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Abstract Support vector machine has become an increasingly popular tool for machine learning

tasks involving classification, regression or novelty detection. Training a support vector machine

requires the solution of a very large quadratic programming problem. Traditional optimization

methods cannot be directly applied due to memory restrictions. Up to now, several approaches exist

for circumventing the above shortcomings and work well. Another learning algorithm, particle

swarm optimization, Quantum-behave Particle Swarm for training SVM is introduced. Another

approach named least square support vector machine (LSSVM) and active set strategy are intro-

duced. The obtained results by these methods are tested on a breast cancer dataset and compared

with the exact solution model problem.
� 2010 Faculty of Computers and Information, Cairo University.
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1. Introduction

Cancer is a group of diseases in which cells in the body grow,
change, and multiply out of control [1]. Usually, cancer is

named after the body part in which it originated; thus, breast
cancer refers to the erratic growth of cells that originate in the
breast tissue. A group of rapidly dividing cells may form a lump

or mass of extra tissue. These masses are called cancer [2].
Cancer can either be cancerous (malignant) or non-cancer-

ous (benign). Malignant tumours penetrate and destroy
healthy body tissues, for more details see [3]. Cancer detection

has become a significant area of research in pattern recognition
community.

This paper intends to exhibit an integrated view of imple-

menting automated diagnostic systems for breast cancer
detection, and to classify cancer patients by constructing a
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non-linear optimal classifier using support vector machine.
Because of the importance of making a right decision, The clas-
sification accuracies of different training method for SVM,

namely particle swarm optimization (PSO) method, quantum
particle swarm optimization (QPSO) method, quadratic pro-
gramming (QP) method, and the modifying learning problem

of SVM namely least square SVM (LSSVM) are calculated.
The use of the classifier systems in the medical diagnosis’

area is increasing gradually, and there is no doubt that evalu-

ation of data taken from patients and decisions of the experts
are the most important factors in diagnosis. However, expert
systems and deferent artificial intelligence techniques for clas-
sification minimizing possible errors that could be occured be-

cause of inexperienced experts, and also provide medical data
to be examined in shorter time and more detailed.

Fig. 1 shows the various stages followed for the design of a clas-

sification system.As it is apparent from the feedback arrows, these
stages are dependent. On the contrary, they are interrelated and,
depending on the results, one may go back to redesign earlier

stages in order to improve the overall performance.

2. CAD system

The main purpose of pattern recognition in the field of cancer
diagnosis is to solve the pattern classification dilemma where a
pre-described set of input features is used to determine if a pa-

tient has a particular disorder or not. This can help in the pro-
cess of diagnosis, namely Computer Aided Diagnostic (CAD)
systems that used in the classification task where certain fea-
tures (clinical findings) are used to assign a case to a particular

pattern (malignant or benign) which represents a diagnosis.
Therefore, the CAD systems can improve the performance

of the physicians in terms of (1) reducing the number of misdi-

agnosis and (2) reducing the time taken to reach a diagnosis,
these are the most two important criteria in the developing
process of a CAD system. Other performance measures, such

as computational complexity and operational load can be
overlooked, if kept in an acceptable level.

Breast cancer may be detected via a careful study of clinical

history, physical examination, and imaging with either mam-
mography or ultrasound. However, definitive diagnosis of a
breast mass can only be established through fine needle aspira-
tion (FNA) biopsy, core needle biopsy, or excisional biopsy.

Among these methods, FNA is the easiest and fastest method
of obtaining a breast biopsy, and is effective for women who
have fluid-filled cysts. Research works on the Wisconsin Diag-

nosis Breast Cancer (WDBC) data grew out of the desire to
diagnose breast masses accurately based solely on FNA. To
improve the accuracy and efficiency of the detection of breast

cancer, a number of research projects are focusing on develop-
ing methods for computer aided diagnosis (CAD) of breast
cancer from FNA, including works on image analysis and
computational intelligence [4,5]. In this study we focus on
Figure 1 The basic stages involved in
computer aided diagnosis (CAD) of breast cancer from FNA
depending on computational intelligence.
3. Support vector machine (SVM): an overview

The SVM proposed by Vapnik [6] has been studied extensively
for classification, regression and density estimation.

SVMs attempt to find a hyperplane w � xþ b ¼ 0; xi 2 Rn

that separates the data points xi (meaning that all xi in a given
class are on the same side of the plane), that corresponding to a

given decision rule: gðxÞ ¼ signðw � xþ bÞ.
The question here is how this plane is determined? SVMs

choose the separating hyperplane w � xþ b ¼ 0 that is furthest

away from the data points xi, that is, that has maximal margin
(Fig. 2). The underlying idea is that a hyperplane far from any
observed data points should minimize the risk of making

wrong decisions when classifying new data. To be precise, in
SVMs the distance to the closest data points is maximized.

