A THEOREM ABOUT A CONJECTURE OF H. MEYNIEL ON KERNEL-PERFECT GRAPHS

Hortensia GALEANA-SÁNCHEZ
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México

Received 24 January 1984
Revised 4 June 1985

A digraph D is said to be an R-digraph (kernel-perfect graph) if all of its induced subdigraphs possesses a kernel (independent dominating subset).

I show in this work that a digraph D, without directed triangles all of whose odd directed cycles $C = (1, 2, \ldots, 2n + 1, 1)$, possesses two short chords (that means there exist two arcs of D of the form: $(q, q + 2)$ and $(q', q' + 2)$) is an R-digraph.

Let D be a digraph and denote by $V(D)$ the set of vertices of D and denote by $A(D)$ the set of arcs of D.

1. For $T \subseteq V(D)$ we will denote by $D[T]$ the subdigraph of D induced by T.
2. $N \subseteq V(D)$ is a kernel of D iff N is independent and for every $z \in N^c$ there exists an arc (z, w) of D with $w \in N$.
3. D is said to be an R-digraph (kernel-perfect graph) iff every induced subdigraph of D has a kernel.

Let $C = (1, 2, \ldots, m, 1)$ be a directed cycle of D, we denote by $l(C)$ its length.

4. For $i \neq j$, $i, j \in V(C)$ we denote by (i, C, j) the ij-directed path contained in C and we denote by $l(i, C, j)$ its length.
5. $f = (i, j) \in (A(D) - A(C))$ is a diagonal of C iff $i \neq j$, $i, j \in V(C)$ and $l(i, C, j) = \text{length of } f < l(C) - 1$.
6. $f = (i, j) \in (A(D) - A(C))$ is a pseudodiagonal of C iff $i \neq j$, $i, j \in V(C)$ and $l(i, C, j) \leq l(C) - 1$.
7. A short chord of C is a diagonal of C with length two.
8. We will denote by $t(C) = \{z \in V(C) \mid \text{there exists } (w, z) \text{ pseudodiagonal of } C\}$.
9. For C an odd directed cycle (i.e., $l(C) = 2n + 1 = m$) and for $i \in t(C)$ we denote by $A^1_i(C) = \{(i + 2k, i + 2k + 1) \mid 0 \leq k \leq n\}$ (mod m)

and

$$A^1(C) = \bigcup_{v \in t(C)} A^1_v(C).$$
Theorem 1 ([2]). Let D be a digraph, if there exists $T \subseteq V(D)$ such that $A(C) = A^1(C)$ for each odd directed cycle C of D with $V(C) \cap T \neq \emptyset$, then D is an R-digraph if and only if $D - T$ is an R-digraph.

Observation 1. If $C = (1, 2, \ldots, 2n + 1, 1)$ is an odd directed cycle of a digraph D and $t(C) = \{i_1, \ldots, i_k\}$, $i_1 < \cdots < i_k$, then $A(C) = A^1(C)$ if and only if at least one of the two following conditions holds:

(i) $i_{j+1} = i_j + 1$ for some $j \in \{1, \ldots, k\}$.

(ii) $l(i_j, C, i_{j+1}) = l(i_1, C, i_{j+1}) \equiv 1 \pmod{2}$ (notation modulo k).

It follows from the following observation:

Observation 2 ([2]). If $C = (1, 2, \ldots, 2n + 1, 1)$ is an odd directed cycle of a digraph D and $i, j \in t(C)$ (without loss of generality we can assume $i = 1$, and $j = 2k \leq 2n$). Then

$$A^1_i(C) \cup A^1_j(C) = A(2k, C, 1) \cup \{(2t - 1, 2t) \mid 1 \leq t \leq k\}.$$

We denote by Q the class of digraphs D enjoying the following two properties:

(Q.1) D does not contain directed triangles.

(Q.2) All odd directed cycle of D possesses two short chords.

Theorem 2. If C is an odd directed cycle in a digraph D of the class Q, then there exists a set of diagonals of C in D, (that we will denote $d_D(C)$) $d_D(C) = \{(u_1, v_1), \ldots, (u_n, v_n) \mid n \geq 2\}$ such that $A(C) = \bigcup_{i=1}^{n} A^1_i(C)$.

