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Abstract

An axiomatic approach to the representation theory of Coxeter groups and their Hecke algebras was
presented in [R.M. Adin, F. Brenti, Y. Roichman, A unified construction of Coxeter group representa-
tions (I), Adv. Appl. Math., in press, arXiv: math.RT/0309364]. Combinatorial aspects of this construction
are studied in this paper. In particular, the symmetric group case is investigated in detail. The resulting
representations are completely classified and include the irreducible ones.
© 2006 Published by Elsevier Inc.

1. Introduction

1.1. Outline

An axiomatic construction of Coxeter group representations was presented in [1]. This was
carried out by a natural assumption on the representation matrices, avoiding a priori use of exter-
nal concepts (such as Young tableaux).
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Let (W,S) be a Coxeter system, and let K be a finite subset of W . Let F be a suit-
able field of characteristic zero (e.g., the field C(q) in the case of the Iwahori–Hecke alge-
bra), and let ρ be a representation of (the Iwahori–Hecke algebra of) W on the vector space
VK := spanF{Cw | w ∈ K}, with basis vectors indexed by elements of K. We want to study the
sets K and representations ρ which satisfy the following axiom:

(A) For any generator s ∈ S and any element w ∈ K there exist scalars as(w), bs(w) ∈ F such
that

ρs(Cw) = as(w)Cw + bs(w)Cws.

If w ∈K but ws /∈ K we assume bs(w) = 0.

A pair (ρ,K) satisfying Axiom (A) is called an abstract Young (AY) pair; ρ is an AY repre-
sentation, and K is an AY cell. If K �= ∅ and has no proper subset ∅ ⊂ K′ ⊂ K such that VK′ is
ρ-invariant, then (ρ,K) is called a minimal AY pair. (This is much weaker than assuming ρ to be
irreducible.)

In [1] it was shown that an AY representation of a simply laced Coxeter group is determined
by a linear functional on the root space. In this paper it is shown that, furthermore, the values of
the linear functional on the “boundary” of the AY cell determine the representation (see Theo-
rem 3.7). In Section 4 this result is used to characterize AY cells in the symmetric group. This
characterization is then applied to show that every irreducible representation of Sn may be real-
ized as a minimal abstract Young representation (see Theorem 4.11). AY representations of Weyl
groups of type B are not determined by a linear functional. However, it is shown that a similar
result holds for these groups (Theorem 5.6). Finally, we characterize the elements π ∈ Sn for
which the interval [id,π] forms a minimal AY cell, carrying an irreducible representation (see
Theorem 6.6).

1.2. Main results

In Section 3 it is shown that the action of the group W on the boundary of a cell determines
the representation up to isomorphism.

Theorem 1.1. (See Theorem 3.7.) Let (ρ,K) be a minimal AY pair for a simply laced Coxeter
group W , where K is finite. Then the behavior of ρ at the boundary of K (i.e., the values as(w)

for w ∈ K, s ∈ S, ws /∈ K) determines ρ up to isomorphism.

The proof combines continuity arguments with the reduction of AY representations to distin-
guished linear functionals, carried out in [1] (see Theorems 2.6 and 2.7).

AY cells in the symmetric group are characterized in Section 4.

Theorem 1.2. (See Theorem 4.9.) Let K ⊆ Sn and let σ ∈K. Then K is a minimal AY cell if and
only if there exists a standard skew Young tableau Q of size n such that

σ−1K = {
π ∈ Sn | Qπ−1

is standard
}
,

where Qπ−1
is the tableau obtained from Q by replacing each entry i by π−1(i).
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The proof applies Theorem 1.1 together with Theorems 2.6 and 2.7. Theorem 1.2 is then used
to prove the following.

Theorem 1.3. (See Corollary 4.12.) The complete list of minimal AY representations of the sym-
metric group Sn is given (up to isomorphism) by the skew Specht modules Sλ/μ, where λ/μ is of
order n (and μ possibly empty).

In particular, every irreducible representation of the symmetric group Sn may be realized as
a minimal abstract Young representation.

Combining this theorem with the combinatorial induction rule for minimal AY representations
(Theorem 2.8) we prove

Theorem 1.4. (See Theorem 5.6.) Every irreducible representation of the classical Weyl group
Bn may be realized as a minimal abstract Young representation.

Definition 1.5. An element w ∈ W is a top element if the interval [id,w] is a minimal AY cell
carrying an irreducible AY representation of W .

The top elements of the symmetric group Sn are characterized in Section 6.

Theorem 1.6. (See Theorem 6.6.) A permutation π ∈ Sn is a top element if and only if π is the
column word of a row standard Young tableau (see Definition 6.4).

Note. Having completed the first version of this paper, we were informed that results equivalent
to Theorems 1.1 and 1.3, with entirely different proofs, appear in [11,16].

2. Preliminaries

For the necessary background on Coxeter groups see [7]; on convex sets and generalized de-
scent classes see [3]; and on symmetric group representations see [8,9,17]. See also [4,10,13,15].

2.1. Young forms

Let Q be a standard Young tableau of skew shape. If k ∈ {1, . . . , n} is in box (i, j) of Q

then the content of k in Q is c(k) := j − i. For 1 � k < n, the kth hook-distance is defined as
h(k) := c(k + 1) − c(k). Denote by Qsk the tableau obtained from Q by interchanging k and
k + 1. The classical Young orthogonal form for Sn (see, e.g., [8, §25.4]) is generalized naturally
to skew shapes.

