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KEYWORDS Background/purpose: Calcium silicate (CS)-based biomaterials, such as mineral trioxide aggre-
calcium silicate; gate (MTA), have become the most popular and convincing material used in restorative end-
calcium silicate odontic treatments. However, the commercially available CS-based biomaterials all contain
hydrate; different minor additives, which may affect their hydration behaviors and material properties.
hydration; The purpose of this study was to evaluate the hydration behavior of CS-based biomaterials
mineral trioxide with/without minor additives.
aggregate Methods: A novel CS-based biomaterial with a simplified composition, without mineral oxides

as minor additives, was produced. The characteristics of this biomaterial during hydration
were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Four-
ier transform infrared (FTIR) spectrometry. The hydration behaviors of commercially available
gray and white MTAs with mineral oxide as minor additives were also evaluated for reference.
Results: For all three test materials, the XRD analysis revealed similar diffraction patterns af-
ter hydration, but MTAs presented a significant decrease in the intensities of Bi,O;-related
peaks. SEM results demonstrated similar porous microstructures with some hexagonal and
facetted crystals on the outer surfaces. In addition, compared to CS with a simplified compo-
sition, the FTIR plot indicated that hydrated MTAs with mineral oxides were better for the
polymerization of calcium silicate hydrate (CSH), presenting Si—O band shifting to higher wave
numbers, and contained more water crystals within CSH, presenting sharper bands for O—H
bending.
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Conclusion: Mineral oxides might not result in significant changes in the crystal phases or mi-
crostructures during the hydration of CS-based biomaterials, but these compounds affected
the hydration behavior at the molecular level.

Copyright © 2016, Formosan Medical Association. Published by Elsevier Taiwan LLC. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

Introduction

Mineral trioxide aggregate (MTA) is a type of mineral
cement developed for restorative endodontic applica-
tions." Its excellent sealing ability, good biocompati-
bility, and induction of hard-tissue regeneration have
been supported by many in vitro and in vivo studies.?
Recent studies have shown that an apatite-like layer
forms on the surface of MTA when hydrated in simulated
body fluids or phosphate-buffered saline, demonstrating
the surface bioactivity of MTA.®’ Therefore, MTA has
become the most popular and convincing material used
in restorative endodontic treatments, including root
perforation repair, retrograde filling, apical plug appli-
cation, and vital pulp therapy. However, MTA requires a
long setting time, potentially leading to future compli-
cations or even treatment failures. Recently, there have
been several attempts to decrease the setting time of
MTA using different additives,®® such as Na,CO; and
Na,HPO,4, without understanding the hydration behaviors
of MTA.

The original commercially available MTA, approved by
the Food and Drug Administration in 1997, is gray (GMTA)
in color and primarily comprises tricalcium silicate (CsS),
tricalcium aluminate (CsA), tetracalcium aluminoferrite
(C4AF), and bismuth oxide (Bi,03). Subsequently, for
aesthetic considerations, the GMTA form was modified
after adding fluxing agent to remove the colored in-
gredients, generating a white MTA (WMTA), which was
introduced to the market. In addition, the two commer-
cially available MTAs also contain small amounts of addi-
tives, such as gypsum (CaS0O,4-2H,0), MgO, SOs, Na,03, and
K,0.'%"" In the cement industry, these minor additives are
typically added to adjust the physical properties of Port-
land cements through effects on the cement hydration.
However, the precise mechanism of how these minor ad-
ditives affect the cement properties during hydration re-
mains unclear.

In this study, to retain the desirable properties of
MTAs, a novel calcium silicate (CS) with a simplified
composition, containing only C3S/C,S, C3A, and C4AF,
was developed. Because CS has the same major com-
ponents as commercially available MTAs, except a small
amount of minor additives, it would be a good refer-
ence material to investigate the hydration mechanism
of CS-based biomaterials. The purpose of this study is
to evaluate the hydration behaviors of CS-based bio-
materials, including CS and the two commercially
available MTAs.

