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We review two methods used to approach the condensation of defects phenomenon. Analyzing in details
their structure, we show that in the limit where the defects proliferate until occupy the whole space
these two methods are dual equivalent prescriptions to obtain an effective theory for the phase where
the defects (like monopoles or vortices) are completely condensed, starting from the fundamental theory
defined in the normal phase where the defects are diluted.
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1. Introduction

The quantum field theory description of a physical system re-
lies on a proper identification of its degrees of freedom which are
then interpreted as excited states of the fields defining the theory.
However it is sometimes the case that the theory may contain im-
portant structures which are not described in this way and cannot
be expressed in a simple manner in terms of the fields appear-
ing in the Lagrangian, having a non-local expression in terms of
them. These structures appear under certain conditions as defects;
prescribed singularities of the fields defining the theory. A general
conjecture [2] claims that defects are described by a dual formu-
lation in which they appear as excitations of the dual field, but
this can be proved only in some particular instances. Nevertheless,
much can be gained just with the information that these struc-
tures appear as singularities of the fundamental fields even with-
out knowing their precise dynamics. A pressing question is if it
is possible to address, with this limited information, the situation
in which the collective behavior of defects becomes the dominant
feature of a theory. It is one of the purposes of this work to discuss
an extreme case of sorts. We want to present a general proposal of
how to describe a situation in which the singularities of the fields
proliferate defining a new vacuum for the system. In this picture
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the new degrees of freedom are recognized as excitations of the
established condensate of defects.

This view is supported by the fact that if we are interested only
in the low lying excitations it is perfectly reasonable to take the
condensate as given, not worrying how it was set on, and con-
struct an effective field theory describing the excitations. It is well
known for instance that the pions, which can be recognized as ex-
citations of the chiral symmetry breaking condensate composed of
quark–antiquark pairs, can be described by an effective field theory
without knowing about QCD. Even though we need not know the
details of how the condensate is formed it is important to stress
that the condensate defines the vacuum and carries vital informa-
tion about the symmetry content used in the construction of the
effective theory. It is in this way also bound to have an effect in
all the other fields comprising the system. The example of a su-
perconducting medium also comes to mind, where the condensate
vacuum endows the electromagnetic excitations with a mass. This
same idea is employed on the electroweak theory where a conden-
sate is the only consistent way to give mass to the force carriers,
the W and Z , and in fact to account for all the masses of the
standard model. This is an example where the properties of the
condensate itself are not completely established and still a matter
of debate. The currently accepted view is that its low lying exci-
tations are the Higgs particles, still to be detected, described by a
scalar field.

More akin to our take on the condensate concept, as a collective
behavior of defects, is the dual superconductor model of confine-
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ment which is based on the superconductor phenomenology [1].
It is expected that the QCD vacuum at low energies is a chromo-
magnetic condensate leading to the confinement of color charges
immersed in this medium. In dual superconductor models of color
confinement, magnetic monopoles appear as topological defects in
points of the space where the abelian projection becomes sin-
gular [9]. There are in fact many other examples in which the
condensation of defects is responsible for drastic changes in the
system by defining the new vacuum of the theory. We may men-
tion vortices in superfluids and line-like defects in solids which are
responsible for a great variety of phase transitions [6]. All these in-
stances point to the importance of getting a better understanding
of the condensation phenomenon.

In all these examples there are some general features of the
condensates which can tell a lot about what to expect of the sys-
tem when condensation sets in without the precise knowledge of
how this happened. These general features are what we intend to
explore in this Letter. The main inspiration for this work comes
from the study of two particular approaches to this problem: one
is the Abelian Lattice Based Approach (ALBA) discussed by Banks,
Myerson and Kogut in [3] within the context of relativistic lattice
field theories and latter also by Kleinert in [5] in the condensed
matter context. The other one is the Julia–Toulouse Approach (JTA)
introduced by Julia and Toulouse in [4] within the context of or-
dered solid-state media and later reformulated by Quevedo and
Trugenberger in the relativistic field theory context [7].

The ALBA was used, for example, by Banks, Myerson and Kogut
to study phase transitions in abelian lattice gauge theories [3].
A few years latter Kleinert obtained a disorder field theory for
the superconductor from which he established the existence of a
tricritical point separating the first-order from the second-order
superconducting phase transitions [5]. In this Letter we shall be
using the notations in the recent book by Kleinert [6].