Theorem 2.1 (Young orthogonal form for skew Specht modules). Let {vQ | Q standard Young
tableau of shape λ/μ} be the basis of the skew Specht module Sλ/μ obtained by the Gram–
Schmidt process from the polytabloid basis. Then

ρλ/μ(si)(vQ) = 1

h(i)
vQ +

√
1 − 1

h(i)2
vQsi . (1)
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Proof. (Due to J. Stembridge [20]; see also [6].) Matrices determined by (1) must satisfy the
Coxeter relations of Sn, because the same is true when the skew tableaux are completed to full
tableaux of nonskew shape. Therefore they define a representation of Sn, which we denote Yλ/μ.
Upon restricting the action of Sn to Sk × Sn−k (where n = |λ|, k = |μ|), Yλ decomposes into
the direct sum

⊕
{μ⊆λ||μ|=k} Yμ ⊗ Yλ/μ. On the other hand, Specht modules have exactly the

same decomposition. This follows, for example, from the corresponding identity on Schur func-
tions [18, (7.66)] (using the inverse Frobenius image). Since Yλ ∼= Sλ, Yλ/μ must be isomorphic
to Sλ/μ. �

Bn, the classical Weyl group of type B , is a Coxeter system with S = {si | 0 � i < n},
m(s0, s1) = 4, m(si, si+1) = 3 for 1 � i < n, and m(si, sj ) = 2 otherwise. The irreducible repre-
sentations of Bn are indexed by pairs of partitions (λ,μ), where λ is a partition of some 0 � k � n

and μ is a partition of n − k. A basis for the irreducible representation of shape (λ,μ) may be
indexed by all pairs (P,Q) of standard Young tableaux of shapes λ and μ, respectively, where
P is a tableau on a subset of k letters from {1, . . . , n} and Q is a tableau on the complementary
subset of letters. There exists a basis such that the following Young form holds (see, e.g., [14]).

Theorem 2.2 (Classical Young orthogonal form for Bn). Denote the above basis elements by
v(P,Q). For 1 � i < n define the hook distance h(i) as follows:

h(i) :=
{

hP (i), if i and i + 1 are both in P ;
hQ(i), if i and i + 1 are both in Q;
∞, if i and i + 1 are in different tableaux.

Then, for 1 � i < n,

ρλ,μ(si)(v(P,Q)) = 1

h(i)
v(P,Q) +

√
1 − 1

h(i)2
v(P,Q)si ,

where (P,Q)si is the pair of tableaux obtained from (P,Q) by interchanging i and i + 1,
whereas

ρλ,μ(s0)(v(P,Q)) =
{

v(P,Q), if 1 is in P ;
−v(P,Q), if 1 is in Q.

2.2. Abstract Young representations

Recall the definition of AY cells and representations from the introduction.

Proposition 2.3. [1, Corollary 4.4] Every minimal AY cell is convex in the Hasse diagram of the
right weak Bruhat order.

Definition 2.4. For a convex subset K ⊆ W define:

TK := {
wsw−1 | s ∈ S, w ∈K, ws ∈K

}
,

T∂K := {
wsw−1 | s ∈ S, w ∈K, ws /∈K

}
.
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Definition 2.5 (K-genericity). Let K be a convex subset of W containing the identity element.
A linear functional f on the root space V is K-generic if:

(i) For all t ∈ TK,

〈f,αt 〉 /∈ {0,1,−1}.

(ii) For all t ∈ T∂K,

〈f,αt 〉 ∈ {1,−1}.

(iii) If w ∈ K, s, t ∈ S, m(s, t) = 3 and ws,wt /∈ K then

〈f,αwsw−1〉 = 〈f,αwtw−1〉 (= ±1).

By [1, Observation 3.3], we may assume that id ∈ K. By [1, Theorem 11.1], under mild
conditions, Axiom (A) is equivalent to the following:

(B) For any reflection t there exist scalars ȧt , ḃt , ät , b̈t ∈ F such that, for all s ∈ S and w ∈ K:

ρs(Cw) =
{

ȧwsw−1Cw + ḃwsw−1Cws, if �(w) < �(ws);
äwsw−1Cw + b̈wsw−1Cws, if �(w) > �(ws).

Theorem 2.6. [1, Theorem 7.4] Let (W,S) be an irreducible simply laced Coxeter system, and
let K be a convex subset of W containing the identity element. If f ∈ V ∗ is K-generic then

ȧt := 1

〈f,αt 〉 (∀t ∈ TK ∪ T∂K),

together with ät , ḃt and b̈t satisfying

ȧt + ät = 0,

ḃt · b̈t = (1 − ȧt )(1 − ät )

define a representation ρ such that (ρ,K) is a minimal AY pair satisfying Axiom (B).

The following theorem is complementary.

Theorem 2.7. [1, Theorem 7.5] Let (W,S) be an irreducible simply laced Coxeter system and
let K be a subset of W containing the identity element. If (ρ,K) is a minimal AY pair satisfying
Axiom (B) and ȧt �= 0 (∀t ∈ TK) then there exists a K-generic f ∈ V ∗ such that

ȧt = 1

〈f,αt 〉 (∀t ∈ TK ∪ T∂K).

The following combinatorial rule for induction of AY representations is analogous to the one
for Kazhdan–Lusztig representations [2,5].
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Theorem 2.8. [1, Theorem 9.3] Let (W,S) be a finite Coxeter system, P = 〈J 〉 (J ⊆ S) a par-
abolic subgroup, and WJ the set of all representatives of minimal length of the right cosets of P

in W . Let (ψ,D) be a minimal AY pair for P . Then

(1) DWJ is a minimal AY cell for W .
(2) The induced representation ψ↑W

P is isomorphic to an AY representation on VDWJ .

Remark 2.9. By [1, Lemma 9.7], for every s ∈ S and r ∈ WJ either rs ∈ WJ , or rs /∈ WJ and
rs = pr with p ∈ J . Then, by the proof of [1, Theorem 9.3], the representation matrices of the
generators in the resulting induced representation are as follows: for s ∈ S, m ∈ D, r ∈ WJ ,

ρs(Cmr) =
{

Cmrs, if rs ∈ WJ ;
ap(m)Cmr + bp(m)Cmrs, otherwise (rs = pr, p ∈ J ),

where the coefficients ap and bp are given by the AY representation ψ ; namely, ψp(Cm) =
ap(m)Cm + bp(m)Cmp.

3. Boundary conditions

In this section it is shown that the action of the group W on the boundary of a minimal AY
cell determines the representation up to isomorphism.

For a subset of reflections A let the (left) A-descent set of an element w ∈ W is defined by

DesA(w) := {
t ∈ A | �(tw) < �(w)

}
.

Definition 3.1. Let w ∈ W , and let f ∈ V ∗ be an arbitrary linear functional on the root space V

of W .