Materials and methods
Material preparation

The main components of CS, including CasSiOs (CsS),
CasAl,0¢ (C3A), and CajsAlFe,049 (C4AF), were prepared by
sintering. The raw materials of each component were
mixed in a ball mill individually and the substrates with
molar ratios were mixed based on the chemical formula of
the products. The mixed substrates were subsequently
heated to 1400°C for CsS preparation, 1300°C for C3A
preparation, and 1350°C for C4AF preparation. The mate-
rials were incubated for 2 hours and subsequently quenched
in air, followed by milling into powder. The crystal phases
of the produced C3S, C3A, and C4AF powders were
confirmed through X-ray diffraction (XRD). Based on the
ingredients of Type Il high-early strength Portland cement,
CS was produced after mixing C3S, C3A, and C4AF at a
weight ratio of 8:1:1 to mimic commercially available MTAs
without minor additives.

Commercially available GMTA (ProRoot MTA; DENTSPLY
Tulsa Dental, Johnson City, TN, USA) and WMTA (ProRoot
MTA; DENTSPLY Tulsa Dental) were also used for further
evaluation in this study.

Microstructure observation

The samples were prepared after mixing the CS powders
with distilled water at a weight-to-volume ratio of 2:1,
while both MTAs were mixed with distilled water in a
weight-to-volume ratio of 3:1, according to the manufac-
turer’s instructions. Subsequently, the mixture was com-
pressed and condensed into a mold. The samples were
stored in distilled water at 37°C for 7 days and then
removed and air dried overnight at room temperature. The
samples were sputter coated with gold using a sputter
coater (BIO-RED SC 502; Fisons, Ipswich, UK) and the
microstructure of the test materials, including the outer
structure (surface structure) and the inner structure
(fractured surface), was examined using a scanning elec-
tron microscope (SEM; Topcon ABT-60, Tokyo, Japan).

Transformation of hydrated products

The samples were hydrated at 37°C and 100% humidity for
7 days, followed by milling into powder for further evalu-
ations. The crystalline phases of the prepared samples were
examined through powder XRD using a Rigaku X-ray powder
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diffractometer (Geigerflex; Tokyo, Japan) with an Ni filter
and Cu-K,, radiation (A = 0.154 nm), generated at 30 kV and
20 mA. The samples were scanned from 10° to 60°, and all
data were collected in a continuous scan mode at a scan-
ning rate of 4°/min. Crystalline formations were identified
using a computer automatched system with a standard
JCPDS data file. The original dry powders of each test
material were also analyzed using XRD as a standard to
evaluate changes in the crystalline phases of the hydrated
products. The characteristics of molecular bonding and
functional groups of the prepared samples were deter-
mined using a Fourier transform infrared spectrometer
(FTIR; JASCO FT/IR-410S spectrometer, Easton, MD, USA)
with potassium bromide pellets (KBr, IR grade; Merck,
Darmstadt, Germany; samples: KBr = 1:50). The spectra
were recorded from 400 cm~" to 4000 cm™', and 32 scans
were recorded each time. Both samples of GMTA and WMTA
were prepared for XRD and FTIR analyses.

Results

Scanning electron microscopy analysis of hydrated
materials

The results of SEM analysis showed that the hydrated CS and
MTAs stored in distilled water had similar outer surface
morphologies. Both samples showed porous microstructures
with some hexagonal and facetted crystals on the outer

surface (Figures 1A—1C). The majority of the porous
microstructure was constructed through groundmass with
acicular features. Two types of hexagonal crystals
embedded in the groundmass were observed: one with a
more planar structure (Figures 1A—1C, marked with trian-
gle), and the other with a more pillar-like structure (Figures
1A—1C, marked with arrow). CS exhibited a more planar
crystal structure, whereas MTAs exhibited a more pillar-like
crystal structure. The SEM image of the fractured surface
(Figures 1D—1F) showed that the same type of porous
microstructure observed on the surface was also present
within both CS and MTA. Interestingly, another type of
microstructure was also observed. This type of micro-
structure was packed as multiple parallel sheets stacked
together (multiparallel sheet-layered structure) in various
orientations (Figures 1D—1F, marked with star), and some
acicular and sheet-like crystals (Figures 1D—1F, marked
with hollow arrow) were observed in the pores of the
layered structure. High-magnification field emission-SEM
(FE-SEM; Figures 2A and 2B) revealed an interstitial space
between two sheets, estimated as 50 nm or more. The
sheets were generally packed more loosely to the outside
and tighter near the center, as illustrated in Figure 2C.