Developing in the work of Julia and Toulouse, Quevedo and
Trugenberger studied the different phases of field theories of com-
pact antisymmetric tensors of rank h − 1 in arbitrary space–time
dimensions D = d + 1. Starting in a coulombic phase, topological
defects of dimension d − h − 1 ((d − h − 1)-branes) may condense
leading to a confining phase. In that work one of the applications
of the JTA was the explanation of the axion mass. It was known
that the QCD instantons generate a potential which gives mass to
the axion. However, the origin of this mass in a dual description
were a puzzle. When the JTA is applied it is clear that the conden-
sation of instantons is responsible for the axion mass.

Recently, some of us and collaborators have made a proposal
that the JTA would be able to explain the dual phenomenon
to radiative corrections [10] and used this idea to compute the
fermionic determinant in the QED3 case. This result was immedi-
ately extended to consider the use of the JTA to study QED3 with
magnetic-like defects. By a careful treatment of the symmetries
of the system we suggested a geometrical interpretation for some
debatable issues in the Maxwell–Chern–Simons-monopole system,
such as the induction of the non-conserved electric current to-
gether with the Chern–Simons term, the deconfinement transition
and the computation of the fermionic determinant in the presence
of Dirac string singularities [11]. It is important to point that the
main signature of the JTA is the rank-jumping of the field ten-
sor due to the defects condensation. However, this discontinuous
change of the theory still puzzles a few. It is another goal of this
investigation to shed some light in this matter.

In the present work we hope to help clarify the above men-
tioned issues focusing in the analysis of the structure of these
two methods, i.e., JTA and ALBA, by working out an explicit ex-
ample. Introducing a new Generalized Poisson’s Identity (GPI) for
p-branes in arbitrary space–time dimensions and the novel con-
cept of Poisson-dual branes we show that in the specific limit
where the defects proliferate until they occupy the whole space
these two approaches are dual equivalent prescriptions to obtain
an effective theory for the phase where the defects are completely
condensed, starting from the fundamental theory defined in the
normal phase where the defects are diluted.

2. Setting the problem

The example we will work here is the Maxwell theory in the
presence of monopoles that eventually condense, which serves as
an abelian toy model that simulates quark confinement.

The Maxwell field Aμ minimally coupled to electric charges e
and non-minimally coupled to magnetic monopoles g is described
by the following action:

S = S M
0 + Sint = −

∫
d4x

1

4

(
Fμν − F M

μν

)2 −
∫

d4x jμ Aμ, (1)

where jμ = eδμ(x; L′) ( j̃μ = gδμ(x; L)) is the electric (magnetic)
current, being δμ(x; L′) (δμ(x; L)) a δ-distribution that localizes
the world line L′ (L) of the electric (magnetic) charge e (g).
F μν

M = gδ̃μν(x; S) := g
2 εμναβδαβ(x; S) is the magnetic Dirac brane,

with δμν(x; S) a δ-distribution that localizes the world surface S of
the Dirac string coupled to the monopole [8] and has the current
j̃μ in its border. The field Aμ experiences a jump of discontinu-
ity as it crosses S , hence Fμν has a δ-singularity over S [13] that
exactly cancels the one in F M

μν such that Fμν − F M
μν := F obs

μν is

the regular combination which expresses the observable fields �E
and �B . As we shall see, the quantum field theory associated to this
action has two different kinds of local symmetries: the first one
is the usual electromagnetic gauge symmetry, Aμ(x) → A′

μ(x) =
Aμ(x) + ∂μΛ(x), with integrable Λ, i.e., [∂μ, ∂ν ]Λ = 0. The second
one corresponds to the freedom of moving the unphysical surface
S over the space:

F M
μν → F M ′

μν = F M
μν + ∂μΛM

ν − ∂νΛM
μ ,

Aμ → A′
μ = Aμ + ΛM

μ , (2)

where ΛM
μ = gδ̃μ(x; V ) := g

3!εμναβδναβ(x; V ), being δμνρ(x; V ) a
δ-distribution that localizes the volume V spanned by the defor-
mation S → S ′ (the boundary ∂ S of S is physical and is kept
fixed in the transformation such that ∂ S = ∂ S ′). We name here
this second kind of local symmetry as brane symmetry. Taking into
account the current conservation we see that the action (1) is in-
variant under gauge transformations. But (1) changes under brane
transformations as 
S = S ′

int − Sint = − ∫
d4x jμΛ

μ
M = −egn, n ∈ Z

so that (2) is not a symmetry of (1). But being the Dirac string
unphysical we should not be able to detect it experimentally. So
we need to impose some consistency condition to make the Dirac
string physically undetectable within the present formalism. We
can do it only by means of a quantum argument: the phase fac-
tor appearing in the partition function associated to (1) changes
under brane symmetry as eiS → eiS ′ = ei(S+
S) = eiS e−iegn , n ∈ Z.
It should be clear now that to keep the physics unchanged under
brane transformations the consistency condition needed to impose
is e−iegn ≡ 1, n ∈ Z ⇒ eg ≡ 2π N , N ∈ Z, which is the famous Dirac
quantization condition [8], a possible explanation for the charge
quantization.

Now in order to consider the monopole condensation (which
will induce the electric charge confinement) it is best to go to the
dual picture. To obtain the dual action to (1) we introduce an aux-
iliary field fμν and define the master action by lowering the order
of the derivatives appearing in (1) via Legendre transformation:
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S̃ :=
∫

d4x

[
−1

2
fμν F μν

obs + 1

4
f 2
μν − jμ Aμ

]
. (3)

Extremizing S̃ with respect to fμν we get fμν = F obs
μν and sub-

stituting that in (3) we reobtain the original action (1) while ex-
tremizing S̃ with respect to Aμ we get the condition ∂μ f μν = jν ,

which can be solved by fμν ≡ 1
2 εμναβ F̃ αβ

obs := 1
2 εμναβ( F̃ αβ − F̃ αβ

E ).

We introduced the dual vector potential Ãμ in F̃μν := ∂μ Ãν −
∂ν Ãμ and the electric Dirac brane F̃ E

μν that localizes the world
surface of the electric Dirac string coupled to the electric charge.
Substituting this result in (3) and discarding an electric brane–
magnetic brane contact term that does not contribute to the par-
tition function due to the Dirac quantization condition, we obtain
the dual action:

S̃ = S̃ E
0 + S̃ int =

∫
d4x

[
−1

4
F̃ obs 2
μν − Ãμ j̃μ

]
, (4)

where the couplings are inverted relatively to the ones in the origi-
nal action (1): here the dual vector potential Ãμ couples minimally
with the monopole and non-minimally with the electric charge.

3. Abelian lattice based approach

We are now in position to consider monopole condensation by
applying the ALBA to the dual Maxwell action (4). The main goal
of this approach is to obtain an effective action for the condensed
phase in the dual picture. The ALBA is based on the observation
that upon condensation, the magnetic defects initially described
by δ-distributions are elevated to the field category describing the
long-wavelength fluctuations of the magnetic condensate. The con-
dition triggering the complete condensation of the defects is given
by the disappearance of the Poisson-dual brane (defined below)
coming from a Generalized Poisson’s Identity (see the discussion
in Appendix A).

We suppose that for the electric charges there are only a few
fixed (external) worldlines L′ while for the monopoles we suppose
that there is a fluctuating ensemble of closed worldlines L that
can eventually proliferate (the details of how such a proliferation
takes place is a dynamical issue not addressed neither by the ALBA
nor by the JTA). The magnetic current is written in terms of the
magnetic Dirac brane as j̃σ = 1

2 εσρμν∂ρ F M
μν . In order to allow the

monopoles to proliferate we must give dynamics to their magnetic
Dirac branes since the proliferation of them is directly related to
the proliferation of the monopoles and their worldlines. Thus we
supplement the dual action (4) with a kinetic term for the mag-
netic Dirac branes of the form − εc

2 j̃2
μ , which preserves the local

gauge and brane symmetries of the system. This is an activation
term for the magnetic loops. Hence, the complete partition func-
tion associated to the extended dual action reads:

Z c :=
∫

D Ãμ δ
[
∂μ Ãμ

]
ei S̃ E

0 Z c[ Ãμ], (5)

where the Lorentz gauge has been adopted for the dual gauge field
Ãμ and the partition function for the brane sector Z c[ Ãμ] is given
by,

Z c[ Ãμ] :=
∑
{L}

δ
[
∂μ j̃μ

]
exp

{
i

∫
d4x

[
−εc

2
j̃2
μ + j̃μ Ãμ

]}
, (6)

where the functional δ-distribution enforces the closeness of the
monopole worldlines.