(1) Define

Af := {
t ∈ T | 〈f,αt 〉 ∈ {1,−1}},

and

Kf
w := {

v ∈ W | DesA(v) = DesA(w)
}
.

(2) If f is Kf
w-generic (as in Definition 2.5) then the corresponding AY representation of W

(as in Theorem 2.6), with the symmetric normalization b̈t = ḃt (∀t ∈ TKf
w
), will be denoted

ρ
f
w (or just ρf in case there is no ambiguity).

Remark 3.2. By [1, Theorem 11.1], the representation ρ
f
w is independent of the normalization

(up to isomorphism).

Definition 3.3. Let W be a Coxeter group, and let V be its root space. A basic (affine) hyperplane
in V ∗ has the form

Ht,ε := {
f ∈ V ∗ | 〈f,αt 〉 = ε

}
,
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for some t ∈ T and ε ∈ {1,−1}.
A basic flat in V ∗ is an intersection of basic hyperplanes. It is proper if different from ∅

and V ∗.
For a basic flat L, let

A = AL := {
t ∈ T | L ⊆ Ht,ε for some ε ∈ {1,−1}}.

Then {WD
A | D ⊆ A}, where WD

A := {w ∈ W | DesA(w) = D}, is a partition of W into convex
subsets, called the L-partition of W .

Note that, for the two “improper” flats:

L = ∅ �⇒ AL = T ,

L = V ∗ �⇒ AL = ∅.

Theorem 3.4. Let W be a simply laced Coxeter group. Let L be a basic flat in V ∗, and fix a
nonempty finite convex set K in the L-partition of W . Then, for any two elements v, v′ ∈ K and

any two K-generic vectors f,f ′ ∈ L, Kf
v = Kf ′

v′ = K and the representations ρ
f
v and ρ

f ′
v′ are

isomorphic.

Proof. First of all,

f ∈ L ⇐⇒ 〈f,αt 〉 = εt (∀t ∈ AL) ⇐⇒ AL ⊆ Af

and therefore, for any K in the L-partition of W and any v ∈K,

Kf
v ⊆ K.

If f is also K-generic then 〈f,αt 〉 �= ±1 for all t ∈ TK, so that Kf
v = K.

Now choose f0 ∈ L, and let {f1, . . . , fk} be a basis for the linear subspace L−f0 of V ∗. Each
f ∈ L has a unique expression as

f = f0 + r1f1 + · · · + rkfk,

where r1, . . . , rk ∈ R. For any t ∈ TK ∪ T∂K, 〈f,αt 〉 is a linear combination of 1, r1, . . . , rk ,
and is nonzero if f is K-generic. For v ∈ K, use the representation ρ

f
v with the row-stochastic

normalization ȧt + ḃt = ät + b̈t = 1 (∀t ∈ TKf
v
); see Remark 3.2.

Thus, for any v ∈K and K-generic f ∈ L, each entry of the matrix ρ
f
v (s) (∀s ∈ S) is a rational

function of r1, . . . , rk ; and the same therefore holds for each entry of ρ
f
v (w) (∀w ∈ W ) and for

the character values Tr(ρf
v (w)). Note that these rational functions (unlike the actual values of

r1, . . . , rk) do not depend on the choice of v and f , even though the set Lgen of all K-generic
f ∈ L may be disconnected (see example below). By discreteness of the character values and
continuity of the rational function, each character value is constant in each connected component
of Lgen, and at the same time represented by one rational function throughout Lgen. It is therefore
the same constant for all f ∈ Lgen (and v ∈ K), as claimed. �
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Example 3.5. Take W = S3 = 〈s1, s2〉 (type A2) and the basic flat L = {f ∈ V ∗ | 〈f,αs1s2s1〉 =
−1}. Then A = {s1s2s1}, and we may choose K = {id, s1, s2}. In that case, TK = {s1, s2} and
T∂K = {s1s2s1} = A. L is an affine line in V ∗ ∼= R

2, and the K-generic points in L form five
disjoint open intervals (three of them bounded). For any K-generic vector f ∈ L and any v ∈ K,
ρ

f
v is the 3-dimensional representation isomorphic to the direct sum of the sign representation

and the unique irreducible 2-dimensional representation of S3.

An important special case is L = V ∗ (K = W ).

Theorem 3.6. Let W be a finite simply laced Coxeter group, and let f ∈ V ∗ be W -generic (i.e.,
〈f,αt 〉 /∈ {0,1,−1}, ∀t ∈ T ). Then, for any v ∈ W , the representation ρ

f
v on VW is isomorphic

to the regular representation of W .

Proof. Fix v ∈ W (and ignore it in the notation). For all but finitely many values of μ ∈ R, the
linear functional μf ∈ V ∗ is also W -generic. The representations ρμf and ρf are isomorphic,
by Theorem 3.4. On the other hand, if |μ| → ∞ then

a
(μf )
s (w) = ±1

〈μf,αwsw−1〉 → 0 (∀s ∈ S, w ∈ W)

and consequently b
(μf )
s (w) → 1. The representation matrices of ρ(μf )(s) (∀s ∈ S), and thus also

those of ρ(μf )(w) (∀w ∈ W), tend to those of the regular representation. The character of ρf is
thus the character of the regular representation. �

Theorem 3.4 may be reformulated as follows.

Theorem 3.7. Let (ρ,K) be a minimal AY pair for a simply laced Coxeter group W , where K
is finite. Then the behavior of ρ at the boundary of K (i.e., the values as(w) for w ∈ K, s ∈ S,
ws /∈K) determines ρ up to isomorphism.

4. Minimal cells in Sn

In this section we show that integer-valued K-generic vectors for W = Sn lead to standard
Young tableaux (of skew shape). Theorem 3.4 is then applied to give a complete characterization
of minimal AY cells in Sn. Finally, it is shown that all irreducible representations of Sn are
minimal AY.

4.1. Identity cells and skew shapes

In this subsection we study minimal AY cells K ⊆ Sn. By [1, Observation 3.3], every minimal
AY cell is a translate of a minimal AY cell containing the identity element; thus we may assume
that id ∈K.