Proof. We argue by induction on $1(C)$, where C is an odd directed cycle of a digraph D belonging to the class Q. When $1(C) = 5$, we consider f and g two short chords of C, it follows from (Q.1) and Observation 1 that $d_D(C) = \{f, g\}$ satisfies the required properties.

Assume that we have proved the existence of $d_{D'}(C')$ for all odd directed cycle C' of a digraph D' belonging to the class Q, with $1(C') < m = 2n + 1$. Let $C = (1, 2, 3, 4, \ldots, 2n + 1, 1)$ be an odd directed cycle of some digraph D belonging to the class Q, with $1(C) = 2n + 1 = m$, we will prove that there exists $d_D(C)$.

We denote by $E = \{w \in V(C) \mid \exists (v, w) \text{ a short chord of } C\}$ and

$$a = \min \left\{ 1(A) \mid A \text{ is an odd } xy\text{-directed path contained in } C \text{ and with } V(A) \cap E = \{x, y\} \right\}.$$

We analyze some cases:

Case 1. $a = 1$

Considering $A = (x, y)$ such that $1(A) = a = 1$, we have f a short chord of C with terminal endpoint x and g a short chord of C with terminal endpoint y; it follows from Observation 1 that we can take $d_D(C) = \{f, g\}$.
Case 2. $a = 3$

Without loss of generality we can assume that $a = 1(A)$, where $A = (1, 2, 3, 4)$, so $d_1 = (2n, 1)$ and $d_2 = (2, 4)$ are diagonals of C; by Observation 2; we have $A_1^d(C) \cup A_3^d(C) = A(C) - (2, 3)$.

Remark 1. Note that by Observation 1 we can assume that for all $i \in \{2\} \cup \{2t + 1 \mid 1 \leq t \leq n\}$, i is not a terminal endpoint of some diagonal of C, since if such a diagonal f exists, then we can take $d_D(C) = \{d_1, d_2, f\}$.

Now we consider the odd directed cycle $C' = (1, 2, 4, 5, 6, \ldots, 2n, 1)$, for $f = (z, w) \in d_D(C')$ such that $(1, 2) \in A_D(C')$ we have $w \in \{1, 2\} \cup \{2t + 1 \mid 2 \leq t \leq n - 1\}$, it follows from Remark 1 that we can assume $w = 1$ and by (Q.1) $5 \leq z \leq 2n - 1$, and then we define:

$$r = \min\{z \mid 5 \leq z \leq 2n - 1 \text{ and } (z, 1) \text{ is a diagonal of } C'\},$$

now we analyze the two possible cases.

Case 2.a. $1(r, C', 1)$ is even. In this case $1(r, C, 1)$ is odd and so $r = 2j + 1$ for some $2 \leq j \leq n - 1$; considering the odd directed cycle $C'' = (1, C, r) \cup (r, 1)$ we see that, for $f'' = (u, v) \in d_D(C'')$ such that $(2, 3) \in A_D(C'')$ we have that $v \in \{2\} \cup \{2t + 1 \mid 2 \leq t \leq j - 1\}$; if $v = 1$ then we obtain a contradiction with the definition of r, so it follows from Remark 1 that we can take $d_D(C) = \{d_1, d_2, f''\}$.

Case 2.b. $1(r, C', 1)$ is odd. In this case $r = 2j$ for some $3 \leq j \leq n - 1$, considering the odd directed cycle $C'' = (r, 1, 2, 4, 5, 6, \ldots, r - 1, r)$ we see that for $f'' = (u, v) \in d_D(C'')$ such that $(1, 2) \in A_D(C'')$, we have $v \in \{1, 2\} \cup \{2t + 1 \mid 2 \leq t \leq j - 1\}$; if $v = 1$ then we obtain a contradiction with the definition of r, so it follows from Remark 1 that we can take $d_D(C) = \{d_1, d_2, f''\}$.

Case 3. $a = 5$

Without loss of generality we can assume that $a = 1(A)$ where $A = (1, 2, 3, 4, 5, 6)$, so $d_1 = (2n, 1)$ and $d_2 = (4, 6)$ are diagonals of C; by Observation 2 we have $A_1^d(C) \cup A_5^d(C) = A(C) - \{(2, 3), (4, 5)\}$.