Next, use is made of the Generalized Poisson’s Identity (GPI)
[12] (see Eq. (A.6) in Appendix A) in d = 4∑
{L}

δ
[
ημ(x) − δμ(x; L)

] =
∑

˜
e2π i

∫
d4x δ̃μ(x;Ṽ )ημ(x), (7)
{V }
where L is a 1-brane and Ṽ is the 3-brane of complementary di-
mension. The GPI works as an analogue of the Fourier transform:
when the lines L in the left-hand side of (7) proliferate, the vol-
umes Ṽ in the right-hand side become diluted and vice versa (see
the discussion in Appendix A). We shall say that the branes L and
Ṽ (or the associated currents δμ(x; L) or δ̃μ(x; Ṽ )) are Poisson-dual
to each other. Using (7) we can rewrite (6) as:

Z c[ Ãμ] =
∫

Dημ

∑
{L}

δ

[
g

(
ημ

g
− δμ(x; L)

)]

× δ

[
g

(
∂μ

ημ

g

)]
exp

{
i

∫
d4x

[
−εc

2
η2

μ + ημ Ãμ

]}

=
∫

Dημ

∑
{Ṽ }

e2π i
∫

d4x δ̃μ(x;Ṽ )
ημ

g

∫
Dθ̃

× ei
∫

d4x θ̃∂μ
ημ

g exp

{
i

∫
d4x

[
−εc

2
η2

μ + ημ Ãμ

]}

=
∑
{Ṽ }

∫
Dθ̃

∫
Dημ exp

{
i

∫
d4x

[
−εc

2
η2

μ +

− ημ 1

g

(
∂μθ̃ − θ̃ V

μ − g Ãμ

)]}
. (8)

In the first line we introduced the auxiliary field ημ which will
replace the δ-distribution current in the condensed phase as dis-
cussed above. In the second line we exponentiated the current
conservation condition through use of the θ̃ field and also made
use of the GPI to bring into the game the Poisson-dual current
θ̃ V
μ = 2πδ̃μ(x; Ṽ ). We also made an integration by parts and dis-

carded a constant multiplicative factor since it drops out in the
calculation of correlation functions.

Integrating the auxiliary field ημ in the partial partition func-
tion (8) and substituting the result back in the complete partition
function (5) we obtain, as the effective total action for the con-
densed phase in the dual picture, the London limit of the Dual
Abelian Higgs Model (DAHM):

S̃ L
DAHM =

∫
d4x

[
−1

4
F̃ obs 2
μν +

m2
Ã

2g2

(
∂μθ̃ − θ̃ V

μ − g Ãμ

)2
]
, (9)

where we defined m2
Ã

:= 1
εc

. This effective action is the main result
of this approach. In the next section we shall dualize this result
and one could be concerned with the fact that (9) constitutes a
nonrenormalizable theory, thus requiring a cutoff in order to be
well defined as an effective quantum theory. However, one can al-
ways think of its UV completion, in this case the complete DAHM,
which is renormalizable, and then take its dual, taking the Lon-
don limit afterwards [9]. At least in the case considered here, the
result is exactly the same one obtains by directly dualizing the
London limit (9) of the DAHM, thus justifying the procedure we
shall adopt in the next section.

Considering now that a complete condensation of monopoles
takes place we let their worldlines L proliferate and occupy the
whole space, implying that θ̃ V

μ → 0 as seen from (7) and the dis-

cussion afterwards (notice that θ̃ V
μ appears as a vortex-like defect

for the scalar field θ̃ describing the magnetic condensate, being a
parameter that controls the monopole condensation). Integrating
the Higgs field θ̃ we get a transverse mass term for Ãμ (Higgs
mechanism) such that the electric field has a finite penetration
depth λ = 1

mÃ
= √

εc in the DSC: this is the dual Meissner effect.