For a vector v = (v1, . . . , vn) ∈ R
n denote

�v := (v2 − v1, . . . , vn − vn−1) ∈ R
n−1.
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For a (skew) standard Young tableau Q denote c(k) := j − i, where k is the entry in row i and
column j of Q. Call cont(Q) := (c(1), . . . , c(n)) the content vector of Q, and call � cont(Q)

the derived content vector of Q.
Note that for W = Sn we may identify the root space V with a subspace (hyperplane) of R

n:

V ∼= {
(v1, . . . , vn) ∈ R

n | v1 + · · · + vn = 0
}
.

The positive root αij ∈ V corresponding to the transposition (i, j) ∈ Sn may be identified with
the vector εi − εj (1 � i < j � n), where {ε1, . . . , εn} is the standard basis of R

n. The dual space
V ∗ is then a quotient of R

n:

V ∗ ∼= R
n/Re,

where e := (1, . . . ,1) ∈ R
n. We shall abuse notation and represent a linear functional f ∈ V ∗ by

any one of its representatives f = (f1, . . . , fn) ∈ R
n; the natural pairing 〈·,·〉 :V ∗ × V → R is

then given by 〈f, εi − εj 〉 = fi − fj .

Recall the notations Kf
w and ρ

f
w from Definition 3.1.

Theorem 4.1. Let f ∈ R
n have integer coordinates. Then: (ρ

f

id,K
f

id) is a minimal AY pair for
W = Sn if and only if there exists a standard skew Young tableau Q of size n such that

�f = � cont(Q).

The proof of Theorem 4.1 relies on the following lemmas.

Lemma 4.2. Let f ∈ R
n and 1 � i < j � n. If either 〈f,αij 〉 = ±1, or f is Kf

id-generic and

〈f,αij 〉 = 0, then w−1(i) < w−1(j) for all w ∈Kf

id.

Proof. The claim clearly holds for w = id. It thus suffices to show that if w,ws ∈ Kf

id (s ∈ S)
then w−1(j) − w−1(i) and (ws)−1(j) − (ws)−1(i) have the same sign.

Since s is an adjacent transposition, say s = (t, t + 1) (1 � t � n − 1), the two signs differ
if and only if {w−1(i),w−1(j)} = {t, t + 1}. This implies that (i, j) = wsw−1 ∈ TKf

id
. Thus

〈f,αij 〉 �= ±1 and, if f is Kf

id-generic, also 〈f,αij 〉 �= 0. This contradicts the assumption. �
Lemma 4.3. Let f ∈ R

n be an arbitrary vector. Then f is Kf

id-generic if and only if, for all
1 � i < j � n:

〈f,αij 〉 = 0 �⇒ ∃r1, r2 ∈ [i + 1, j − 1] such that 〈f,αir1〉 = −〈f,αir2〉 = 1. (2)

Proof. Let K := Kf

id.
(A) (Necessity). Note that, since f is K-generic,

〈f,αij 〉 = 0 �⇒ (i, j) /∈ TK ∪ T∂K. (3)
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Consider the set

Z := {
(i, j) | 1 � i < j � n, 〈f,αij 〉 = 0

}
.

We shall prove that

(i, j) ∈ Z �⇒ ∃r1, r2 ∈ [i + 1, j − 1] such that 〈f,αir1〉 = 〈f,αr2j 〉 = 1.

The proof will proceed by induction on j − i, the height of the root αij .
Assume first that j − i = 1. Then (i, j) = (i, i + 1) ∈ S. Since id ∈ K, S ⊆ TK ∪ T∂K. This

contradicts (3) above.
For the induction step, assume that (i, j) ∈ Z with j − i > 1 and that the claim is true for

all reflections in Z with smaller heights. Choose w ∈ K such that dw := |w−1(j) − w−1(i)| is
minimal. Note that, by Lemma 4.2, actually dw = w−1(j) − w−1(i) > 0.

If dw = 1 then there exists 1 � t � n − 1 such that w(t) = i and w(t + 1) = j , so that (i, j) =
w(t, t + 1)w−1 ∈ TK ∪ T∂K, which is a contradiction to (3).

Thus dw � 2.
Define 1 � r1, r2 � n by w−1(r1) = w−1(i) + 1 and w−1(r2) = w−1(j) − 1. By minimal-

ity of dw , (i, r1) ∈ T∂K so that 〈f,αir1〉 = ±1; similarly 〈f,αr2j 〉 = ±1. Now 〈f,αij 〉 = 0 and
〈f,αir1〉 = ±1 imply

〈f,αr1j 〉 = 〈f,αr1i〉 + 〈f,αij 〉 = ±1 (if r1 < i);
〈f,αr1j 〉 = 〈f,αij 〉 − 〈f,αir1〉 = ±1 (if i < r1 < j );
〈f,αjr1〉 = 〈f,αir1〉 − 〈f,αij 〉 = ±1 (if j < r1).

Since w−1(i) < w−1(r1) < w−1(j) we conclude, by Lemma 4.2, that i < r1 < j . Similarly
i < r2 < j .

If 〈f,αir1〉 = −〈f,αir2〉 = 1 or 〈f,αir1〉 = −〈f,αir2〉 = −1 we are done. We can thus assume,
with no loss of generality, that 〈f,αir1〉 = 〈f,αir2〉 = ε = ±1 and r1 � r2.

If r1 = r2 then w−1(j) − w−1(i) = 2. Denote t := w−1(i). Then 〈f,αw(t,t+1)w−1〉 =
〈f,αir1〉 = ε and 〈f,αw(t+1,t+2)w−1〉 = 〈f,αr1j 〉 = −ε. This contradicts condition (iii) of
K-genericity (Definition 2.5). Therefore r1 < r2. Thus

〈f,αr1r2〉 = 〈f,αir2〉 − 〈f,αir1〉 = 0.

Since r2 − r1 < j − i, by the induction hypothesis there exists r1 < r3 < r2 such that 〈f,αr1r3〉 =
−ε. Thus 〈f,αir3〉 = 0 (and 〈f,αr3j 〉 = 0). Again, by the induction hypothesis, there exist i < r4,

r5 < r3 such that 〈f,αir4〉 = 〈f,αr5r3〉 = 1. Noting that 〈f,αr5r3〉 = 〈f,αr5j 〉 completes the proof
that condition (2) is necessary.

