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Abstract

In this paper, the linear conforming finite element method for the one-dimensional Bérenger’s PML boundary is investigated and
well-posedness of the given equation is discussed. Furthermore, optimal error estimates and stability in the L2 or H 1-norm are
derived under the assumption that h, h2�2 and h2�3 are sufficiently small, where h is the mesh size and � denotes a fixed frequency.
Numerical examples are presented to validate the theoretical error bounds.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The idea of a perfectly matched layer (PML) was introduced in [1]. It is intended for constructing the absorbing layer
in the truncated computational domain. The PML technique is now widely used for simulating the propagation of waves
in unbounded domains, particularly in the field of acoustics, elastodynamics and electromagnetics [6,8,15,19,21]. They
studied the behavior of exact solution of the wave equation, elastic equation and Maxwell equation with PML in the
time or frequency domain and the stability and error estimate with respect to the parameters of the layers.

As another way to absorb the scattered wave, the absorbing boundary condition using Taylor expansion or Padé
approximation [5] has been used. It was first introduced in [5,12] in 1970s, who applied the first-order absorbing
boundary condition in acoustic and elastic wave equations. The absorbing boundary condition has been applied to
several equations, e.g., viscoelastic equation [18,13], Maxwell’s equations [20,14]. Sheen et al. studied not only the
behavior of exact solution, but also the regularity of the approximated solutions. In particular, with the first-order
absorbing boundary condition in the frequency domain, Douglas et al. [9,10], Feng et al. [7] and Babuska and Ihlenburg
[15–17] developed the error analysis and regularity theorem for acoustic and elastic equations. They proved that the
L2-or H 1-norm errors between the true solution and finite element solution are significantly dependent on the wave
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number. Recently, Chen et al. [3,4] derived a posteriori error estimation and applied the adaptivity to Helmholtz equation
with PML boundary.

However, to our knowledge, there has not been any error analysis, nor stability done on the wave equation with
Bérenger PML boundary in frequency domain. Therefore, in this paper, we will attempt to demonstrate the existence
and uniqueness of the solution for the wave equation with Bérenger PML in the frequency domain and find the regu-
larity order in error analysis and stability in H 1-norm. The difficulties in finding the regularity coefficient are due to
the fact that the bilinear form associated with the problem is not coercive. To overcome this difficulty, we used the
boot-strapping argument [9–11,13] and attempted to obtain the regularity estimate depending on the frequency and
damping function. These results are discussed in detail in Sections 2–4, respectively. Results from the PML boundary
simulations and comparison with absorbing boundary condition are presented in Section 5 and conclusions follow
in Section 6.

2. PML Helmholtz equation and weak formulation

Let us consider a one-dimensional wave equation in the time domain

1

c2

�2u(x, t)

�t2 − �2u(x, t)

�x2 = f (x, t), x ∈ R1, t > 0, (2.1)

where c = c(x) is the wave speed and f (x, t) is the external source function. With the Fourier transformation and
normalizing the wave speed to one, a one-dimensional Helmholtz problem can be obtained in the frequency domain as

− �2û(x, �) − �2û(x, �)

�x2 = f̂ (x, �), x ∈ R1,

lim
r→∞ r

(
�û(x, �)

�r
− i�û(x, �)

)
= 0, (2.2)

where r = |x| and

û(x, �) = 1

2�

∫ ∞

−∞
u(x, t)e−i�t dt .