Remark 2. Note that in view of Observation 1, we can assume that for all $i \in \{2\} \cup \{2t + 1 \mid 2 \leq t \leq n\}$ i is not a terminal endpoint of some diagonal of C, since if such a diagonal f exists, then we can take $d_D(C) = \{d_1, d_2, f\}$.

Remark 3. We can assume that the vertex 4 of C is not a terminal endpoint of some diagonal of C: Assume the contrary, then there exists $k \in V(C)$ such that $(k, 4)$ is a diagonal of C and for all $i \in (V(4, C, k) - \{5\}) (i, 4) \not\in A(D)$, clearly
$k \in \{2, 3, 5, 6, 7\}$, we analyze the two possible cases:

Case 3.a. $l(k, C, 4)$ is even. In this case $k = 2s + 1$ for some $4 \leq s \leq n$; considering the odd directed cycle $C'' = (k, 4, 6, 7, 8, \ldots, k)$ we see that for $f' = (u, v) \in d_D(C')$ such that $(k, 4) \in A_2^1(C')$ we have $v \in \{4\} \cup \{2t + 1 \mid 3 \leq t \leq s\}$; if $v = 4$, then we obtain a contradiction with the definition of k, so it follows from Remark 2 that we can take $d_D(C) = \{d_1, d_2, f'\}$.

Case 3.b. $l(k, C, 4)$ is odd. In this case $k \in \{1\} \cup \{2t \mid 4 \leq t \leq n\}$, considering the odd directed cycle $C' = (4, C, k) \cup (k, 4)$, we have for $f' = (u, v) \in d_D(C')$ with $(4, 5) \in A_2^1(C')$ the following two cases:

(i) $k = 1$, in this case we have

$$v \in \{4\} \cup \{2j + 1 \mid 2 \leq j \leq n\}.$$

(ii) $k = 2t$, in this case we have

$$v \in \{4\} \cup \{2j + 1 \mid 2 \leq j \leq t - 1\}.$$

If $v = 4$ we would obtain a contradiction with the definition of k. So, we can take, in view of Remark 2, $d_D(C) = \{d_1, d_2, f'\}$.

Remark 4. We can assume that the vertex 3 of C is not a terminal endpoint of some diagonal of C. Assume the contrary, then we can define

$$k = \min\{i \in V(C) \mid (i, 3) \text{ is a diagonal of } C\}$$

clearly $7 \leq k \leq 2n + 1$, we analyze the two possible cases:

Case 3.c. $l(k, C, 3)$ is even. We take the odd directed cycle $C' = (k, 3, 4, 6, 7, \ldots, k - 1, k)$ and similarly to Case 3.a we see that in view of Remarks 2 and 3 for $f' = (i, j) \in d_D(C')$ such that $(3, 4) \in A_2^1(C')$ we can take $d_D(C) = \{d_1, d_2, f'\}$.

Case 3.d. $l(k, C, 3)$ is odd. Considering the odd directed cycle $C' = (3, C, k) \cup (k, 3)$, similarly to Case 3.b we see that for $f' = (u, v) \in d_D(C')$ such that $(k, 3) \in A_2^1(C')$ then, we can take $d_D(C) = \{d_1, d_2, f'\}$.

Let $D' = D[V(C) \setminus \{2, 3\}] \cup \{1, 4\}$.

Remark 5. We can assume that D' has not directed triangles. Assume the contrary, then a directed triangle of D' is of the form $C' = (1, 4, p, 1)$, then $G = (1, 2, 3, 4, p, 1)$ is an odd directed cycle of D; and by Remark 2 and (Q.2) we can suppose $p \neq 5$ and moreover $p = 2r$ for some $3 \leq r \leq n$; it follows from (Q.2) and Remarks 2, 3 and 4 that $(3, p) \in A(D)$. Considering the odd directed cycle $C'' = (p, C, 3) \cup (3, p)$ we see that for $f'' = (u, v) \in d_D(C'')$ such that $(2, 3) \in A_2^1(C'')$ we have $v \in \{2, 3\} \cup \{2j + 1 \mid r \leq j \leq n\}$, it follows from Remark 2 that we can take $d_D(C) = \{d_1, d_2, f''\}$.
Remark 6. We can assume that all odd directed cycles of \(D' \) have two short chords in \(D' \).