(B) (Sufficiency). Assume now that f ∈ R
n satisfies condition (2). Condition (ii) of Defini-

tion 2.5 holds by the definition of Kf

id. Assume that 〈f,αij 〉 = 0. By condition (2) and Lemma 4.2,
there exist i < r1 < r2 < j such that w−1(i) < w−1(r1) < w−1(r2) < w−1(j) for all w ∈ K. Thus
w−1(j) − w−1(i) > 2, and this implies conditions (i) and (iii) of K-genericity as follows:

For condition (i), if w,ws ∈ K, s = (t, t +1) ∈ S and 〈f,αwsw−1〉 = 0 then, denoting i := w(t)

and j := w(t + 1), we get i < j and 〈f,αij 〉 = 0, so that w−1(j)−w−1(i) = 1 contradicting our
conclusion above.
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For condition (iii), if w ∈ K, ws,wt /∈ K, s = (k, k + 1) and t = (k + 1, k + 2) then de-
note i := w(k), r := w(k + 1), and j := w(k + 2). Then i < r < j and 〈f,αwsw−1〉 = ±1,
〈f,αwtw−1〉 = ±1. If 〈f,αwsw−1〉 �= 〈f,αwtw−1〉 then 〈f,αwsw−1〉 + 〈f,αwtw−1〉 = 0, that is
〈f,αir 〉 + 〈f,αrj 〉 = 0 or equivalently 〈f,αij 〉 = 0, and w−1(j) − w−1(i) = 2 contradicts our
conclusion above. �
Lemma 4.4. A vector c = (c1, . . . , cn) ∈ Z

n is a content vector for some skew standard Young
tableau if and only if for all 1 � i < j � n

ci = cj �⇒ ∃r1, r2 ∈ [i + 1, j − 1] such that cr1 = ci + 1 and cr2 = ci − 1. (4)

Proof. It is clear that if (c1, . . . , cn) is the content vector of a skew standard Young tableau then
it satisfies condition (4).

Conversely, let (c1, . . . , cn) ∈ Z
n be such that (4) holds. We will show, by induction on n, that

there exists a skew standard Young tableau Q such that cont(Q) = (c1, . . . , cn). The existence of
Q is clear for n � 2. By the induction hypothesis, there exists a skew standard Young tableau Q′
such that cont(Q′) = (c1, . . . , cn−1). Let C := {c� | � ∈ [n − 1]}.

If cn ∈ C, let

k := max
{
� ∈ [n − 1]: c� = cn

}
.

By our hypothesis there exist r1, r2 ∈ [k + 1, n − 1] such that cr1 = ck + 1 and cr2 = ck − 1. If k

is in box (i, j) of Q′ then box (i + 1, j + 1) must be empty (since k is maximal). Therefore r1

must be in box (i, j + 1) and r2 must be in box (i + 1, j). Placing n in box (i + 1, j + 1) yields
a skew standard Young tableau Q such that cont(Q) = (c1, . . . , cn), as desired.

If cn /∈ C then Q′ is the disjoint union of two (possibly empty) tableaux, Q′+ and Q′−, consist-
ing of the boxes of Q′ with contents strictly larger (respectively, smaller) than cn. Let (i+, j+)

be the (unique) box with the smallest (closest to cn) content in Q′+, and define similarly (i−, j−)

for Q′−. All of Q′+ is (weakly) northeast of (i+, j+), all of Q′− is (weakly) southwest of (i−, j−),
and (i+, j+) is (strictly) northeast of (i−, j−). If the difference in contents between (i+, j+) and
(i−, j−) is 2 (the smallest possible) then these boxes have a common corner, and we can place n

in box (i−, j− + 1) = (i+ + 1, j+) to form Q. If the difference is larger than we can shift all the
boxes of Q′+ diagonally (preserving their contents) until i+ = i− − 1 (and thus j+ > j− + 1).
Now we can place n in box (i−, j− + 1) to form Q. The discussion is even simpler if either one
of Q′+ and Q′− is empty. �
Proof of Theorem 4.1. Combine Lemma 4.3 with Lemma 4.4. �
4.2. Cell elements and standard tableaux

By Theorem 4.1, a minimal AY cell (containing the identity) in Sn is defined by a linear
functional represented by a vector f ∈ Z

n such that �f = � cont(Q) for some standard skew
Young tableau Q. We will show that there is a bijection between the elements of Kf

id and the
standard Young tableaux of the same shape as Q.



R.M. Adin et al. / Journal of Algebra 306 (2006) 208–226 219
Theorem 4.5. Let Q be a standard skew Young tableau, and let f ∈ Z
n be any vector satisfying

�f = � cont(Q). Then, for any π ∈ Sn,

π ∈ Kf

id ⇐⇒ the tableau Qπ−1
is standard,

where Qπ−1
is the tableau obtained from Q by replacing each entry i by π−1(i) (1 � i � n).

Corollary 4.6. The size of Kf

id is equal to the number of standard Young tableaux of the same
shape as Q.

In order to prove Theorem 4.5, we first make the following observation.

Observation 4.7. For a standard skew Young tableau Q and any 1 � i < n, exactly one of the
following 3 cases holds:

(1) i + 1 is adjacent to i in the same row of Q, and then[
� cont(Q)

]
i
= 1.

(2) i + 1 is adjacent to i in the same column of Q, and then[
� cont(Q)

]
i
= −1.

(3) i + 1 and i are not in the same row or column of Q, and then∣∣[� cont(Q)
]
i

∣∣ � 2.

Note that i + 1 and i cannot be in the same diagonal of Q: [� cont(Q)]i �= 0.

Lemma 4.8. Assume that π ∈ Kf

id and Qπ−1
is standard. Then, for any 1 � i < n:

πsi ∈Kf

id ⇐⇒ Q(πsi )
−1

is standard.