Suppose l patterns are given and each pattern consists of a
pair fxi; yig

N
i¼1: a vector xi 2 Rn and the associated label

yi 2 f�1; 1g. Let X � Rn is the space of patterns,
Y � f�1; 1g is the space of labels. The SVM approach aims
to find a classifier of the following form:

yðxÞ ¼ sign
XN
i¼1

aiyiKðxi; xÞ þ b

" #
ð1Þ

where ai are positive real constants and b is a real constant, in
general, Kðxi; xÞ ¼ h/ðxiÞ;/ðxÞi, h�; �i represents the inner
product operation, and /ðxÞ is a nonlinear map from the ori-

ginal space to the high dimensional space.
Assume the data set can be separated by a linear hyperplane

in the high dimensional space, and that will cause:

yi w
T/ðxiÞ þ b

� �
� 1; i ¼ 1; . . . ;N ð2Þ

In case of such separating hyperplane does not exist, a slack

variable n is introduced, namely

yi½wT/ðxiÞ þ b� � 1� ni; i ¼ 1; . . . ;N

ni � 0; i ¼ 1; . . . ;N
ð3Þ

According to the structural risk minimization principle, the risk

bound is minimized by the following minimization problem:

min
w;n

J1 w; nð Þ ¼ 1

2
wTwþ c

XN
i¼1

ni ð4Þ

Subject to (3), one constructs the Lagrangian function as
follows:

L1 w; b; n; a; bð Þ ¼ J1ðw; nÞ �
XN
i¼1

ai yi½wT/ðxiÞ þ b� � 1þ ni

� �

�
XN
i¼1

bini ð5Þ
the design of a classification system.



Figure 2 A separating hyperplane (w, b) for a two dimensional training set [5].
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where ai > 0; bi > 0; ði ¼ 1; . . . ;NÞ are the Lagrangian multi-
pliers of (3). The optimal point will in the saddle point of
the Lagrangian function, i.e.

max
w;b

min
w;b;n

L1 w; b; n; a; bð Þ ð6Þ

By equating the partial differentiation with zeros, the following
equalities will obtained:

@L1

@w
¼ 0; w ¼

XN
i¼1

aiyi/ðxiÞ

@L1

@b
¼ 0;

XN
i¼1

aiyi ¼ 0

@L1

@ni

¼ 0; 0 � ai � c; i ¼ 1; 2; . . . ;N

ð7Þ

Substituting (7) in (5), the following quadratic programming
(QP) problem will arise:

min
a

Q1ðaÞ ¼
XN
i¼1

ai �
1

2

XN
i;j¼1

aiajyiyjKðxi; xjÞ ð8Þ

where Kðxi; xjÞ ¼ h/ðxiÞ;/ðxjÞi is called the kernel function
(Fig. 3 shows the architecture of SVM with kernel function).

By solving the above QP problem Eq. (8) subject to the gi-
ven constraints in (7), a hyperplane in the high dimensional
space and the classifier in the original space as in (1) are ob-
tained .

4. Survey of training algorithms of SVM

Implementing an SVM learning algorithm requires solving a

QP problem. Initially, existing general-purpose quadratic opti-
mization algorithms were applied to solve the SVM problem
[6]. For example, quasi-Newton methods such as MINOS [7]

or primal–dual interior point methods such as LOQO [8] are
applicable for small data sets (1000 s of points). Their advan-
tage is that they are off the shelf and so can be immediately

exploited, and they also provide high numerical precision.
However, these algorithms are no longer suitable when the ker-

nel matrix (or original data matrix for linear SVM) does not fit
in main memory. In order to solve larger problems, special-
purpose algorithms have been created that take advantage of

unique aspects of the SVM problem. These can be divided into
three categories.

4.1. Subset selection algorithms

Subset selection methods sacrifice some precision in the solu-
tion (in terms of the Lagrange multipliers ai) in order to break
the optimization problem up into manageable pieces. One

optimization approach for SVM, called Chunking [9], relies
on the observation that only the support vectors contribute
to the final model and other data points are inconsequential

to the solution. So in Chunking, an arbitrary subset of the data
is first used to generate an SVM solution with a general-
purpose QP package. Then only the support vectors are re-

tained and the rest of the data are discarded. Additional data
are then added to complete the subset and a new QP solution is
determined. This is repeated until the Kuhn–Tucker conditions
are met for each data sample. The Chunking approach works

as long as the kernel matrix for the support vectors can be
stored in main memory. If this is not the case, then alternative
methods are required, such as decomposition.