Let \(H = (1, 4, i_1, i_2, \ldots, 1) \) an odd directed cycle of \(D' \) such that \((1, 4) \in A(H)\), we consider \(G = (1, 2, 3, 4, i_1, i_2, \ldots, 1) \) we will prove that the two short chords of \(G \) in \(D \) are two short chords of \(H \) in \(D' \).

In view of the definition of \(a \) and Remark 2 it suffices to prove that the vertex 3 of \(G \) is not an initial endpoint of a short chord of \(G \). Let us suppose that \((3, i_1) \in A(D)\) then, by (Q.1), Remark 5, the definition of \(a \) and Remark 2, we can assume that \(i_1 = 2s \) for some \(3 \leq s \leq n - 1 \). Considering the odd directed cycle \(G' = (i_1, C, 3) \cup (3, i_1) \) we see that for \(g' = (u, v) \in d_0(G') \) such that \((2, 3) \in A^2(G')\) we have \(v \in \{2, 3\} \cup \{2t + 1 \mid 2 \leq t \leq n\} \), and it follows from Remarks 2 and 4 that we can take \(d_0(C) = \{d_1, d_2, g'\} \).

Since \(D' \) is a digraph of the class \(Q \) (Remarks 5 and 6) and \(C' = (4, C, 1) \cup (1, 4) \) is an odd directed cycle of \(D' \) with \(l(C') < m \), then there exists \(g' = (u, v) \in d_0, (C') \) such that \((4, 5) \in A^2(C')\); so \(v \in \{4\} \cup \{2t + 1 \mid 2 \leq t \leq n\} \) and then from Remarks 2 and 3 we can take \(d_0(C) = \{d_1, d_2, g'\} \).

Case 4. \(a \geq 7, a = 2q + 1, 3 \leq q \leq n - 1 \)

Without loss of generality we can assume that \(a = 1(A) \), where \(A = (1, 2, 3, 4, 5, 6, \ldots, a, a + 1) \); so \(d_1 = (2n, 1) \) and \(d_2 = (a - 1, a + 1) \) are diagonals of \(C \).

Remark 7. By Observation 1 we can assume that for all \(i \in \{2\} \cup \{2t + 1 \mid q \leq t \leq n\} \) \(i \) is not a terminal endpoint of some diagonal of \(C \); since if \(f \) is such a diagonal then we can take \(d_0(C) = \{d_1, d_2, f\} \). Now we consider:

\[
D' = D[V(C) - \{i \in V(C) \mid 3 \leq i \leq a - 3\}] \cup (2, a - 2)
\]

Remark 8. We can assume \(D' \) has not directed triangles: Since if \(C' \) was a directed triangle of \(D' \), then, from (Q.1) and Remark 7, we would have \(C' = (2, a - 2, 1, 2) \), and then by the definition of \(a \), the two short chords of the odd directed cycle \(C'' = (1, C, a - 2) \cup (a - 2, 1) \) are \(d'_1 = (a - 3, 1) \) and \(d'_2 = (a - 2, 2) \). So, from Observation 1 we can take \(d_0(C) = \{d'_1, d'_2\} \).

Remark 9. We can assume that each odd directed cycle of \(D' \) possesses two short chords in \(D' \).

Let \(H' = (2, a - 2, i_1, i_2, \ldots, i_n, 2) \) an odd directed cycle of \(D' \) such that \((2, a - 2) \in A(H')\), we consider \(H = (2, 3, 4, 5, \ldots, a - 3, a - 2, i_1, i_2, \ldots, i_n, 2) \), we will prove that the two short chords of \(H \) in \(D \) are also two short chords of \(H' \) in \(D' \). In view of the definition of \(a \) and Remark 7, it suffices to prove that \(a - 3 \) is not an initial endpoint of a short chord of \(H \). Suppose that \((a - 3, i_1) \in A(D)\), by Remark 7 and the definition of \(a \), we can assume that \(i_1 = 2s \) for some \(q + 1 \leq s \leq n \), \(l(a - 3, C, i_1) \) is even, hence \(G = (i_1, C, a - 2) \cup (a - 2, i_1) \) is an odd directed cycle of \(D \) with \(l(G) < m \). If \(f = (z, a - 2) \in d_0(G) \)
would not exist it would follow from Observation 1 that we could take $d_D(C) = d_D(G)$.