Proof. Consider π ∈ Kf

id and 1 � i < n. Then

1

ȧπsiπ
−1

= 〈f,απsiπ
−1〉 = 〈f,α(π(i),π(i+1))〉 = ± (fπ(i+1) − fπ(i))

= ±[
� cont

(
Qπ−1)]

i
, (5)

where “±” is the sign of π(i + 1) − π(i). Thus

ȧπsiπ
−1 �= ±1 ⇐⇒ [

� cont
(
Qπ−1)]

i
�= ±1.

On the other hand, since π ∈Kf

id,

ȧπs π−1 �= ±1 ⇐⇒ πsi ∈Kf
.

i id



220 R.M. Adin et al. / Journal of Algebra 306 (2006) 208–226
By Observation 4.7, this means that πsi ∈ Kf

id if and only if i and i + 1 are not in the same row

or column of Qπ−1
. Thus, for π ∈ Kf

id with Qπ−1
standard:

πsi ∈ Kf

id ⇐⇒ (
Qπ−1)si = Qsiπ

−1 = Q(πsi)
−1

is standard. �
Proof of Theorem 4.5. By Lemma 4.8, it suffices to show that any π ∈ Kf

id may be reduced to
the identity permutation by a sequence of multiplications (on the right) by adjacent transpositions
si ∈ S such that all the intermediate permutations are also in Kf

id; and that a similar property

holds for any π ∈ Sn such that Qπ−1
is standard. In other words, we need to show that Kf

id and

{π ∈ Sn | Qπ−1
is standard} are connected subsets in the right Cayley graph of Sn with respect to

the Coxeter generators.
For Kf

id this follows from the convexity of minimal AY cells (Proposition 2.3).

For {π ∈ Sn | Qπ−1
is standard} we give the outline of an argument. An inversion in a standard

skew Young tableau Q is a pair (i, j) such that 1 � i < j � n and i appears in Q strictly south
of j . The inversion number inv(Q) is the number of inversions in Q (see [19]). If i appears in
Q strictly south of i + 1 then Qsi is also a standard tableau, with inv(Qsi ) = inv(Q) − 1. Thus
every standard tableau Q leads, by a sequence of applications of generators si ∈ S, to the unique
standard tableau of the same skew shape for which i is always weakly north of i + 1 (1 � i < n),
i.e., the corresponding row tableau (see Definition 6.4). Thus any two standard skew tableaux
of the same shape are connected by such a sequence, and this is the connectivity result that we
need. �

In contrast to Kazhdan–Lusztig theory, where the bijection between cell elements and tableaux
is given by the RSK algorithm, the above bijection between elements of the cell Kf

id and tableaux
is extremely simple.

A complete characterization of minimal AY cells in Sn now follows.

Theorem 4.9. Let K be a nonempty subset of the symmetric group Sn, and let σ ∈ K. Then K is
a minimal AY cell if and only if there exists a standard skew Young tableau Q such that

σ−1K = {
π ∈ Sn | Qπ−1

is standard
}
,

where Qπ−1
is the tableau obtained from Q by replacing each entry i by π−1(i).

Proof. Given Q, define f := cont(Q) and use Theorem 4.5 to conclude that

{
π ∈ Sn | Qπ−1

is standard
} = Kf

id

is a minimal AY cell containing the identity element. Thus, if σ ∈ K and σ−1K = Kf

id then K is
a minimal AY cell.

In the other direction, if K is a nonempty minimal AY cell and σ ∈ K then σ−1K = Kf

id for
some K-generic vector f ∈ V ∗. If L is the basic flat corresponding to K (see Definition 3.3) then
actually f ∈ L. Now observe that, due to the special form of the roots of Sn, any (nonempty)
basic flat contains a vector with integral coordinates. By Theorem 3.4 we may thus assume that
f ∈ Z

n, and thus Theorem 4.1 gives us the Q we are looking for. �
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4.3. Young orthogonal form

This subsection contains explicit representation matrices, which are deduced from the pre-
vious analysis. In particular, it is shown that all irreducible Sn-representations may be obtained
from our construction (Theorem 4.11).

Let K ⊆ Sn be a convex set and let f be an integer K-generic vector. Consider the Sn-
representation ρ

f

id. By Corollary 4.6, a basis B of the representation space of ρ
f

id may be indexed
by the set of standard Young tableaux of a certain shape.

Corollary 4.10 (Young orthogonal form for skew shapes). Let Q0 be a standard Young tableau
of skew shape λ/μ (μ possibly empty), let f ∈ Z

n satisfy �f = � cont(Q0), and let ρ := ρ
f

id.
Then the ρ-action of the generators of Sn on the basis B is given by

ρsi (vQ) = 1

h(i)
vQ +

√
1 − 1

h(i)2
vQsi (1 � i < n, vQ ∈ B),

where h(i) := c(i + 1) − c(i) in Q, and Qsi is the tableau obtained from Q by interchanging i

and i + 1.

Proof. Combine Theorem 2.7 with Theorem 4.5 and Eq. (5), noticing that, by definition, h(i) =
� cont(Q)i . �
Theorem 4.11. Let Q0 be a standard Young tableau of skew shape λ/μ (μ possibly empty). If
f ∈ Z

n satisfies �f = � cont(Q0) then

ρ
f

id
∼= Sλ/μ,

where Sλ/μ is the skew Specht module corresponding to λ/μ.

Proof. For a skew shape λ/μ the representation matrices of the generators in Corollary 4.10 are
identical to those given by the classical Young orthogonal form (Theorem 2.1). �
Corollary 4.12. The complete list of minimal AY representations of the symmetric group Sn is
given (up to isomorphism) by the skew Specht modules Sλ/μ, where λ/μ is of order n (and μ

possibly empty).
In particular, every irreducible representation of the symmetric group Sn may be realized as

a minimal abstract Young representation.

5. The irreducibles representations of Bn are AY

We begin with the following lemma.

Lemma 5.1. Let (W,S) be a finite Coxeter system and let J1, J2 be disjoint subsets of S. Let
(K1, ρ1) and (K2, ρ2) be minimal AY pairs for WJ1 and WJ2 , respectively, and let WJ1∪J2 be
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the set of representatives of minimal length of the right cosets of the parabolic subgroup WJ1∪J2

in W . Then

(
K1K2W

J1∪J2, (ρ1 ⊗ ρ2)↑W
WJ1×WJ2

)
is a minimal AY pair for W .