Integrating now the field Ãμ we obtain after some algebra the ef-
fective action:
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S̃eff =
∫

d4x

[
−

m2
Ã

4
F̃ E
μν

1

∂2 + m2
Ã

F̃ μν
E − 1

2
jμ

1

∂2 + m2
Ã

jμ
]
. (10)

The first term in (10) is responsible for the charge confinement:
it spontaneously breaks the electric brane symmetry such that the
electric Dirac string F̃ E

μν acquires energy becoming physical and
constitutes now the electric flux tube connecting two charges of
opposite sign immersed in the DSC. The flux tube has a thickness
equal to the penetration depth of the electric field in the DSC: λ =

1
mÃ

= √
εc . The shape of the Dirac string is no longer irrelevant: the

stable configuration that minimizes the energy is that of a straight
tube (minimal space). Substituting in the first term of (10) such a
solution for the string term, F̃ E

μν = 1
2 εμναβ

1
n·∂ (nα jβ −nβ jα), where

nμ := (0, �R := �R1 − �R2) is a straight line connecting +e in �R1 and
−e in �R2, and taking the static limit we obtain a linear confin-
ing potential between the electric charges [9]. We also note that
eliminating the magnetic condensate (i.e., taking the limit mÃ → 0)
we recover the diluted phase with no confinement: the interaction
between the electric currents in (10) becomes of the long-range
(Coulomb) type and the confining term goes to zero (in terms of
the flux tube we see that it acquires an infinite thickness such
that the electric field is no longer confined and occupies the whole
space).

In summary, the supplementing of the dual action with a ki-
netic term for the magnetic Dirac branes which respects the local
symmetries of the system, the subsequent use of the GPI (A.6) and
the consideration of the limit where the Poisson-dual current θ̃ V

μ
goes to zero gives us a proper condition for the complete conden-
sation of monopoles, leading to confinement, as viewed from the
dual picture.

4. Julia–Toulouse approach

Now we want to analyze the monopole condensation within
the direct picture, where the defects couple non-minimally with
the gauge field Aμ .

Using the Dirac quantization condition we can rewrite (1) as:

S =
∫

d4x

[
−1

4
F obs 2
μν − 1

4
F μν

obsεμναβ F̃ αβ
E

]
. (11)

Julia and Toulouse made the crucial observation that if the
monopoles completely condense we have a complete proliferation
of the magnetic strings associated to them, hence the field Aμ can
not be defined anywhere in the space. This implies that F obs

μν can
no longer be written in terms of Aμ . The JTA consists in the rank-
jump ansatz of taking the object F obs

μν as being the fundamental

field describing the condensed phase. Hence F obs
μν acquires a new

meaning and becomes the field describing the magnetic conden-
sate. Defining F obs

μν := −mΛΛμν and supplementing (11) with a

kinetic term of the form 1
12 (∂μΛαβ + ∂βΛμα + ∂αΛβμ)2 for the

new field Λμν , we obtain as the effective action for the condensed
phase, in the direct picture, the massive Kalb–Ramond action:

S K–R =
∫

d4x

[
−1

2

(
∂μΛ̃μν

)2 + m2
Λ

4
Λ̃2

μν + mΛ

2
Λ̃μν F̃ E

μν

]
, (12)

where Λ̃μν := 1
2 εμναβΛαβ .

Notice that in implementing the JTA the fundamental field of
the theory experiences a rank-jump through the phase transition:
we started with a 1-form in the normal phase and finished with
a 2-form in the completely condensed phase. The rank-jump is a
general feature of the JTA since in implementing this prescription
we always use the ansatz of reinterpretating the kinetic term with
non-minimal coupling for the field describing the diluted phase
as being a mass term for the new field describing the condensate
formed in the phase where the defects proliferate until occupy the
whole space.