For the sake of notation brevity, we write û(x, �) as u(x, �). By setting �c = (0, 1) and �∞ = (−�, 1 + �) with � > 0
being the open ball containing �c, we let

x̃(x, �) = x + i

�

∫ x

0
�(s) ds, x ∈ �∞, (2.3)

where �(x) = 0 in �c and �(x) are the smooth, nonzero and nonnegative function. From this, it is easy to confirm that

�x̃(x, �)

�x
= 1 + i

�
�(x) := �̃(x, �). (2.4)

The truncated PML Helmholtz equation is as follows :

− �2u(x, �)�̃(x, �) − �

�x

(
1

�̃(x, �)

�u(x, �)

�x

)
= f (x, �),

x ∈ �∞, u(x, �) = 0, x ∈ ��∞. (2.5)

We denote as L2(�∞) the complex Hilbert spaces of square integrable functions in �∞ with the inner product (·, ·).
Let H 1(�∞) = {v ∈ L2(�∞) : |∇v| ∈ L2(�∞)} and H 1

0 (�∞) = {v ∈ H 1(�∞) : v = 0 in ��∞}. The L2(�∞)-norm,
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H 1
0 (�∞)-seminorm and H 1

0 (�∞)-norm are defined by

‖u‖0 =
[∫

�∞
u(x)u(x) dx

]1/2

, |u|1 =
[∫

�∞

�u(x)

�x

�u(x)

�x
dx

]1/2

,

‖u‖1 =
[
‖u‖2

0 + |u|21
]1/2

,

respectively. Set the sesquilinear form ��(·, ·) as

��(v, w) = −�2
∫
�

v(x)w(x)�̃(x, �) dx +
∫
�

�v(x)

�x

�w(x)

�x

1

�̃(x, �)
dx.

Then, a weak form of (2.5) can be defined by finding a solution u(·, �) ∈ H 1
0 (�∞) of

��(u(·, �), v) = (f (·, �), v), v ∈ H 1
0 (�∞). (2.6)

Lemma 2.1. For � �= 0, there exists a unique solution of (2.6) for any f (x, �).

Proof. For uniqueness, assume that f (x, �) = 0, Then, with v = u in (2.6),

−�2
∫
�∞

u(x, �)u(x, �)�̃(x, �) dx +
∫
�∞

�u(x, �)

�x

�u(x, �)

�x

1

�̃(x, �)
dx = 0. (2.7)

Since

Re ��(u, u) = −�2
∫
�∞

|u(x, �)|2 dx +
∫
�∞

∣∣∣∣�u(x, �)

�x

∣∣∣∣
2 1

|�̃(x, �)|2 dx, (2.8)

Im ��(u, u) = −�
∫
�∞

|u(x, �)|2�(x) dx −
∫
�∞

∣∣∣∣�u(x, �)

�x

∣∣∣∣
2 �(x)

�|�̃(x, �)|2 dx, (2.9)

we know that from (2.9),∫
�∞

|u(x, �)|2�(x) dx = 0,

∫
�∞

∣∣∣∣�u(x, �)

�x

∣∣∣∣
2 �(x)

|�̃(x, �)|2 dx = 0.

Since �(x) is a positive function in �∞\�c, we know that u(x, �)=0 and �u(x, �)/�x=0 in �∞\�c. Then u(x, �) ≡ 0
because of the uniqueness for the initial value problem.

For existence, (2.8) implies the GAArding’s inequality [2]:

Re ��(u, u) + K(�)‖u‖2
L2(�∞)

�M‖u‖2
H 1

0 (�∞)
, (2.10)

where K and M are constants. From (2.10), the existence can be proven. �

3. Error estimates for conforming finite element method

With the help of Appendix A, if g(x, �, �) = G(x, �, �),

u(x, �) =
∫
�∞

g(x, �, �)f (�, �) d�, x ∈ �∞.

Lemma 3.1. For � > 0,

(a) ‖u(·, �)‖0 �C(1/�)‖f (·, �)‖0,
(b) ‖�u(·, �)/�x‖0 �C‖�̃(·, �)‖∞‖f (·, �)‖0,
(c) ‖�2u(·, �)/�x2‖0 �C(‖�̃(·, �)‖∞ + �‖�̃(·, �)‖2∞)‖f (·, �)‖0,

where C does not depend on the frequency �.
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Proof. The estimates for u and �u/�x follow immediately from Appendix A. And

�2u(x, �)

�x2 = − �̃(x, �)f (x, �) − �2�̃(x, �)2u(x, �) − �̃(x, �)

(
�

�x

1

�̃(x, �)

)
�u(x, �)

�x

= − �̃(x, �)f (x, �) − �2�̃(x, �)2u(x, �) + (i/�)�′(x)

�̃(x, �)

�u(x, �)

�x
.