In decomposition approaches, the data (and correspond-
ingly the parameters) are split into a number of fixed-size sets,
each called a working set. Optimization occurs on each work-

ing set while holding the other parameters fixed. This effec-
tively performs coordinate descent on subsets of the
parameters. The popular software implementation SVMLight
[10] and SVMTorch [11] uses the decomposition strategies.

The sequential minimal optimization (SMO) algorithm [12] is
an extreme form of decomposition using working sets of two
data points. The smallest working set that can be optimized

is 2 if the constraints (3) for SVM classification are to hold.
SMO takes advantage of the fact that under this condition
the optimization sub_problem for standard SVM can be solved



Figure 3 Architecture of SVM.
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analytically. SMO exhibits better scaling properties and has re-

duced demand on main memory than Chunking. The popular
software implementation LIBSVM [13] implements a variant
of SMO for classification, regression, and single class learning

settings.

4.2. Iterative algorithms

Gradient descent can be applied to the primal SVM optimiza-
tion problem resulting in an iterative algorithm. The main
advantage of iterative methods is that they result in algorithms
with few steps and so are simple to implement. The disadvan-

tage is that in general they exhibit linear convergence and so
are slower than standard QP solvers.

4.3. Exploiting alternative SVM formulations

By modifying Eq. (4) subject to constraint in Eq. (3), it is pos-
sible to simplify the resulting optimization problem. This may

involve simplifying or reducing the number of constraints by
modifying the error functional or penalization. For example,
an approach called Lagrangian SVM (LSVM) [14] uses a

learning formulation, which results in an optimization prob-
lem that depends on solving systems of linear inequalities.

LSVM has formulation:

min
w;b;n

1

2
ð wk k2 þ b2Þ þ C

2

X‘
i¼1

n2
i

s:t: yi w; xih i þ bð Þ � 1� ni; 8i
ð9Þ

The benefit is that objective function is strongly convex and
equality constrain disappears in its dual:

max
a

eTa� 1

2
aTQa

s:t: a � 0

ð10Þ

LSVM algorithm is based directly on Karush–Kuhn–Tucker
necessary and sufficient optimality conditions for the dual
problem, it can be written in the following equivalent form.

For any positive b,
a ¼ Q�1ðeþ ððQa� eÞ � baÞþÞ ð11Þ

This leads to the following iterative scheme,

aiþ1 ¼ Q�1ðeþ ððQai � eÞ � baiÞþÞ ð12Þ

Mangasarian established the global linear convergence from

any starting point under condition 0 < b < 2=C. LSVM re-
quires nothing more complex than the inversion Q�1 computed
once at the beginning of the algorithm, and Sherman–

Morrison–Woodbury identity will be used. For linear decision
boundaries, this algorithm can solve problems with millions of
samples in minutes on a desktop computer. The drawback is
that the learning problem is modified to minimize the square

of the original SVM loss function and regularization is also ap-
plied to the constant offset b. It is still an open question how
these modifications affect generalization performance.

5. Training of SVM methods

Different methods for training SVM will be examined. Where

training of SVM consists of determining the optimal value of
non-negative multipliers a in Eq. (6).These methods are:

i. Particle swarm optimization (categorizing in iterative
methods).

ii. Quantum-behaved particle swarm optimization (subset

selection methods).
iii. Quadratic program using active set strategy (subset

selection methods).
iv. Least square version of SVM (alternative SVM

formulations).

For comparison we try to pick one method from different

category of training algorithms mentioned in the survey above.

5.1. Particle swarm optimization

The particle swarm optimization (PSO) method has been intro-
duced by Kennedy and Eberhart [15] and is inspired by the
emergent motion of a flock of birds searching for food. As a
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stochastic search scheme, PSO has characters of simple com-
putation and rapid convergence capability.

PSO is a population-based heuristic search technique; each

particle represents a potential solution within the search space.
Each particle has a position vector Xi, a velocity vector Vi, the
position at which the best fitness pbesti encountered by the

particle so far, and the best position of all particles gbest in
current generation. The updating equations of PSO are as
follows:

Viðtþ 1Þ ¼ wViðtþ 1Þ þ c1r1ðXpbestiðtÞ � XiðtÞÞ
þ c2r2ðXgbestðtÞ � XiðtÞÞ

Xiðtþ 1Þ ¼ XiðtÞ þ Viðtþ 1Þ
ð13Þ

where the parameters c1 and c2 are set to constant value, which
are normally taken as 2, r1 and r2 are two random values, uni-
formly distributed in [0, 1], w is inertia weight which controls

the influence of previous velocity on the new velocity. For
the second part in Eq. (13) is called ‘‘cognition’’ character
and the third part is ‘‘social’’ character of particles.