Proof. By the definition of a minimal AY pair, (K1K2, ρ1 ⊗ ρ2) is a minimal AY pair for
WJ1WJ2 = WJ1∪J2 . The lemma now follows from Theorem 2.8. �

Let λ be a partition of k (1 � k � n − 1), μ a partition of n − k, P a standard Young tableau
of shape λ on the letters 1, . . . , k, and Q a standard Young tableau of shape μ on the letters
k + 1, . . . , n. Denote by S[i,j ] the symmetric group on the letters i, i + 1, . . . , j .

Definition 5.2. A shuffle of a permutation π ∈ S[1,k] with a permutation σ ∈ S[k+1,n] is a permuta-
tion τ ∈ Sn such that the letters 1, . . . , k appear in (τ (1), . . . , τ (n)) in the order (π(1), . . . , π(k))

and the letters k + 1, . . . , n appear in (τ (1), . . . , τ (n)) in the order (σ (k + 1), . . . , σ (n)).

Corollary 5.3. The set of all shuffles of permutations from

{
π ∈ S[1,k] | P π−1

is standard
}

with permutations from

{
σ ∈ S[k+1,n] | Qσ−1

is standard
}

is a minimal AY cell in Sn, which carries a minimal AY representation isomorphic to the outer
product (Sλ ⊗ Sμ)↑Sn

Sk×Sn−k
.

Proof. Denote by Ωk,n the set of all shuffles of (1, . . . , k) with (k + 1, . . . , n): Ωk,n = {τ ∈ Sn |
τ−1(j) < τ−1(j + 1), ∀j �= k}. It is well known that Ωk,n is the set of all representatives of
minimal length of right cosets of S[1,k] ×S[k+1,n] in Sn. The set considered in the corollary is the
product

{
π ∈ S[1,k] | P π−1

is standard
} · {σ ∈ S[k+1,n] | Qσ−1

is standard
} · Ωk,n.

The corollary now follows from Theorems 4.5 and 4.11 together with Lemma 5.1. �
Denote the set of all shuffles considered in Corollary 5.3 by BP,Q and the associated AY

representation by ρ. The representation matrices of the Coxeter generators of Sn on VBP,Q
are

given by

Corollary 5.4. For all 1 � i < n and π ∈ BP,Q,

ρsi Cπ =
{

Cπsi , if either π(i) � k < π(i + 1) or π(i + 1) � k < π(i);
1

h(π,i)
Cπ +

√
1 − 1

2 Cπsi , otherwise,

h(π,i)
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where h(π, i) := c(π(i + 1)) − c(π(i)) in P if both π(i) and π(i + 1) are � k, and in Q if both
are > k.

Proof. Use Remark 2.9 with W = Sn and J = {s1, . . . , sn−1} \ {sk}. Note that if π = mr , where
m ∈ S[1,k] × S[k+1,n] and r is a shuffle in WJ = Ωk,n, then rsi ∈ Ωk,n if and only if either
π−1(i) � k < π−1(i + 1) or π−1(i + 1) � k < π−1(i). The coefficients in the case rsi /∈ Ωk,n

are determined, by Remark 2.9 together with Theorem 4.1 and Corollary 4.10, by the content
vectors of P and Q. �

We will show now that the subset BP,Q ⊆ Sn is a minimal AY cell in Bn, when Sn is naturally
embedded in Bn as a maximal parabolic subgroup.

Proposition 5.5. The subset BP,Q ⊆ Bn is a minimal AY representation of Bn, where the action
of the simple reflections si , 1 � i < n, is determined as in Corollary 5.4 and the action of s0 is
determined by

ρs0Cπ =
{

Cπ, if π(1) � k;
−Cπ, otherwise.

Proof. By Corollaries 5.3 and 5.4 it suffices to verify the relations involving s0. Clearly, ρs0 com-
mutes with ρsi for all i > 1 since πsi(1) = π(1) for all i > 1. To verify the relation (ρs0ρs1)

4 = 1
we have to check four cases:

(1) If π(1) and π(2) are � k then both Cπ and Cπs1 are invariant under ρs0 ; thus (ρs0ρs1)
2Cπ =

ρ2
s1

Cπ = Cπ .
(2) If π(1) and π(2) are > k then both Cπ and Cπs1 are eigenvectors of ρs0 with eigenvalue −1;

thus again (ρs0ρs1)
2Cπ = (−ρs1)

2Cπ = Cπ .
(3) If π(1) � k and π(2) > k then ρs0Cπ = Cπ , ρs0Cπs1 = −Cπs1 , ρs1Cπ = Cπs1 , and

ρs1Cπs1 = Cπ ; thus

(ρs0ρs1)
2Cπ = ρs0ρs1ρs0Cπs1 = −ρs0ρs1Cπs1 = −ρs0Cπ = −Cπ.

Hence, (ρs0ρs1)
4Cπ = Cπ .

(4) The case π(1) > k and π(2) � k is similar to Case (3) and is left to the reader. �
We deduce

Theorem 5.6. All the irreducible representations of the classical Weyl group Bn are minimal AY.

Proof. As before, let λ be a partition of k, μ a partition of n − k, P a standard Young tableau
of shape λ on the letters 1, . . . , k and Q a standard Young tableau of shape μ on the letters
k + 1, . . . , n. There is a natural bijection between all pairs of standard Young tableaux of shapes
λ and μ and elements in the subset BP,Q : (P,Q)π ↔ π−1, where (P,Q)π is the ordered pair
of tableaux obtained from (P,Q) by replacing each entry i by π(i). The Young orthogonal
form presented in Proposition 5.5 reduces to the classical one given in Theorem 2.2, along this
bijection. �
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6. Top elements

This section is motivated by the following reformulation of a theorem of Kriloff and Ram,
based on results of Loszoncy [12].

Theorem 6.1. [11, Theorem 5.2] Let W be a crystallographic reflection group. Then every min-
imal AY cell is a left translate of an interval (in the right weak Bruhat poset).

Remark 6.2. By [1, Observation 3.3], one can assume that the intervals are of the form [id,w].