Therefore,

∥∥∥∥�2u(·, �)

�x2

∥∥∥∥
0
�‖�̃(·, �)‖∞‖f (·, �)‖0 + �2‖�̃(·, �)‖2∞‖u(·, �)‖0

+

∥∥∥∥∥∥∥
�′

�
√

1 + (1/�2)�2

∥∥∥∥∥∥∥∞

∥∥∥∥�u(·, �)

�x

∥∥∥∥
0

�C

(
‖�̃(·, �)‖∞‖f (·, �)‖0 + �2‖�̃(·, �)‖2∞

1

�
‖f (·, �)‖0

+C1‖�̃(·, �)‖∞‖f (·, �)‖0

)
= C2(‖�̃(·, �)‖∞ + �‖�̃(·, �)‖2∞)‖f (·, �)‖0. �

Dividing �∞ into the subdivisions [xj , xj+1], j = 0, . . . , N − 1 with x0 = −� and xN = 1 + �, and Vh = {v ∈
C0(�∞)|v ∈ P1([xj , xj+1]), j = 0, . . . , N − 1, v(x0) = v(xN) = 0}, where P1 is the space of polynomials of degree 1
or less on �∞ and h = (1 + 2�)/N . The discretized formulation of approximation solution can be written as follows:
find uh(·, �) ∈ Vh such that

��(uh(·, �), v) = (f (·, �), v), v ∈ Vh.

Theorem 3.2. Suppose � > 0 and h, h2�2, h2�3 are small. Then

(a) ‖(u − uh)(·, �)‖0 �C‖�̃(·, �)‖2∞(‖�̃(·, �)‖∞ + �‖�̃(·, �)‖2∞)2‖f (·, �)‖0h
2,

(b) ‖(�(u − uh)/�x)(·, �)‖0 �C‖�̃(·, �)‖2∞(‖�̃(·, �)‖∞ + �‖�̃(·, �)‖2∞)‖f (·, �)‖0h,

where C1 and C2 are dependent on only �.

Proof. For the sake of notation brevity, we write simply u(x, �), v(x, �), 	(x, �) and �̃(x, �) as u(x), v(x), 	(x) and
�̃(x), respectively. Let 	 = u − uh. Then

−�2
∫
�∞

	(x)v(x)�̃(x) dx +
∫
�∞

�	(x)

�x

�v(x)

�x

1

�̃(x)
dx = 0, v ∈ Vh. (3.1)

We shall employ the duality to bound the L2-norm of 	 in terms of its H 1
0 -norm. There exists 
 ∈ H 2

0 (�∞) such that

− �2
∫
�∞

z(x)
(x)�̃(x) dx +
∫
�∞

�z(x)

�x

�
(x)

�x

1

�̃(x)
dx

=
∫
�∞

z(x)	(x) dx, z ∈ H 1
0 (�∞). (3.2)
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Taking z = 	 gives∫
�∞

	(x)	(x) dx = −�2
∫
�∞

	(x)
(x)�̃(x) dx +
∫
�∞

�	(x)

�x

�
(x)

�x

1

�̃(x)
dx. (3.3)

And, for v ∈ Vh, with the help of (3.1),∫
�∞

|	(x)|2dx = −�2
∫
�∞

	(x)(
 − v)(x)�̃(x) dx +
∫
�∞

�	(x)

�x

�(
 − v)(x)

�x

1

�̃(x)
dx. (3.4)

Thus, ∫
�∞

|	(x)|2 dx��2
(∫

�∞
|	(x)�̃(x)|2 dx

)1/2(∫
�∞

|
(x) − v(x)|2 dx

)1/2

+
(∫

�∞

∣∣∣∣�	(x)

�x

1

�̃(x)

∣∣∣∣
2

dx

)1/2(∫
�∞

∣∣∣∣�(
 − v)(x)

�x

∣∣∣∣
2

dx

)1/2

.