5.1.1. Particle swarm for training SVM [16]

Because the Lagrange multipliers a, constitute a vector
a ¼ ½a1; a2; . . . ; al� in one-dimensional space, the optimization

(8) can be solved by PSO. Differing from the general PSO, all
particles of the PSO training SVMmust satisfy both constraintsPN

i¼1aiyi ¼ 0 and C P ai P 0; 8i. Thus, the PSO algorithm
must be improved according to constraint C P ai P 0; 8i, Eq.
(9) can be written in the following form [16]:

temp� ðtþ1Þi;d ¼ w � ðtÞi;d þ c1 rand1ðÞðpbesti;d � aðtÞi;dÞ
þ c2 rand2ð Þðgbestd � aðtÞi;dÞ

ðtÞ
i;d ¼

C� aðtÞi;d ; aðtÞi;d þ temp� ðtþ1Þi;d > C

ðtþ1Þ
i;d ; aðtÞi;d þ temp� ðtþ1Þi;d < C

temp� ðtþ1Þi;d ; otherwise

8>><
>>:

ð14Þ

According to linear equality constraint
PN

i¼1aiyi ¼ 0

Xl

d¼1
a
ðtþ1Þ
i;d yd ¼

Xl

d¼1
a
ðtÞ
i;dyd þ

Xl

d¼1

ðtþ1Þ
i;d yd ¼

Xl

d¼1

ðtþ1Þ
i;d yd

¼
X

ðtþ1Þ
i;d

yd>0

ðtþ1Þ
i;d yd �

X
ðtþ1Þ
i;d

yd<0

�ðtþ1Þi;d yd

� �

¼ sumVþ � sumV� ð15Þ

Thus, the Lagrange multipliers aðtþ1Þi;d satisfies both constraintsPN
i¼1aiyi ¼ 0;C P ai P 0; 8i.

5.1.2. Algorithm to train SVM by PSO

Initialize
(a) Set constants wmin, wmax is inertia weights equation (13),

p: no. of iterations. C: constant defined by user such that
C P ai P 0; 8i, parameters c1 and c2 are set to constant
value as in Eq. (13), itermax: maximum no. of iterations,
Vmax

o maximum velocity, d: no. of particles.

(b) Set constants t= 0. Set random number seed.
(c) Randomly initialize particle positions að0Þi 2 R‘; 0 6

ai 6 C.

(d) For i= 1, 2, . . . , p, d= 1, 2, . . . , ‘ where ‘ is equal to
no. of samples.
(e) Randomly initialize particle velocities 0 6
ð0Þ
i;d 6

max
d for

i= 1, 2, . . . , p, d ¼ 1; 2; . . . ; ‘.
(f) Evaluate cost function values (Eq. (8))
min
a

/ að0Þi

� �
¼ 1

2

X‘
i¼1

X‘
j¼1

aiajyiyjKðxi; xjÞ �
XN
i¼1

ai

Using design space coordinates að0Þi for i= 1, 2, . . . , p.

(g) Set /ðapbest

i Þ ¼ /ðað0Þi Þ and pbesti ¼ að0Þi for
i= 1, 2, . . . , p.

(h) Set ðugbest
i Þ to minimal ðupbest

i Þ and gbest to correspond-
ing að0Þi .

Optimize

(a) Update inertia weight w using: w ¼ wmax � wmax�wmin

itermax
� t.

(b) Update particle velocity vectors Vtþ1
i .

(c) Update particle position vectors aðtþ1Þi . Using
aiþ1

i;d ¼ ai
i;d þ tþ1

i;d .

(d) Evaluate cost function
min

a
/ðaÞ ¼ 1

2

P‘
i¼1
P‘

j¼1aiajyiyjKðxi; xjÞ �
PN

i¼1ai. Using
design space coordinator ai

tþ1; i ¼ 1; 2; . . . ; d.
(e) If /ðaðtþ1Þi Þ < /pbest

i then ð/pbest
i Þ ¼ /ðaðtþ1Þi Þ;

pbesti ¼ aðtþ1Þi .
(f) If /ðaðtþ1Þi Þ < /gbest

i then ð/gbest
i Þ ¼ /ðaðtþ1Þi Þ. For i = 1,

2, . . . , p.
(g) If all members of gbest fulfil the Karush–Kuhn–Tucker

(KKT) optimality conditions of the QP problem, or the

number of iterations, t, is up to itermax, then go to Report

Results.
(h) Increment t.
(i) Go to 2(a).

Report Results

Terminate
Complexity of the algorithm. The complexity of the above algo-
rithm depends on evaluation of fitness function in each step,

the evaluation of fitness function is merely evaluation of the
kernel used Kðxi; xjÞ, which requires O(dL) operations, where
dL is the size of training data.