Definition 6.3. An element w ∈ W is a top element if the interval [id,w] is a minimal AY cell
which carries an irreducible AY representation of W .

The goal of this section is to characterize the top elements in the symmetric group Sn.

Definition 6.4. Let Q be a standard skew Young tableau:

(1) Q is a row (column) tableau if and only if the entries in each row (column) are larger than
the entries in all preceding rows (columns).

(2) The row word of Q is obtained by reading Q row by row from right to left. The column
word of Q is obtained by reading Q column by column from bottom to top.

Example 6.5. The tableau

1 2 3
4 5

is a row tableau. Its row word is the permutation [3,2,1,5,4] ∈ S5 and its column word is
[4,1,5,2,3] ∈ S5.

Our result is that there is a bijection between top elements of Sn and partitions of n. More
explicitly:

Theorem 6.6. A permutation π ∈ Sn is a top element if and only if π is the column word of a row
standard Young tableau of shape λ, where λ is a partition of n.

To prove this theorem we need the following lemma.

Lemma 6.7. Let Q be a standard Young tableau of order n. The set {π ∈ Sn | Qπ−1
is standard}

is an interval in the right weak Bruhat order if and only if Q is either a row tableau or a col-
umn tableau. The maximal element in the interval is the column (respectively, row) word of the
tableau.

Proof. Denote BQ := {π ∈ Sn| Qπ−1
is standard}.

First, we prove the easy direction. Assume that Q is a row tableau. By Theorem 4.9 and
Proposition 2.3, BQ is convex. Thus, to prove that BQ is an interval [id,π] it suffices to show that
there is a unique element π ∈ BQ such that πs /∈ BQ for all s /∈ Des(π). Indeed, if σ ∈ BQ and
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Qσ−1
is not the column tableau then there exists i (1 � i � n − 1) such that i + 1 is southwest

of i in Qσ−1
. In this case, σsi ∈ BQ and �(σ si) > �(σ ). If σ ∈ BQ and Qσ−1

is the column

tableau then there is no i (1 � i � n − 1) such that i + 1 is southwest of i in Qσ−1
. In this case,

if σsi ∈ BQ then �(σ si) < �(σ ). We conclude that the unique maximum σ is the column word
of the row tableau Q.

Similarly for a column tableau Q.
Now we prove the opposite direction. Assume that Q is a not a row or column tableau. We

will show that BQ has at least two maximal elements (with respect to right weak Bruhat order).
Thus, BQ is not an interval.

If the standard Young tableau Q is a not a row or column tableau then Q has at least two rows
and two columns. Without loss of generality, the letter 2 is in the first row (i.e., in box (1,2))
of Q. Then the letter in box (λ′

1,1) is bigger than 2.

To find the first maximal element, start with π ∈ BQ such that Qπ−1
is a column tableau and

proceed “up” in BQ. Observe that each step in this process is a right multiplication by si such
that the resulting permutation is in BQ and longer. To satisfy this, i and i + 1 could not be in the

same row or column in Qπ−1
(where at each step we substitute πsi := π ). Also, the letter of Q

in the box of i in Qπ−1
must be bigger than the letter of Q in the box of i + 1 in Qπ−1

. The letter
in (1,2) is the minimal one in the subtableau consisting all columns except the first one. Thus
cannot move along the process. We conclude

Claim 1. For every j , 1 � j � λ′
1 + 1, the position of the letter j is invariant under this process.

For j � λ′
1 the position is (j,1); the position of λ′

1 + 1 is (1,2).

Thus, we obtained one maximal element, which is determined by a tableau with 1, . . . , λ′
1 in

the first column.
As Q is not a row tableau there exists a minimal row j for which the letter in box (j, λj ) of

Q is bigger than the letter in box (j + 1,1). To find the second maximal element, start with a
permutation in BQ determined by the standard Young tableau of the same shape as Q, in which
the first letters are placed in the subshape {(a, b) | b � λj } in lexicographic order, and the rest are
placed in the remaining “upper right corner” in lexicographic order. We proceed “up” as before;
namely, by right multiplication by si such that the resulting permutation is in BQ and longer.

Claim 2. The set of boxes in which the letters 1, . . . , j · λj − 1 are located (in the resulting
tableau) and the locations of j · λj and j · λj + 1 are invariant under this process.

To verify this, it suffices to show that the location of j · λj + 1 is invariant under this process.
Indeed, notice that as long as j · λj + 1 is in the box (j + 1,1) j · λj must be located in box
(j, λj ) (as it cannot switch with j · λj − 1 which is located either in same row or column of
j · λj ). But the letters in boxes (j + 1,1) and (j, λj ) of Q are in reverse order; thus replacing
j · λj + 1 with j · λj will shorten the permutation (and is not “up”!).

We also cannot replace j ·λj + 1 with j ·λj + 2. To verify this notice that j ·λj + 2 has three
possible locations during our process: (j + 1,2), (j + 2,1) and (1, λj + 1). If it is located in box
(j + 1,2) then it is in the same row as j · λj + 1, and thus switching them gives a nonstandard
tableau; thus sends us out of BQ. If it is located in box (j + 2,1) then it is in the same column
as j · λj + 1, and thus switching them sends us out of BQ. So, we may assume that j · λj + 2
is located in box (1, λj + 1). In this case j > 1 and, by the definition of j , the letter in box
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(1, λj + 1) of Q is less than the letter in box (2,1) of Q which is, in turn, less than the letter in
box (j + 1,1). Thus we cannot switch j · λj + 1 and j · λj + 2 in this case as well.

To complete the proof, notice that the letter in box (λ′
1,1) in the first maximal tableau is λ′

1,
while in the second maximal tableau it is bigger. Thus the processes determine two different
maximal tableaux. �
Proof of Theorem 6.6. By Corollary 4.12, the derived content vector of a standard Young
tableau of shape λ/μ gives an irreducible representation if and only if μ is the empty parti-
tion. This fact together with Theorem 4.9 imply that σ ∈ Sn is a top element if and only if
[id, σ ] = {π ∈ Sn | Qπ−1

is standard} for some standard tableau Q. Lemma 6.7 completes the
proof. �
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