XRD analysis of unhydrated and hydrated materials

The XRD reflection pattern of various materials hydrated in
distilled water is shown in Figure 3. For the unhydrated CS
sample, several sharp peaks of C3S (3Ca0-Si0,), C,S

Figure 1

Microstructure of the hydrated calcium silicate (CS)-based biomaterials. Scanning electron microscopy demonstrated

the microstructure of CS, gray mineral trioxide aggregate (GMTA), and white MTA (WMTA) after hydration for 7 days. The surface
structures of (A) CS, (B) GMTA, and (C) WMTA primarily reflected porous microstructures with acicular crystals, in which some
hexagonal (marked with arrow) and facet crystals (marked with triangle) were formed in the interstitial space. On the fractured
surface of the hydrated materials, (D) CS, (E) GMTA, and (F) WMTA demonstrated porous structures comprising the layer micro-
structure with multiple parallel sheets packed together (marked with star), and some acicular and sheet-like crystals (marked with

hollow arrow) were observed.
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Figure 2  Multilayered nanocrystalline structure of hydrated
calcium silicate (CS)-based biomaterials. Field-emission scan-
ning electron microscopy shows the multilayered nanocrystal-
line structure of (A) hydrated CS and (B) white mineral trioxide
aggregate. (C) The illumination demonstrates the multilayered
nanocrystalline structure of calcium silicate hydate (CSH), in
which the early formed CSH sheets pack together to form
nanocrystalline region near the initial nucleation site (indi-
cated by the gray zone) and the latter-formed CSH sheets
become more unstructured and disuniformed around the edges
of nucleation site.

(2Ca0-Si0;), and CsA (3Ca0O-Al,05) were recorded.
Compared with the XRD pattern of unhydrated CS, the
decreasing intensity of peaks corresponding to C3S and C,S,
and new peaks corresponding to portlandite [Ca(OH),]
(26 = 18°, 34.1°, and 47.1°) and calcite (CaCOs)
(26 = 29.6° and 48.5°) formation were recorded using XRD
(Figure 3). Similar to the XRD diffraction pattern of hy-
drated CS, the peaks corresponding to portlandite

(20 = 18°) and CaCO; (20 = 29.6°) were also observed for
hydrated GMTA and WMTA (Figure 3). Compared with the
peak intensities of portlandite and CaCO; from CS, the peak
intensities of GMTA and WMTA were lower. Furthermore,
there was an obvious decrease in the intensity of the peaks
corresponding to Bi,O; (20 = 27.4° and 33.1°) after the
hydration for both GMTA and WMTA.

Fourier transform infrared spectroscopy analysis of
hydrated materials

Figure 4 shows a comparison of the different FTIR plots of
the three hydrated test materials. For CS, the absorption
bands for H—OH (3055—3550 cm™ ") and O—H stretching
(3642 cm~" and 2512 cm™") were observed. The absorption
band for CO;2 v, vibration (875 cm~') and a broad ab-
sorption band for C03‘2 vy vibration (1421 cm™') were also
identified due to calcite formation. The absorption band for
Si—0 v; asymmetrical stretching was found from 954 cm™"
to 960 cm~".

Unlike CS, various H—OH vibration bands were observed
for both MTAs (3195—3613 cm™"). Although the absorption
band corresponding to O—H stretching at 3642 cm ™" was not
present, another absorption band for O—H stretching at a
lower wave number was also recorded (GMTA at 2514 cm™";
WMTA at 2512 cm™"). In addition, the absorption band for
€052 v; vibration was detected at higher wave numbers for
both MTAs (WMTA at 1480 cm™'; GMTA at 1474 cm™'). A
broad band for SiO v5 vibration was also observed for GMTA
(971 cm~") and WMTA (970 cm™").

