS/HP =
2n − 2. HenceHP is Cohen–Macaulay if and only ifδ(P ;1) = 1. In other words,HP is
Cohen–Macaulay if and only ifP is a chain.

Corollary 3.8. LetP be an arbitrary finite poset with|P | = n. Then

(i) depthS/HP > depthS/H 2
P > · · · > depthS/H

rank(P )
P > depthS/H

rank(P )+1
P ;

(ii) depthS/Hk
P = n − 1 for all k > rank(P );

(iii) lim k→∞ depthS/Hk
P = n − 1.

Corollary 3.9. Given an integern > 0 and given a finite sequence(a1, a2, . . . , ar ) of posi-
tive integers witha1 � a2 � · · · � ar and witha1 + · · · + ar = n, there exists a square-fre
monomial idealI ⊂ S = K[x1, . . . , xn, y1, . . . , yn] such that

(i) depthS/Ik = 2n − (a1 + · · · + ak) − 1, k = 1,2, . . . , r − 1;
(ii) depthS/Ik = n − 1 for all k � r ;

(iii) lim k→∞ depthS/Ik = n − 1.

Proof. Let A(ai) denote the antichain with|A(ai)| = ai andP the ordinal sum [16, p. 100
of the antichainsA(a1),A(a2), . . . ,A(ar). Thus rank(P ) = r −1. Sincea1 � a2 � · · · � ar

anda1 + · · · + ar = n, it follows thatδ(P ; k) = a1 + a2 + · · · + ak if 1 � k � r − 1 and
thatδ(P ; k) = n for all k � r . �

In general, given a functionf :N → N, we introduce function�f by setting(�f )(k) =
f (k) − f (k + 1) for all k ∈ N.

Corollary 3.10. Given a nonincreasing functionf :N → N with

f (0) = 2 lim
k→∞f (k) + 1

for which�f is nonincreasing, there exists a monomial idealI ⊂ S such thatdepthS/Ik =

f (k) for all k � 1.
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Proof. Let limk→∞ f (k) = n − 1 andf (0) = 2n − 1. Letak = (�f )(k − 1) for all k � 1.
Thusf (k) = 2n − (a1 + · · · + ak) − 1 for all k � 1. Sincef is nonincreasing, one ha
ak � 0 for all k. Since�f is nonincreasing, one hasa1 � a2 � · · · . Let r � 1 denote the
smallest integer for whicha1 + a2 + · · ·+ ar = n. Thusai > 0 for 1� i � r andai = 0 for
all i > r . It then follows from Corollary 3.9 that there exists a monomial idealI ⊂ S for
which depthS/Ik = f (k) for all k � 1. �

4. A class of ideals whose depth function depthS/Ik is increasing

Note that ifI is a square-free monomial ideal, then depthS/Ik � depthS/I for all k,
see for example [13]. This suggests the following question: Is it true that depthS/Ik is a
nonincreasing function ofk, if I is a square-free monomial ideal? As we shall see now
a general monomial ideal the function depthS/Ik may also be nondecreasing. In fact,
even show

Theorem 4.1. Given a bounded nondecreasing functionf :N \ {0} → N. There exists a
monomial idealI such thatdepthS/Ik = f (k) for all k.

Proof. Let limk→∞ f (k) = n and suppose thatf (k) = n for k � d − 1. We set

cd−k = n − f (k) for k = 1, . . . , d − 2. (2)

Let K be a field, andS = K[x1, x2, y1, . . . , yn] be the polynomial ring inn + 2 variables
overK . We defineI ⊂ S to be the ideal generated by the set of monomials

{
xd+1

1 , xd
1x2, x1x

d
2 , xd+1

2

} ∪
d−1⋃
k=2

{
xd−1

1 xk
2y1, . . . , x

d−1
1 xk

2yck

}
.

Note that this set of monomials is in general not a minimal set of generators ofI . We claim
that

depthS/Ik = f (k) for all k.

Fork = 1, . . . , d − 2, letJ(k) ⊂ Sk = K[x1, x2, y1, . . . , ycd−k
] be the ideal generated by th

set of monomials

{
xd+1

1 , xd
1x2, x1x

d
2 , xd+1

2

} ∪
d−k⋃
r=2

{
xd−1

1 xr
2y1, . . . , x

d−1
1 xr

2ycr

}
,

and setJ = J(d−1) = (xd+1
1 , xd

1x2, x1x
d
2 , xd+1

2 ). We will show:

(i) J k
(k)S = I k for k = 1, . . . , d − 1,

(ii) xkd−1
1 xd−1

2 /∈ J k
(k) for k = 1, . . . , d − 2, and
(iii) xkd−1
1 xd−1

2 (x1, x2, y1, . . . , ycd−k
) ∈ J k

(k).
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Assuming (i), (ii) and (iii), the assertion follows. Indeed, if we setc1 = 0, then (i) implies

depthS/Ik = depthS/J k
(k)S = depthSk/J

k
(k) + (n − cd−k), (3)

for k = 1, . . . , d − 1, and (ii) and (iii) imply that depthSk/J
k
(k) = 0. Thus (2) and (3) yield

the desired result.
Before proving (i), (ii) and (iii) we notice thatJ k is generated in degreek(d + 1), and

that for anyr � k(d + 1) one has

(
J k

)
�r

= [(
xd

1 , xd
2

)k
(x1, x2)

k
]
(x1, x2)

r−k(d+1) = (
xd

1 , xd
2

)k
(x1, x2)

r−kd

=
({

xid+s
1 x

r−(id+s)
2

}
i=0,...,k,
s=0,...,r−kd

)
. (4)

Proof of (i): The desired equality follows once we can show for allt = 1, . . . , k the ideal
J k−t multiplied with a product oft elements from the set

d−1⋃
k=2

{
xd−1

1 xk
2y1, . . . , x

d−1
1 xk

2yck

}
,

with at least one factor of the formxd−1
1 xr

2yi with r � d − k + 1, belongs toJ k . This
will be the case ifJ k−t (xd−1

1 x
r1
2 ) · · · (xd−1

1 x
rt
2 ) ⊂ J k for all t = 1, . . . , k and all ri with

2 � r1 � r2 � · · · � rt with at least oneri � d − k + 1. For this it suffices to consider th
most critical case, namely thatr1 = r2 = · · · = rt−1 = 2 andrt = d − k + 1. Thus we have
to show thatJ k−t (xd−1

1 x2
2)t−1(xd−1

1 xd−k+1
2 ) ⊂ J k . By (4) it amounts therefore to sho

that

u = xid+s
1 x

(k−t)(d+1)−(id+s)
2 x

t(d−1)
1 x2t+d−k−1

2 ∈ (
J k

)
r
,

wherer = (k − t)(d + 1) + (t − 1)(d − 1) + 2(t − 1) + d − 1+ d − k + 1 = kd + d − 1
is the degree of the monomialu, and where 0� i � k − t and 0� s � k − t . Again using
(4) we see thatu ∈ (J k)r if and only if

(i + t − 1)d + (d − t + s) ∈ {jd + a: 0� j � k, 0� a � d − 1}.

Since 0� i � k − t it follows that 0� i + t − 1< k is in the allowed range. We also hav

2� d − k � d − t + s � 2d − 1.

If i + t = k, thent = k ands = 0, so thatd − t + s = d − k � d − 1. On the other hand, i
i + t < k, then(i + t)d + (d − t + s) = (i + t + 1)d + (−t + s) has the desired form.

Proof of (ii): It suffices to show thatxkd−1
1 xd−1

2 /∈ J k , because the idealsJ k andJ k
(k)
coincide moduloy1, . . . , yn.
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1112,
Supposexkd−1
1 xd−1

2 ∈ J k , thenxkd−1
1 xd−1

2 ∈ (J k)kd+(d−2). It follows from (4), that

kd − 1∈ {id + s: i = 0, . . . , k ands = 0, . . . , d − 2}.
Hence we must havekd − 1 = id + s for some 0� i < k. This yields(k − i)d = s + 1 �
d − 1, a contradiction.

Proof of (iii): The elementx1(x
kd−1
1 xd−1

2 ) = xkd
1 xd−1

2 belongs to(J k)kd+(d−1) ⊂ J k
(k).

Also, by (4), the elementx2(x
kd−1
1 xd−1

2 ) = xkd−1
1 xd

2 belongs to(J k)kd+(d−1), since
kd − 1= (k − 1)d + (d − 1). Finally, we note that fori = 1, . . . , cd−k one has

yi

(
xkd−1

1 xd−1
2

) = (
x

(k−1)d
1 xk−1

2

)(
xd−1

1 xd−k
2 yi

)
.

By (4), the first factor belongs to(J k−1)(k−1)(d+1), and the second factor belongs toJ(k).
Thusyi(x

kd−1
1 xd−1

2 ) = J k
(k), as desired. �

All examples we have considered so far had the property that the function depthS/Ik

is monotonic. We conclude this paper with an example that shows that this depth fu
can be more general. We consider the ideal

I = (
a6, a5b, ab5, b6, a4b4c, a4b4d, a4e2f 3, b4e3f 2)

in S = K[a, b, c, d, e, f ]. Then we have depthS/I = 0, depthS/I2 = 1, depthS/I3 = 0,
depthS/I4 = 2 and depthS/I5 = 2.

In view of the examples considered in this paper, we are tempted to conjecture th
function depthS/Ik can beanyconvergent nonnegative integer valued function.
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