5.2. Quantum-behaved particle swarm optimization [17]

In the quantum physics, the motion state of particles having the
momentum and energy can be represented by wave function w
(Eq. (17)). So in the quantum model, the motion state of parti-
cles can be expressed by wave function instead of denoting
method of the velocity and position for the particles. At the

same time, based on the Heisenberg uncertainty principle, the
velocity and position of particles cannot be accurately measured
simultaneously. The probability of occurrence for the particle in

a case of position and time can be denoted by probability den-
sity function of the corresponding wave function w.

In order to facilitate the analysis, particles are considered to
move in the one dimensional space. Assume p is the canter of

Delta potential field, so the potential energy of particles in the
Delta potential trough is:

VðxÞ ¼ �c&dðx� pÞ ð16Þ

The wave function of particle can be got by the above

equation:

wðxÞ ¼ 1ffiffiffiffi
L
p 	 expð�kp� xk=LÞ ð17Þ
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In Eq. (17), the parameter L relying on the width of poten-
tial trough is used to determine the search domain. The parti-
cles move according to the following iterative equation:

mbest ¼ 1

M

XM
i¼1

Pi ¼
1

M

XM
i¼1

Pi1;
1

M

XM
i¼1

Pi2; . . . ;
1

M

XM
i¼1

Pin

 !

ð18Þ

PPid ¼ /� Pid þ ð1� /Þ � Pgd; / ¼ rand ð19Þ

xid ¼ PPid 
 h� mbestd � xidj j
� lnð1=uÞ; u is a random variable ð20Þ

where mbest is the middle position of the particle swarm
(pbest); PPid is the random point between Pid and Pgd, h is
the only parameter of the QPSO algorithm. Commonly let

h ¼ ð1:0� 0:5Þ � ðMAXITER� TÞ=MAXITERþ 0:5, where
T is the current number of iterations, MAXITER is the max-
imum number of iterations.
5.2.1. Training algorithm for training SVM by QPSO

Using QPSO to solve the SVM equation (8) requires

� Criteria for optimality.
� A way to decompose the problem

� A way to extend QPSO to optimize SVM sub problem.
I
A

Use Q

Mak
tion
Criteria for optimality. The Karush–Kuhn–Tucker (KKT) con-
ditions are necessary and sufficient for optimality. Since H is a
positive semi-define matrix [18] (the kernel function used is po-
sitive semi-define).
Decompose the problem. The decomposition method presented
here is due to [19], and works on the method of feasible direc-

tions. The idea of the method is to find the steepest feasible
direction d of ascent on the objective function W (as defined
in Eq. (3)), under the requirement that only the q components

is a nonzero value. The ai corresponding to the q components
will be included in the working set. Finding an approximation
to d is equivalent to solve the following problem:

Maximise rWðaÞTd
Subject to yTd ¼ 0; di � 0; if ai ¼ 0

di � 0; if ai ¼ C

di 2 f�1; 0; 1g
fdi : di–0gj j ¼ q

ð21Þ

for yTd to be equal to zero, the number of elements with sign
matches between di and yi must be equal to the number of ele-
ments with sign mismatches between di & yi. Also, d should be

chosen to maximize the direction of ascent rWðaÞTd. It is
necessary to rewrite the objective function Eq. (8) as a function
that is only dependent on the working set. Split a into two sets

aBandaN. If a, y and H are appropriately rearranged, we have

a ¼
aB

aN

	 

; Y ¼

YB

YN

	 

; H ¼

HBB HBN

HNB HNN

	 

ð22Þ

Since only aB is going to be optimized. Q1 is rewritten in terms

of aB. If terms that do not contain aB are dropped, the optimi-
zation problem remains essentially the same. Also, since H is

symmetric, the problem is to solve:

min
aB

Q1ðaBÞ ¼
1

2
aT
BHBBaB � aT

Bðe�HBNaNÞ

Subject to aT
ByB þ aT

N ¼ 0

aB � 0

C1� aB � 0

ð23Þ

An algorithm to train SVM with QPSO

� Initialize
� A feasible solution that satisfies the linear constraint

aT y ¼ 0, with constraints 0 6 ai 6 C also met, is needed.
� Construction of initial solution:
� Let c 2 ½0;C�# R, and c (some positive integer) 6 min(#

+ve examples, i.e. (yi ¼ þ1), # of �ve examples, i.e.

(yi ¼ �1)) in the training set.
� Randomly pick a total of c positive examples, c negative

examples, and initialize their corresponding ai to c.

� By setting all other ai to zero, the initial solution will be
feasible.