Discussion

According to the studies on Portland cement, the major
phases of hydrated CsS are calcium silicate hydrate (CSH)
and calcium hydroxide [Ca(OH),], which are produced as
by-products later during the hydration process.'> " CS and
the two commercially available MTAs have similar original
components, with C3S as the main original component.’’
Therefore, it was suspected that the hydration of CS and
MTAs would primarily be directed through CsS, which was
confirmed based on the SEM of the microstructure. SEM
revealed that the main structure of both hydrated CS and
MTAs on the external surface exhibited acicular or fibrous
crystal formation, similar to the description of the CSH
structure in previous studies.’”>”'® In the early stage of
hydration, the newly formed CSH crystals are acicular or
fibrous shaped. As hydration progresses, these CSH crystals
form the groundmass.’*"”"'® The hexagonal plate-shaped
and hexagonal column-shaped crystals on the surface of
CS are most likely Ca(OH),. However, the facetted crystals
are most likely CaCOs, derived from the carbonation of
Ca(OH), with CO, in the atmosphere.'’

Furthermore, this study was the first to show multilay-
ered nanocrystalline CSH structures using FE-SEM. These
unique structures were only observed on the fractured
surfaces of the hydrated samples. Based on crystallography,
these structures represent different types of CSH crystals
formed primarily under the influences of SiO4 polymeriza-
tion. As hydration continues, other than the formation of
more hydrates, the hydrated SiO4 monomer in CSH either
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X-ray diffraction (XRD) of unhydrated and hydrated calcium silicate (CS)-based biomaterials. (A) CS biomaterial, (B)

gray mineral trioxide aggregate (GMTA), and (C) white MTA (WMTA) presented similar XRD powder patterns, except that the MTAs
had Bi,03, which dramatically decreased in intensity after hydration. Both CS and the MTAs presented peaks corresponding to

Ca(OH), and CaCOs after hydration.

dimerizes or polymerizes. SiO,4 only crystallizes in a two-
dimensional direction, resulting in a flat CSH sheet.'® The
formation of the multilayered structure observed in this
study reflected the removal of H,0 from the spaces be-
tween the CSH sheets, thereby compacting the
sheets.'®>'®° FE-SEM revealed that the multilayered
nanocrystalline structures exhibited a tightly packed cen-
tral nanocrystalline region with a more disordered outer
region, most likely reflecting the limited spaces around the
early formed CSH sheets, forcing the sheets at the nucle-
ation site to stack together, forming a more orderly

multilayered nanocrystalline region. However, the outer
products subsequently formed around the edges of the
nucleation site would have extra spaces available, causing
a more unstructured and nonuniform growth of the CSH
crystals.”’

Generally, the microstructures of CS, GMTA, and WMTA
showed similar morphologies for both the outer surface and
the inner structures, suggesting that these three materials
might solidify through similar pathways. However, the
commercially available MTAs exhibited smaller pore sizes
with a more tightly packed multilayered structure
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Figure 4

Fourier transform infrared (FTIR) spectra of hydrated calcium silicate (CS)-based biomaterials. FTIR analysis demon-

strated the chemical bonding of (A) CS biomaterial, (B) gray mineral trioxide aggregate (GMTA), and (C) white MTA (WMTA). An
absorption band for O—H stretching at 3642 cm~" was not detected in both MTAs, but was observed in the CS biomaterial. Addi-
tional shifting of Si—O stretching to a higher wave number was observed for the MTAs compared with CS biomaterial.

compared with the microstructure of CS, potentially
reflecting the addition of MgO in the MTAs."" Less than 1%
MgO can induce the formation of the more reactive mono-
clinic CsS, instead of the less reactive triclinic CsS, during
the sintering process at high temperatures. The presence of
monoclinic C3S would shorten the time required for the
completion of hydration.?’