Remark 10. We can assume that there exists $f = (z, a - 2) \in d_D(G)$. Then in view of Observations 1 and 2 we have

$$A(C) - (a - 1, a) \subseteq A_1^1(C) \cup A_{a+1}^1(C) \cup \bigcup_{(u,v) \in d_D(G)} A_v^1(C).$$

Remark 11. We can assume that for all $i \in \{2s|1 \leq s \leq q\}$ there is not any diagonal of C with terminal endpoint i; since if f is a such diagonal, then we can take $d_D(C) = \{d_1, d_2, f\} \cup d_D(G)$. By Remark 10 there exists $k \in V(C)$ such that $(k, a - 2)$ is a diagonal of C, but for all $i \in V(a - 2, C, k) - \{k, a - 2, a - 1\}$, $(i, a - 2) \notin A(D)$; we analyze the two possible cases:

Case 4.a. $l(k, C, a - 2)$ is even. In this case $k \in \{2t + 1|0 \leq t \leq q - 3\} \cup \{2t'|Q + 2 \leq t' \leq n\}$, considering the odd directed cycle of D, $B = (k, a - 2, a - 1, a + 1) \cup (a + 1, C, k)$ we see that for $f = (u, v) \in d_D(B)$ such that $(a - 2, a - 1) \in A_v(B)$ we have

$$v \in \{a - 1, a - 2\} \cup \{r|r \equiv 0 \pmod{2} \text{ and } 2 \leq r \leq k - 1\}$$

$$\cup \{r'|r' \equiv 1 \pmod{2} \text{ and } a + 2 \leq r' \leq m\};$$

if $v = a - 2$, then we obtain a contradiction with the definition of k; so it follows from Remarks 7, 10, 11 and Observation 1 that we can take $d_D(C) = \{d_1, d_2, f\} \cup d_D(G)$.

Case 4.b. $l(k, C, a - 2)$ is odd. In this case $k \in \{2t + 1|q + 1 \leq t \leq n\} \cup \{2t'|Q + 2 \leq t' \leq n\}$, considering $B' = (a - 2, C, k) \cup (k, a - 2)$ we see that for $f' = (u', v') \in d_D(B')$ such that $(a - 1, a) \in A_v(B')$ we have

$$v' \in \{a - 1\} \cup \{z|z \equiv 0 \pmod{2} \text{ and } 2 \leq z \leq k\}$$

$$\cup \{z'|z' \equiv 1 \pmod{2} \text{ and } a \leq z' \leq m\},$$

and we have that in view of Remarks 7 and 11 we can take $d_D(C) = \{d_1, d_2, f'\} \cup d_D(G)$. So Remark 9 is proved to be right.

Since D' is a digraph of the class Q (Remarks 8 and 9) and $C' = (2, a - 2) \cup (a - 2, C, 2)$ is an odd directed cycle of D' (with $l(C') < m$). There exists $g^1 = (u, v) \in d_D(C')$ such that $(2, a - 2) \in A_v(C')$; and so $v \in \{2, a - 2\} \cup (2t + 1|q \leq t \leq n\}$; now from Remark 7 we can assume $v = a - 2$. Also, there exists $g^2 = (z, w) \in d_D(C')$ such that $(a - 1, a) \in A_v(C')$, so $w \in \{a - 1, 2\} \cup (2t + 1|q \leq t \leq n\}$, by Remark 7 we can assume $w = a - 1$. Then from Observation 1 we can take $d_D(C) = \{g^1, g^2\}$. So Theorem 2 is proved. □
Theorem 3. Let D be a digraph, if there exists $T \subseteq V(D)$ such that

$$D = \left\{ z \in V(D) \mid z \text{ is in some odd directed cycle } C \text{ of } D \text{ with } V(C) \cap T \neq \emptyset \right\}$$

belongs to the class Q. Then D is an R-digraph if and only if $D - T$ is an R-digraph.

Theorem 3 is a direct consequence of Theorems 1 and 2.

Corollary 1. If D is a digraph belonging to the class Q, then D is an R-digraph.

Corollary 1 is a particular case of the interesting conjecture proposed by H. Meyniel and that I have disproved.

Conjecture 1 ([1]). (H. Meyniel 1976). Let D be a digraph, if all odd directed cycles of D possess two pseudodiagonals then D is an R-digraph.

References