Let us now apply the duality transformation in (9). For this we
introduce an auxiliary field fμν such that the master action reads:

SMaster :=
∫

d4x

[
−1

2
fμν

(
F̃ μν − F̃ μν

E

) + 1

4
f 2
μν

+
m2

Ã

2g2

(
∂μθ̃ − θ̃ V

μ − g Ãμ

)2
]
. (13)

Extremizing (13) with respect to fμν we get fμν = F̃ obs
μν and

substituting this result back in the master action we recover (9).
On the other hand, extremizing (13) with respect to Ãμ we obtain:

Ãν = − 1

m2
Ã

∂μ f μν + 1

g

(
∂ν θ̃ − θ̃ ν

V

)
. (14)

Substituting (14) in (13), it follows that:

SMaster =
∫

d4x

[
− 1

2m2
Ã

(
∂μ f μν

)2 + 1

4
f 2
μν + 1

2
fμν F̃ μν

E

+ 1

g
∂μθ̃ V

ν f μν

]
, (15)

where we integrated by parts and considered the antisymmetry of
f μν in order to use ∂μ∂ν f μν = 0.

Defining now fμν := mÃΛ̃μν and making the identification
mÃ ≡ mΛ , we get as the dual action to (9) the massive Kalb–
Ramond action in the presence of vortices, a generalization of the
result obtained by Quevedo and Trugenberger in [7]:

S V
KR =

∫
d4x

[
−1

2

(
∂μΛ̃μν

)2 + m2
Λ

4
Λ̃2

μν + mΛ

2
Λ̃μν F̃ μν

E

+ mΛ

2g

(
∂μθ̃ V

ν − ∂ν θ̃ V
μ

)
Λ̃μν

]
. (16)

More precisely, this extension consists in the construction of an
action for the case with an incomplete condensate that is how-
ever already described by a rank-jumped tensor. If we now take
the limit θ̃ V

μ → 0 in (16) we recover exactly the massive Kalb–
Ramond action (12) obtained in [7] through the application of the
JTA to (1). That establishes the duality between the JTA and the
ALBA in the limit where the Poisson-dual current goes to zero,
which physically corresponds to the limit of complete condensa-
tion of the defects. However, (16) with θ̃ V

μ 
= 0 displays a new
and important result, which is a consequence of this formalism,
showing that the rank-jump which is the signature of the JTA also
occurs in the partial condensation process with the presence of
vortex-like defects.

5. Conclusion

We established the equivalence through duality of two different
approaches developed to handle defects, represented by magnetic
monopoles in the example worked here, in the physically inter-
esting context where the defects dominate the dynamics of the
system. It was clearly shown that the two approaches are comple-
mentary, being different descriptions of the same phenomenon in
the limit where the Poisson-dual current vanishes which character-
izes the complete condensation of the defects. Indeed, within the
formalism here called as ALBA the transition becomes smoother
since the Poisson-dual current θ̃ V

μ appears as a parameter that con-
trols the proliferation of the magnetic defects. On the other hand,



320 L.S. Grigorio et al. / Physics Letters B 690 (2010) 316–321
within the formalism referred to as JTA the phase transition is
signalized by a rank-jump of the tensor field and seems to be a
discontinuous phenomenon. However, the duality JTA–ALBA brings
a new possibility.

It is important to say that this dual equivalence was possible
due to a suitable interpretation of the generalization of the Pois-
son identity developed here. We clearly showed that this identity
is an essential tool to use in the context of defects condensation:
the proliferation of the branes in one of the sides of the identity is
accompanied by the dilution of the branes of complementary di-
mension in the other side of the identity. Due to this observation
we were able to identify the signature of the complete condensa-
tion of defects in the dual picture (ALBA) with the vanishing of
the Poisson-dual current. As the main result, we showed that in
this specific limit, when the Poisson-dual current is set to zero,
the ALBA and the JTA are two dual equivalent prescriptions for de-
scribing condensation of defects.

As the final remark we point out the fact that when we con-
sider nonzero configurations of the Poisson-dual current θ̃ V

μ we
allow the description of an intermediary region interpolating be-
tween the diluted and the completely condensed phases. As dis-
cussed, this corresponds to the presence of vortex-like defects in
the condensate. It is possible to see that this new phase with
the presence of vortices (θ̃ V

μ 
= 0), just like in the extreme case
where the complete monopole condensation sets in, is also de-
scribed within the direct picture by a rank-jumped action. The
JTA as originally described by Quevedo and Trugenberger, there-
fore, will describe the physically interesting extreme case where
all defects are condensed.
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Appendix A. Generalized Poisson’s Identity (GPI)

In this appendix we generalize the reasoning used in [6] in or-
der to account for an ensemble of p-branes in arbitrary space–time
dimensions.