Consistently, the XRD analysis demonstrated similar
patterns of the crystal phases of the hydrated CS and the
two commercially available MTAs, except for the peaks
corresponding to bismuth oxide. In addition, the diffrac-
tion peaks corresponding to bismuth oxide decreased in
intensity in the two commercially available MTAs after
hydration, suggesting that bismuth oxide was leached out
from the system.?? Because Ca(OH),, C,S, and C3S present
characteristic peaks at 260 = 32.1°—34.5°, the peak at
260 = 18° was used to identify the production of Ca(OH),
during hydration. In all three materials, a new peak at
260 = 18° was observed after hydration, indicating the
formation of Ca(OH),, shown as a hexagonal crystal using
SEM. However, the peaks corresponding to the major hy-
drated product, CSH, were not observed via XRD analysis.
This finding most likely reflects the nanoscale crystalline

structure of CSH, causing CSH to appear amorphous in
XRD.?>%* Furthermore, unlike the decrease in the in-
tensity of the peaks at 20 = 32°—33° after hydration, the
other peak corresponding to C3S at 26 = 29.6°, which
showed no obvious changes in intensity, was identified
through XRD, indicating the formation of CaCO; after
hydration.

Consistent with the XRD results, the FTIR plot demon-
strated the appearance of CaCOs;, detected as character-
istic bands for the CO;2 group in CS and the two
commercially available MTAs. In this study, two techniques,
XRD and FTIR, were used to investigate the chemical
structure of hydrated CS and the two commercially avail-
able MTAs. FTIR detected more differences in the material
characteristics among the three test materials after hy-
dration compared with the XRD analysis. The major dif-
ferences between CS and the two commercially available
MTAs in the FTIR plot are the characteristic bands for the
O—H group. Both CS and the commercially available MTAs
presented bands for H—OH vibration after hydration, indi-
cating the presence of water molecules within the CSH
crystals. However, the two commercially available MTAs
demonstrated sharper bands for O—H bending compared
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with CS, suggesting a higher content of crystal water in the 2.
hydrated MTAs.?’

In addition, a sharp band for O—H stretching at
3642 cm~ ! was observed in CS, indicating the formation of
Ca(OH), according to the study of Mollah et al.?® However,
no Ca(OH),-related O—H bands at 3642 cm~" were detected
in the commercially available MTAs. Instead, the MTAs 4
presented a band for O—H stretching at a lower wave
number, which may relate to the maturation of crystalline 5.
Ca(OH),. The bands for the O—H groups identified in the
commercially available MTAs indicated the formation of
Ca(OH), with deformed lattices after hydration. From a 6.
chemical point of view, the composition of the commer-
cially available MTAs was more complex than that of CS;
thus, some lattices of CSH might be substituted with mol-
ecules of additives, such as Na,0s or K,0, contained in MTA
during hydration,"" likely interfering with the O-H
stretching and vibration of hydrates, resulting in differ-
ences in the FTIR plot. 8

Using FTIR as a tool to investigate the dynamic changes
in Portland cement during hydration, Mollah et al?” showed
shifting of Si—0 v; asymmetrical stretching from 930 cm™ 9.
to higher wave numbers with time. This shifting was
considered as an index of the degree of polymerization of
Si0,* to Si0, % in CSH. Upon hydration, the Si—0 bands were
eventually shifted to 1138—1155 cm~".%¢ Consistent with
the findings of Mollah et al, the shifting of the Si—0 wv;
asymmetrical stretching to higher wave numbers during CS 1
hydration was also identified in this study. According to
previous studies,’®'® the minor components of Portland
cement, such as MgO and SO3, might function as accelera- 12.
tors during hydration. Because commercially available MTAs
comprise not only CsS, CsA, and CLAF but also small
amounts of MgO and SO; compared with CS,"'" faster hy-
dration of MTA has been proposed. This statement is sup-
ported by the broad bands observed in both hydrated
commercially MTAs at 930—1150 cm™" in contrast to the
sharp bands detected in hydrated CS centered at 960 cm™",
indicating better CSH polymerization in the commercially 15.
available MTAs compared with CS.