Then, we know that the piecewise-linear interpolant of 
 gives the bounds

‖
 − v‖0 �C2‖
xx‖0h
2 �C2(‖�̃‖∞ + �‖�̃‖2∞)‖	‖0h

2,∥∥∥∥�(
 − v)

�x

∥∥∥∥
0
�C3‖
xx‖0h�C3(‖�̃‖∞ + �‖�̃‖2∞)‖	‖0h.

Thus,

‖	‖0 �C(‖�̃‖∞ + �‖�̃‖2∞)

[
h2�2‖	�̃‖0 +

∥∥∥∥�	(x)

�x

1

�̃(x)

∥∥∥∥
0

h

]
,

where C = max(C2, C3). For h, h2�2 and h2�3 small,

‖	‖0 �A

(∫
�∞

∣∣∣∣�	(x)

�x

1

�̃(x)

∣∣∣∣
2

dx

)1/2

h, A = A0(‖�̃‖∞ + �‖�̃‖2∞),

where A0 is a computable constant.
Next, we know that∫

�∞

∣∣∣∣�	(x)

�x

1

�̃(x)

∣∣∣∣
2

dx�
∫
�∞

∣∣∣∣�	(x)

�x

∣∣∣∣
2

dx�‖�̃‖2∞

∣∣∣∣∣
∫
�∞

∣∣∣∣�	(x)

�x

∣∣∣∣
2 1

�̃
dx

∣∣∣∣∣ .

For suitable zh ∈ Vh,∥∥∥∥�	

�x

∥∥∥∥
2

0
=
∫
�∞

∣∣∣∣�	(x)

�x

∣∣∣∣
2

dx

�‖�̃‖2∞

∣∣∣∣∣
∫
�∞

[
�	

�x

�(u − zh)

�x

1

�̃
+ �	

�x

�(zh − uh)

�x

1

�̃

]
dx

∣∣∣∣∣
�‖�̃‖2∞

∣∣∣∣∣
∫
�∞

[
�	

�x

�(u − zh)

�x

1

�̃
+ �2	(zh − uh)�̃

]
dx

∣∣∣∣∣
�‖�̃‖2∞

[∫
�∞

∣∣∣∣∣ �	

�x

�(u − zh)

�x

1

�̃

∣∣∣∣∣ dx + �2
∫
�∞

|	(u − zh)�̃| dx + �2
∫
�∞

‖	|2�̃| dx

]

�‖�̃‖2∞
[∥∥∥∥ �	

�x

∥∥∥∥
0

∥∥∥∥�(u − zh)

�x

∥∥∥∥
0
+ �2‖�̃‖∞(‖	‖0‖u − zh‖0 + ‖	‖2

0)

]
.
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But,

‖	‖0‖u − zh‖0 + ‖	‖2
0 � 3

2
‖	‖2

0 + C

2
(‖�̃‖∞ + �‖�̃‖2∞)2‖f ‖2

0h
4,

∥∥∥∥�	

�x

∥∥∥∥
0

∥∥∥∥�(u − zh)

�x

∥∥∥∥
0
� 1

2‖�̃‖2∞

∥∥∥∥ �	

�x

∥∥∥∥
2

0
+ C

‖�̃‖2∞
2

(‖�̃‖∞ + �‖�̃‖2∞)2‖f ‖2
0h

2.