Let us consider a d-dimensional hypercubical lattice with spac-
ing a. Attribute to each site x = (x1, x2, . . . , xd), x1, x2, . . . , xd ∈ aZ

of the lattice a configuration

ϑ V
i (x) := 2π

ni(x)

ap
, (A.1)

where p � d, p,d ∈ N and i is a set of k � d, k ∈ N indices each
one of them running from 1 to d and ni(x) ∈ Z.

The Poisson’s summation formula is given by∑
n∈Z

e2π inf =
∑
m∈Z

δ( f − m), (A.2)

where f is a integrable function.
Using (A.2) for each pair (x, i) it follows that

∑
{ni(x)∈Z}

exp

[
2π i

∑
x

ad ni(x)

ap
fi(x)

]

=
∑

{mi(x)∈Z}

∏
(x,i)

δ

(
f i(x) − mi(x)

ad−p

)
, (A.3)

where we have used the fact that the exponential argument must
be nondimensional, hence ad−p+[ f ] ≡ a0 = 1 ⇒ [ f ] = ap−d .
The continuum limit corresponds to make the number N of lat-
tice sites go to infinity while keeping the lattice hypervolume Vd
fixed which gives the condition a → 0. In this limit we formally
define the Poisson-dual current by

θ V
i

(
x; ξ p) := lim

a→0
N→∞
Vd cte

ϑ V
i (x) = 2π lim

a→0
N→∞
Vd cte

ni(x)

ap
. (A.4)

The object θ V
i (x; ξ p) has dimension a−p and is singular over a

region ξ p of dimension p on the lattice where {ni(x ∈ ξ p) :
= 0}. In
the rest of the lattice, where {ni(x /∈ ξ p) := 0}, we have from (A.1)
that ϑ V

i (x) = 0 such that θ V
i (x; ξ p) vanishes outside the region ξ p .

Thus we identify the object θ V
i (x; ξ p) with a delta configuration

that localizes the p-brane ξ p :

θ V
i

(
x; ξ p) = 2πδi

(
x; ξ p)

. (A.5)

Hence in the continuum limit the identity (A.3) is given by∑
{ξ p}

e2π i
∫

ddx δi(x;ξ p) f i(x) =
∑

{χd−p}
δ
[

f i(x) − δi
(
x;χd−p)]

, (A.6)

which is the GPI.
The brane proliferation–dilution interpretation of the GPI (A.6)

follows from the following reasoning: if {χd−p} → ∅ then δi(x;
χd−p) → 0 (there are no {χd−p} branes in the space to be local-
ized) and

∑
{χd−p}

δ
[

f i(x) − δi
(
x;χd−p)] → δ[ f i] ≡

∫
Dτie

i
∫

ddxτi f i . (A.7)

Comparing (A.6) and (A.7) we see that in the limit of dilution
of the {χd−p} branes we have θ V

i (x; ξ p) = 2πδi(x; ξ p) → τi and∑
{ξ p} → ∫

Dτi which corresponds to the proliferation of the {ξ p}
branes.

Conversely, in the limit of proliferation of the {χd−p} branes,
θ V

i (x;χd−p) = 2πδi(x;χd−p) → γi and
∑

{χd−p} → ∫
Dγi we have

∑
{χd−p}

δ
[

f i(x) − δi
(
x;χd−p)] →

∫
Dγiδ[ f i − γi] = 1. (A.8)

Comparing (A.6) and (A.8) we see that in the limit of prolifer-
ation of the {χd−p} branes we have θ V

i (x; ξ p) = 2πδi(x; ξ p) → 0
which corresponds to the dilution of the {ξ p} branes.

It is important to notice that the information about which brane
configurations are accessible by the system in the brane sums in
the GPI (A.6) is not present in this formulation, being an external
input controlled by hands as when we considered previously, for
example, the extreme cases of prolific or diluted accessible brane
configurations.
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