In this study, using SEM, XRD, and FTIR as tools, we
demonstrated that the minor additives contained in CS-based 16.
biomaterials might not generate significant changes in the
crystal phases or microstructures during hydration but these

did affect the hydration behavior at the molecular level, that 7
is, better polymerization of the hydrated products.
Acknowledgments

18

The project was supported by grants from Ministry of Sci-

ence and Technology, R.0.C. (MOST104-2314-B-002-141-

MY2). The authors would like to thank Professor Chung- 19.
Yuan Mou for assistance with the FE-SEM observations and

the Eighth Core Laboratory of Department of Medical
Research, National Taiwan University Hospital for technical 20.
support.

21.
References

1. Torabinejad M, Chivian N. Clinical applications of mineral 22.
trioxide aggregate. J Endod 1999;25:197—205.

Holland R, de Souza V, Murata SS, Nery MJ, Bernabé PF, Oto-
boni Filho JA, et al. Healing process of dog dental pulp after
pulpotomy and pulp covering with mineral trioxide aggregate
or Portland cement. Braz Dent J 2001;12:109—13.

. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral

trioxide aggregate for repair of lateral root perforations. J
Endod 1993;19:541—4.

. Osorio RM, Hefti A, Vertucci FJ, Shawley AL. Cytotoxicity of

endodontic materials. J Endod 1998;24:91—6.

Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD. Cytotox-
icity of four root end filling materials. J Endod 1995;21:
489-92.

Reyes-Carmona JF, Felippe MS, Felippe WT. The biominerali-
zation ability of mineral trioxide aggregate and Portland
cement on dentin enhances the push-out strength. J Endod
2010;36:286—91.

. Qi YP, Li N, Niu LN, Primus CM, Ling JQ, Pashley DH, et al.

Remineralization of artificial dentinal caries lesions by bio-
mimetically modified mineral trioxide aggregate. Acta Bio-
mater 2012;8:836—42.

. Huan Z, Chang J. Effect of sodium carbonate solution on self-

setting properties of tricalcium silicate bone cement. J Bio-
mater Appl 2008;23:247—62.

Lotfi M, Vosoughhosseini S, Saghiri MA, Mesgariabbasi M,
Ranjkesh B. Effect of white mineral trioxide aggregate mixed
with disodium hydrogen phosphate on inflammatory cells. J
Endod 2009;35:703—-5.

. Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a

mineral trioxide aggregate when used as a root end filling
material. J Endod 1993;19:591-5.

. Torabinejad M, White DJ. Tooth filling material and method of

use. US Patent 5415547. Loma Linda, CA; Loma Linda Univer-
sity; 1995.

Brown PW, Hellmann JR, Klimkiewicz M. Examples of evolution
of microstructure in ceramics and composites. Microsc Res
Tech 1993;25:474—86.

. Bye GC. Portland cement: composition, production, and

properties. New York: Pergamon Press; 1983.

. Lawrence Jr FV, Young JF. Studies on the hydration of trical-

cium silicate pastes |. Scanning electron microscopic exami-
nation of microstructural features. Cem Concr Res 1973;3:
149—61.

Kjellsen KO, Lagerblad B. Microstructure of tricalcium silicate
and Portland cement systems at middle periods of hydration-
development of Hadley grains. Cem Concr Res 2007;37:13-20.
Camilleri J. Characterization and hydration kinetics of trical-
cium silicate cement for use as a dental biomaterial. Dent
Mater 2011;27:836—44.

. HauBler F, Palzer S, Angela E. Nondestructive microstructural

investigations on hydrating cement paste and tricalcium sili-
cate by small angle neutron scattering. In: Leipzig annual civil
engineering report, vol. 4. Leipzig: Universitat Leipzig, Institut
flr Massivbau und Baustofftechnologie, Wirtschaftswissen-
schaftliche Fakultat; 1999. p. 47—64.

. Bentur A. Cementitious materials-nine millennia and a new

century: past, present and future. J Mater Civil Eng 2002;14:
2-22.

Brown PW. Hydration behavior of calcium phosphates is anal-
ogous to hydration behavior of calcium silicates. Cem Concr
Res 1999;29:1167—71.