� The value 2c gives the total number of initial support

vectors, and since these initial support vectors are a ra-
ndomly chosen, it is suggested that the value of c be kept
small.

� Repeat
ecompose the problem
D
� Sorting the training vectors in increasing order

according to yirW ðaÞi.
� Select q variables for the working set B.
� The remaining l � q variables (set N) are fixed at

their current value.

� Assuming q to be even, a ‘‘forward pass’’ select q=2
examples from the front of the sorted list, and a
‘‘backward pass’’ selects q=2 examples from the

back of the sorted list.

nitialize
ll particles be initialized such that aT

ByB þ aT
N yN ¼ 0 is

et. This is done as follows:
m

� Set each particle in the swarm to the q-dimensional
vector aB.

� Add a random q-dimensional vector d satisfying to

each particle, under the condition that the particle
will still lie in the hypercube ½0;C�q. Initializing the
swarm in this way ensures that the initial swarm lies

in the set of feasible solutions P ¼ P jAP ¼ �aT
N yN

allowing the flight of the swarm to be defined by fea-
sible directions.

� Set the iteration number to zero

PSO to optimize W on B.
t
Repea

(a) Evaluate the performance W ðaÞ of each particle.

(b) Evaluate new P id of each particle.
(c) Evaluate new P gd

(d) Evaluate mbest by Eq. (18).

(e) Evaluate the random point PP id of each particle by
Eq. (19).

(f) Move each particle to its new position, according to

Eq. (20).

e T ¼ T þ 1 go to step (a) until terminal condi-
satisfied (set by user).



Until

Figure
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the KKT condition are met
� Return the optimized ai from B to the original set of

variables.
� Terminate and return a.
Complexity of the algorithm. The complexity of the above algo-
rithm depends on evaluation of the fitness function in each step
that is merely evaluation of the used kernel Kðxi; xj, which re-

quires O(dL) operations, where dL is the size of training data.
So one can deduce that the decomposition will be of order
O(N log(N)) and the evaluation of fitness function will be

of order O(N) so the total time will be of order OðNÞþ
OðN logðNÞÞ.

5.3. Quadratic program using active set strategy

The medium-scale algorithm is an active-set strategy (also
known as a projection method) similar to that of Gill et al de-
scribed in [20]. It has been modified for both linear program-

ming (LP) and quadratic programming (QP) problems.
The basic idea of the algorithm is to find the active set A,

i.e., those inequality constraints that are fulfilled with equality.

If the set A is known, the KKT conditions reduce to a simple
4 Affine scaling of the non-feasible solution.

CANCER

DATE PREPRO

SPLIT

TRAINING DATABASE
KNOWN 
CLASSSES

BUILD SVM Classifier

Evaluate the classifier (i.e. Cross valida

Figure 5 Methodology of
system of linear equations which yields the solution of the QP
problem. Because the set A is unknown in the beginning, it is
constructed iteratively by adding and removing constraints

and testing if the solution remains feasible.

Algorithm

The construction of the set A starts with an initial active set

A0 containing the indices of the bounded variables (lying
on the boundary of the feasible region) whereas those in
F 0 ¼ 1; . . . ;N n A0 are free (lying in the interior of the fea-

sible region) (Fig. 4).
Then the following steps are performed repeatedly for
k= 1, 2, . . .:
1. Solve the KKT system for all variables in Fk.

2. If the solution is feasible, find the variable in Ak that
violates most of the KKT conditions, move it to Fk then
go to 1.

3. Otherwise find an intermediate value between old and
new solution lying on the border of the feasible region,
move one bounded variable from Fk to Ak then go to 1.
 DATA

CESSIN

 DATA

TES

tion)

cancer
The intermediate solution that is obtained in step 3 is
computed as follows: ak ¼ ga�k þ ð1� gÞak�1 with maxi-
mal g 2 [0, 1] (affine scaling), where a�k is the solution of

the linear system in step 1, i.e. the new iterate ak lies on the
connecting line of ak�1 and ak , see Fig. 4.
While the optimum is found if during step 2 no violat-
ing variable is left in Ak.
BASE

G SCALING

BASE

TING DATAB

Evaluate

diagnosis mo
Complexity of algorithm

Active-set algorithm needs OðN2
f þNÞ memory, where N is the

number of free unbounded variables.

