COMMUNICATION

BIPARTITE CUBIC GRAPHS AND A SHORTNESS EXPONENT

P.J. OWENS

Mathematics Department, University of Surrey, Guildford, Surrey, U.K.

Communicated by N.L. Biggs
Received 7 December 1982

The class of 3-connected bipartite cubic graphs is shown to contain a non-Hamiltonian graph with only 78 vertices and to have a shortness exponent less than one.

In this paper, a graph is a simple undirected graph and a subgraph is an induced subgraph. For any graph G, $v(G)$ denotes the number of vertices and $h(G)$ the length of a maximum cycle. In a bipartite graph, the vertices of the two sets in the bipartition are called x-vertices and y-vertices. The shortness exponent $\sigma(\mathcal{G})$ of a class of graphs \mathcal{G} is defined (as in [3]) by

$$\sigma(\mathcal{G}) = \liminf_{G \in \mathcal{G}} \frac{\log h(G)}{\log v(G)}.$$

Given a graph G with a subgraph H, a cycle in G spans H if it contains all the vertices of H. The edges that join H to $G-H$ are called the linking edges of H but are not regarded as part of H (or of $G-H$).

We prove the following theorem.

Theorem. Let \mathcal{B} be the class of all 3-connected bipartite cubic graphs. Then

1. there is a non-Hamiltonian graph J_1 in \mathcal{B} with only 78 vertices,
2. $\sigma(\mathcal{B}) < \log 38/\log 39 < 1$.

J.D. Horton has constructed non-Hamiltonian graphs in \mathcal{B} with 96 vertices (see [2, p. 240]) and 92 vertices [4]. We use a similar construction. The generalised Petersen graph $G(8, 3)$, shown in Fig. 1(1), is bipartite and has the property that every spanning cycle in it contains both or neither of the edges e and f. Let H be the subgraph obtained from $G(8, 3)$ by deleting the edges e and f. In Fig. 1(2), the dotted lines inside the circle which represents H show which pairs of vertices were joined by e and f in $G(8, 3)$. The linking edges of H are shown as ‘dangling’ edges.
We now show that H has the property (which we call $\mathcal{P}(H)$) that if G is any bipartite graph with H as a subgraph and if C is any cycle in G which spans H, then C contains both or neither of the linking edges e_i and f_i (for $i = 1, 2$). In fact, C must contain an even number of the linking edges of H and if this number is zero or four there is nothing to prove. Thus we may suppose that C contains e_1 and exactly one other linking edge. This other edge is not e_2, otherwise the above property of $G(8, 3)$ would require f_1 and f_2 to be in C also. It cannot be f_2 because x- and y-vertices occur alternately in C and $v(H)$ is even. Hence f_1 is in C and this proves $\mathcal{P}(H)$.

Let I denote the bipartite cubic graph shown in Fig. 2. It contains two copies of H. Every spanning cycle C in I contains at least two of the linking edges. By symmetry, we may suppose that C contains e_1 and e_2 and then $\mathcal{P}(H_1)$ implies that C contains e_3 and e_4 also. Thus C contains all four linking edges. Now delete the two vertices at which e_1 is incident and denote the subgraph which remains by L. It has the property (which we call $\mathcal{P}(L)$) that if G is any bipartite graph with L as a subgraph and if C is a cycle in G which spans L but does not lie entirely in L, then C contains exactly two of the linking edges of L, one incident at an x-vertex of L and the other at a y-vertex. Note that $v(L) = 2v(H) - 2 = 30$ and that our construction so far is as in [4].

![Fig. 1. $G(8, 3)$ and H.](image1.png)

![Fig. 2. The graph I.](image2.png)
Now let J_1 be the graph shown in Fig. 3. It contains two copies of L, one copy of H and two extra vertices x_0 and y_0, so $v(J_1) = 78$. Clearly J_1 is 3-connected, bipartite and cubic, so $J_1 \in \mathcal{B}$. We claim that J_1 is non-Hamiltonian. In fact, suppose that J_1 has a spanning cycle C. Since C must join x_0 to H, we may assume (by symmetry) that edges 1, 6 are in C. It follows from $\mathcal{P}(L_1)$ that edges 2, 7 are not in C. Since y_0 is in C, edges 5, 4 are in C and therefore edge 3 is not. By $\mathcal{P}(L_2)$, edge 8 is in C and edge 9 is not. Thus edges 6, 8 are in C and edges 7, 9 are not, which is contrary to $\mathcal{P}(H)$. Hence no such cycle exists and J_1 is non-Hamiltonian. As J_1 is bipartite, every cycle in it is even, so $h(J_1) \leq 76$. In fact the equality holds, since it is easy to find a cycle of length 76 in J_1.

Define $X = J_1 - y_0$, as in Fig. 3. Every path through X omits at least one x-vertex and one y-vertex. We construct an infinite sequence (J_n) of graphs in \mathcal{B} as follows. For $n \geq 1$, let J_{n+1} be the graph obtained from J_n when all its x-vertices are simultaneously replaced by copies of X. Clearly \mathcal{B} is closed under the substitution $x \rightarrow X$, so $J_n \in \mathcal{B}$ for all n. As J_1 and X each contain 39 x-vertices, there are 39^n x-vertices in J_n. As every cycle in J_1 or path through X omits at least one x-vertex, at most 38^n x-vertices of J_n lie in any one cycle. Since $v(X) = 77$ and a path through X contains at most 75 vertices, we have two recurrence relations.

$$v(J_{n+1}) - v(J_n) = 39^n(77 - 1), \quad h(J_{n+1}) - h(J_n) \leq 38^n(75 - 1).$$

These relations, together with the known values of $v(J_1)$ and $h(J_1)$, lead to

$$v(J_n) = 39^n \cdot 2, \quad h(J_n) \leq 38^n \cdot 2$$

and it follows that

$$\sigma(\mathcal{B}) \leq \lim_{n \to \infty} \frac{\log h(J_n)}{\log v(J_n)} \leq \log 38 / \log 39 < 1.$$

This completes the proof.

Remark. Barnette's conjecture [1], that every 3-connected bipartite cubic planar graph is Hamiltonian, remains open; the graph J_1 is far from being planar.
References