Gartner EM. A proposed mechanism for the growth of C-S-H
during the hydration of tricalcium silicate. Cem Concr Res
1997;27:665—72.

Katyal NK, Ahluwalia SC, Parkash R. Solid solution and hydra-
tion behavior of magnesium-bearing tricalcium silicate phase.
Cem Concr Res 1998;28:867—75.

Formosa LM, Mallia B, Bull T, Camilleri J. The microstructure
and surface morphology of radiopaque tricalcium silicate

Please cite this article in press as: Lee Y-L, et al., Hydration behaviors of
Medical Association (2016), http://dx.doi.org/10.1016/j.jfma.2016.07.009

calcium silicate-based biomaterials, Journal of the Formosan



http://refhub.elsevier.com/S0929-6646(16)30177-2/sref1
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref1
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref1
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref2
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref2
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref2
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref2
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref2
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref3
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref3
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref3
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref3
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref4
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref4
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref4
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref5
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref5
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref5
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref5
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref6
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref6
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref6
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref6
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref6
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref7
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref7
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref7
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref7
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref7
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref8
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref8
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref8
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref8
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref9
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref9
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref9
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref9
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref9
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref10
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref10
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref10
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref10
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref12
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref12
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref12
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref12
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref13
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref13
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref14
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref14
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref14
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref14
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref14
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref15
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref15
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref15
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref15
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref16
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref16
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref16
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref16
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref17
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref17
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref17
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref17
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref17
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref17
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref17
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref18
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref18
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref18
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref18
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref19
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref19
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref19
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref19
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref20
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref20
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref20
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref20
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref21
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref21
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref21
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref21
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref22
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref22

Y.-L. Lee et al.

23.

24.

25.

cement exposed to different curing conditions. Dent Mater
2012;28:584—95.

Gauffinet S, Finot E, Lesniewska E, Nonat A. Direct observation
of the growth of calcium silicate hydrate on alite and silica
surface by atomic force microscopy. Earth Planet Sci 1998;
327:231—6.

Nonat A. The structure and stoichiometry of C-S-H. Cem Concr
Res 2004;34:1521-8.

Guerrero A, Goni S. Microstructure and mechanical perfor-
mance of belite cements from high calcium coal fly ash. J Am
Ceram Soc 2005;88:1845—53.

26.

27.

Mollah MYA, Yu W, Schennach R, Cocke DLA. Fourier transform
infrared spectroscopic investigation of the early hydration of
Portland cement and the influence of sodium lignosulfonate.
Cem Concr Res 2000;30:267—73.

Mollah MYA, Lu F, Cocke DL. An X-ray diffraction and Fourier
transform infrared spectroscopic characterization of the
speciation of arsenic (V) in Portland cement type V. Sci Total
Environ 1998;224:57—68.

Please cite this article in press as: Lee Y-L, et al., Hydration behaviors of calcium silicate-based biomaterials, Journal of the Formosan
Medical Association (2016), http://dx.doi.org/10.1016/j.jfma.2016.07.009



http://refhub.elsevier.com/S0929-6646(16)30177-2/sref22
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref22
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref22
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref23
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref23
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref23
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref23
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref23
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref24
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref24
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref24
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref25
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref25
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref25
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref25
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref26
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref26
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref26
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref26
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref26
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref27
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref27
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref27
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref27
http://refhub.elsevier.com/S0929-6646(16)30177-2/sref27

	Hydration behaviors of calcium silicate-based biomaterials
	Introduction
	Materials and methods
	Material preparation
	Microstructure observation
	Transformation of hydrated products

	Results
	Scanning electron microscopy analysis of hydrated materials
	XRD analysis of unhydrated and hydrated materials
	Fourier transform infrared spectroscopy analysis of hydrated materials

	Discussion
	Acknowledgments
	References