5.4. Least square support vector machine (LSSVM)

The least squares version of the SVM classifier is formulated
by the classification problem as [21]:
ASE
KNOWN 
CLASSSES

 the classifier 

del.
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min
1

2
kwk2 þ C

2

Xn
i¼1

ni

Subject to yið w:xih i þ bÞ ¼ 1� fi; i ¼ 1; 2; . . . ; n

ð24Þ

According to Eq. (19), their dual problems are built as follows:

LD

1

2
kwk2 þ C

2

Xn
i¼1

f2i �
Xn
j¼1

aifyi½wxi þ b� � 1þ fig: ð25Þ

where ai are Lagrange multipliers (which can be either positive
or negative) now due to the equality constraints as follows
from the Kuhn–Tucker conditions [18],
Figure 6 Correction rate value on testing data, 40–60% training

test partition. The SVM-PSO shows the highest accuracy.
Figure 7 Specificity value on testing data, 40–60% training test

partition. The SVM-PSO shows the highest accuracy.

Figure 8 Sensitivity value on testing data, 40–60% training test

partition. The SVM-QPSO shows the highest accuracy.
@

@w
LPðw	; b	; a	; f	Þ ! w ¼

X
i

a	i yixi

@

@f
LPðw	; b	; a	; f	Þ ¼ �

X
i

a	i yi ¼ 0

@

@f
LPðw	; b	; a	; f	Þ ! a	i ¼ Cfi

@

@f
LPðw	; b	; a	; f	Þ ! yið w � xih i þ bÞ � 1þ ni ¼ 0

ð26Þ

can be written immediately as the solution to the following set

of linear equations [18]

ð27Þ

where z ¼ ½xT
1 y1; x

T
2 y2; ; . . . ; xT

n yn�; y ¼ ½y1; . . . ; yn�;~1 ¼ ½1;
. . . ; 1�; e ¼ ½e1; . . . ; eN�; a ¼ ½a1; . . . ; aN�The solution is also gi-
ven by

ð28Þ

Mercer’s condition can be applied again to the matrix

X ¼ ZZT; where

Xkl ¼ yky‘xkx‘ ¼ yky‘Kðxk; x‘Þ
ð29Þ

LSSVMs use a set of linear equations for training while
SVMs use a quadratic optimization problem, then X ¼ A n B
is the solution to the equation AX ¼ B computed by Gaussian
elimination with partial pivoting [22] and this is the technique

we use with LSSVM.
Figure 9 Positive predictive value on testing data, 40–60%

training test partition. The SVM-PSO shows the highest accuracy.

Figure 10 Negative predictive value on testing data, 40–60%

training test partition. The SVM-QPSO shows the highest accuracy.



Figure 12 Receiver operating characteristic (ROC) curves for classifie

0.96281.

Figure 13 Receiver operating characteristic (ROC) curves for classifie

is 0.95983.

Figure 11 Error rate on testing data, 40–60% training test

partition. The SVM-PSO shows the lowest error.
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Complexity of algorithm

Gaussian elimination solves a system of n equations for n un-

knowns in ‘‘n(n + 1)/2’’ divisions, ‘‘(2n3 + 3n2 � 5n)/6’’ multi-
plications, and ‘‘(2n3 + 3n2 � 5n)/6’’ subtractions, for a total
of approximately ‘‘2n3/3’’ operations. So it has a complexity

of order OðN3Þ.

6. Methodology

Fig. 5 depicts the proposed methodology for Cancer Diagnosis
Model by pre-processing the data using scaling (we scale line-
ally each attribute to the range of [0, 1]), pre-processed data

are split into training and testing (independent) datasets. The
training dataset is used to build SVM classifier. The validity
r resulted from training of SVM with PSO. The area under curve is

r resulted from training of SVM with QPSO. The area under curve
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of each classifier created with the classifier is evaluated using
the sensitivity and specificity of the SVM classifier in distin-
guishing cancer patients from non-cancer controls. SVM clas-

sifiers are built for various combinations of features until the
classification accuracy of the SVM classifier reaches its maxi-
mum value. Estimates of classification accuracy are calculated

by using the cross validation method where a validation data-
set is used to evaluate the generalization error.

Four different methods to construct classifier (i.e. training

SVM) are:
Figure 14 Receive

0.95442.

Figure 15 Receive
,
1. Particle swarm
2. Quantum behaved particle swarm,
3. Quadratic program using active set strategy,

4. Gaussian elimination with partial pivoting of set of linear
equations of LSSVM.
r operating characteristic (ROC) curves for classifi

r operating characteristic (ROC) curves for classifie
The experiments are done on the Wisconsin Database
of Breast Cancer (WDBC) from the UCl [23]. The data
taken from fine needle aspirates from human breast tissue

were analyzed. They have been collected by Wolberg and
Mangasarian [24], at the University of Wisconsin-Madison
Hospital. The data consists of 683 records of virtually as-

sessed nuclear features of fine needle aspirates taken from
patient’s breasts. The results of the four methods were
compared.
7. Experimental results and discussion

The effectiveness of the four different methods for training

support vector machine will be evaluated and compared.
er resulted from training of SVM with QP. The area under curve is

r resulted from training of LSSVM. The area under curve is 0.93788.