Therefore,

∥∥∥∥�	

�x

∥∥∥∥
2

0
�‖�̃‖2∞

[
C

‖�̃‖2∞
2

(‖�̃‖∞ + �‖�̃‖2∞)2‖f ‖2
0h

2

+�2‖�̃‖∞
(

3

2
‖	‖2

0 + C

2
(‖�̃‖∞ + �‖�̃‖2∞)2‖f ‖2

0h
4
)]

�C1�
2‖	‖2

0‖�̃‖3∞ + C2‖�̃‖2∞(‖�̃‖2∞ + �2h2‖�̃‖∞)(‖�̃‖2∞ + �2‖�̃‖4∞)‖f ‖2
0h

2.

For h2�2 and h sufficiently small,

∥∥∥∥�	

�x

∥∥∥∥
0
�C1�‖�̃‖3/2∞ ‖	‖0 + C‖�̃‖2∞(‖�̃‖∞ + �‖�̃‖2∞)‖f ‖0h. �

Remark 3.3. If � is sufficiently large, then ‖�̃(·, �)‖∞ ≈ 1. Therefore, for large �, Theorem 3.2 becomes

(a) ‖(u − uh)(·, �)‖0 �C(1 + �)2‖f (·, �)‖0h
2,

(b)

∥∥∥∥�(u − uh)

�x
(·, �)

∥∥∥∥
0
�C(1 + �)‖f (·, �)‖0h.

This is the same result of Douglas et al. [10].

4. Stability in H 1-norm

Let V be H 1
0 (�∞) and define the weighted inner product (·, ·)�̃ as

(u, v)�̃ =
∫
�∞

u(x)v(x)�̃(x, �) dx for u, v ∈ V .

Theorem 4.1. Let the Babuska–Brezzi stability constant � as follows:

� := inf
u∈V/{0} sup

v∈V/{0}
|��(u, v)|

|u(·, �)|1|v(·, �)|1 .

Then there exist positive constant C1 and C2 irrespective of � such that

C1

�
‖�̃(·, �)‖∞ ��� C2

�‖�̃(·, �)‖3∞
. (4.1)

Proof. For the sake of notation brevity, we write simply u(x, �), v(x, �) and �̃(x, �) as u(x), v(x) and �̃(x), re-
spectively. First, to give the proof of the left inequality of (4.1), we will show that there exists an element v ∈ V
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such that

|��(u, v)|� C2

�‖�̃‖3∞
|u|1|v|1. (4.2)

Let u ∈ V be given. Define v := u + z where z is the solution of the problem

��(w, z) = �2(w, u)�̃. (4.3)

Then we calculate the solution z as

z(x) = �2
∫
�∞

G(x, s)u(s)�̃(s) ds, (4.4)

where G(x, s) is the Green function for (2.5). Then

|��(u, v)|�Re(��(u, v))

= Re(��(u, u) + ��(u, z)) = Re(��(u, u) + �2(u, u)�̃)

= Re
∫
�∞

1

�̃(x)

∣∣∣∣�u(x)

�x

∣∣∣∣
2

dx =
∫
�∞

1

|�̃(x)|2
∣∣∣∣�u(x)

�x

∣∣∣∣
2

dx

� 1

‖�̃‖2∞

∫
�∞

∣∣∣∣�u(x)

�x

∣∣∣∣
2

dx = 1

‖�̃‖2∞
|u|21.

Now we integrate by parts (4.4),

z(x) = �2
(

H(x, 1 + �)u(1 + �) −
∫
�∞

H(x, s)u′(s) ds

)
,

where

H(x, s) :=
∫ s

0
G(x, t)�̃(t) dt .

Taking the absolute values, we get by triangular inequality

|z′(x)|��2(|Hx(x, 1)| + ‖Hx‖0)|u|1.

By direct computation (Appendix B),

|Hx(x, 1)|� C

�
‖�̃‖∞, ‖Hx‖0 � C

�
‖�̃‖∞.

Therefore

|z|1 �C�‖�̃‖∞|u|1.

Since v = u + z,

|v|1 � |u|1 + |z|1 �(1 + C0�‖�̃‖∞)|u|1 �C�‖�̃‖∞|u|1.

Therefore,

|u|1 � C

�‖�̃‖∞
|v|1.