Figure 16 A basic ROC graph showing four discrete classifiers.
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a. Particle swarm optimization: A MATLAB code was writ-

ten to train SVM by PSO. The KKT conditions needed to
be satisfied within an error threshold of 0.005 in order to
find an optimal solution quickly. The upper bound C was
kept at 100.0.

b. Quantum behaved particle swarm: A MATLAB code was
written to train SVM by QPSO. The KKT conditions
needed to be satisfied within an error threshold of

0.02.Optimization of the working set terminated when the
KKT conditions on the working set were met within an
error of 0.001, or when the swarm has optimized for five

hundred iterations. The following parameters defined for
the experimental QPSO: By letting c = 10, a total of 20 ini-
tial support vectors were chosen to start the algorithm. The

value of Contraction–Expansion Coefficient h is set to
be 0.7, along with iteration increases, the value
of a linearly reduces to 0.3, so h ¼ ð0:7� 0:3Þ	
ðMAXITER� T Þ=MAXITERþ 0:3.

For each experiment the upper bound C was kept at 100.0.

a. Quadratic program using active set strategy: the BIO-
LEARNING toolbox under the BIOINFO of the MAT-
LAB toolbox is used.

b. Least square support vector machine: The BIOLEARN-
ING toolbox under the BIOINFO of the MATLAB
toolbox is used.

Training was done with the kernel function: kðx; xiÞ
¼ exp � kx�xik

2

1:02

� �
.

The aim of the above comparison is to place the SVM’s per-
formance trained by the quantum particle swarm and particle
swarm into perspective, so two more machine learning tech-
niques were evaluated alongside it.

7.1. Measures for performance evaluation

Several measures were used in order to evaluate the effective-
ness of the given methods. These measures are classification

accuracy (Fig. 6), analysis of specificity (Fig. 7), sensitivity
(Fig. 8), positive predictive value (Fig. 9), negative predictive
value (Fig. 10), error rate (Fig. 11), receiver operating charac-

teristic (ROC) curves Figs. 12–15 and confusion matrix [25].
Discrete classifier: is one that outputs only a class label.

Each discrete classifier produces an (fp rate, tp rate) pair cor-

responding to a single point in ROC space.
The classifier results from training SVM with PSO shows

best area under curve which means that this classifier have bet-
ter average performance.

Discrete Roc Curve (Fig. 16).
Several points in ROC space are important to note. The

lower left point (0, 0) represents the strategy of never issuing a

positive classification; such a classifier commits no false positive
errors but also gains no true positives. The opposite strategy, of
unconditionally issuing positive classifications, is represented by

the upper right point (1, 1). The point (0, 1) represents perfect
classification. B, C’s performance is perfect as shown.

Informally, one point in ROC space is better than another
if it is to the northwest (tp rate is higher, fp rate is lower, or

both) of the first. Classifiers appearing on the left hand-side
of an ROC graph, near the X axis, may be thought of as con-
servative: they make positive classifications only with strong

evidence so they make few false positive errors, but they often
have low true positive rates as well.

Classifiers appearing on the left hand-side of an ROC graph,

near the X axis, may be thought of as conservative: they make
positive classifications only with strong evidence so they make
few false positive errors, but they often have low true positive

rates as well. Classifiers on the upper right-hand side of an
ROC graph may be thought of as liberal: they make positive
classifications with weak evidence so they classify nearly all pos-
itives correctly, but they often have high false positive rates.

8. Conclusion

To place the SVM’s performance trained by swarm intelligence

into perspective, four more machine learning techniques were
evaluated alongside it. The techniques selected were PSO,
QPSO, active set strategy and LSSVM, PSO and QPSO re-

cords slightly higher overall accuracy (0.9352%–0.9306%)
than the other techniques (0.8773%–0.9091%) on set. Consid-
ering the abnormality assessment rank feature in the proposed

comparative study is beyond our plan in this work, so it will be
considered in the extension of this work to re-compare the de-
scribed techniques.

When using the SVM, three obstacles are confronted: how
to choose the kernel function and optimal input feature subset
for SVM, and how to set the best kernel parameters. These
obstacles are crucial because the feature subset choice influ-

ences the appropriate kernel parameters and vice versa.
Feature selection is an important issue in building classifica-

tion systems. It is advantageous to limit the number of input fea-

tures in a classifier to in order to have a good predictive and less
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computationally intensive model. Building a model that can
handle the three obstacles at the same time is a very important
issue and needs further research and work in the future.
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