To prove the lower bound, we find the function z0(x) ∈ V such that

|��(z0, v)|
|z0|1 � C

�
|v|1, ∀v ∈ V .
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Consider the function z0(x) = h(x̃(x)), where

h(x) = 
(x)
sin(�x)

�
, x ∈ �∞,

and 
 ∈ C∞(�∞) does not depend on � and is chosen that

z0(−�) = z0(1 + �) = z′
0(−�) = z′

0(1 + �) = 0.

And we require the property |z0|1 �� for some � > 0. Then

|��(z0, v)|
|z0|1 � 1

�
|��(z0, v)| for all v ∈ V .

By partial integration, we obtain

�(z0, v) = −
∫
�∞

(
�2z0�̃ +

(
z′

0
1

�̃

)′)
v dx.

Direct computation shows that

�2z0�̃ +
(

z′
0

1

�̃

)′
=
[

′′(x̃(x))

sin(�x̃(x))

�
+ 2
′(x̃(x)) cos(�x̃(x))

]
�̃(x).

Define

u(x) :=
∫ x

−�

[

′′(x̃(s))

sin(�x̃(s))

�
+ 2
′(x̃(s)) cos(�x̃(s))

]
�̃(s) ds.

By partial integration, u(x) is rewritten as

u(x) = −
∫ x

−�

′′(x̃(s))

sin(�x̃(s))

�
�̃(s) ds + 2

�

′(x̃(x)) cos(�x̃(x)). (4.5)

Then

|��(z0, v)| =
∣∣∣∣u(1 + �)v(1 + �) −

∫
�∞

u(x)v′(x) dx

∣∣∣∣ �(|u(1 + �)| + ‖u‖0)|v|1.

We can easily see that

|u(1)|� 1

�
‖
′′‖∞‖�̃‖∞

and

‖u‖0 � 1

�
(‖
′′‖∞ + 2‖
′‖∞)‖�̃‖∞.

Consequently,

|��(z0, v)|� C

�
|v|1‖�̃‖∞, ∀v ∈ V. �

Theorem 4.2. Let the stability constant �h for discrete Babuska–Brezzi condition as follows:

�h := inf
uh∈Vh/{0} sup

vh∈Vh/{0}
|��(uh, vh)|

|uh(·, �)|1|vh(·, �)|1 .
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Then there exist positive constant C1 and C2 not depending on � such that

C1

�
‖�̃(·, �)‖∞ ��h � C2

�‖�̃(·, �)‖3∞
. (4.6)

Proof. This is similar to Theorem 4.1 and [16]. �

5. Numerical results

In this section, we present numerical experiments about the Helmhlotz equation with Bérenger PML boundary
condition (2.5). In our experiments, we take �c = (0, 1) and �∞ = (−�, 1 + �) with � = 0.1. The damping function
�(x) is given as

�(x) =

⎧⎪⎨
⎪⎩

103x2, −0.1�x�0,

0, 0�x�1,

103(x − 1)2, 1�x�1.1.

Let us define that the relative error norms of the FEM-solution uh is

E0
h := ‖(u − uh)(·, �)‖0

‖f (·, �)‖0
, E1

h := |(u − uh)(·, �)|1
|f (·, �)|1 .

Then, from Theorem 3.2,

E0
h ≈ C‖�̃(·, �)‖2∞(‖�̃(·, �)‖∞ + �‖�̃(·, �)‖2∞)2h2,

E1
h ≈ C‖�̃(·, �)‖2∞(‖�̃(·, �)‖∞ + �‖�̃(·, �)‖2∞)h,

where � > 0 and h, h2�2, h2�3 are small. For numerical experiment, the exact solution was employed as u(x, �) =
� exp(i�x̃(x, �)) +  exp(−i�x̃(x, �)) − (1/�2)x̃(x, �). Here, � and  are the solutions of the following linear
system (5.1):

� exp(i�a) +  exp(−i�a) − 1

�2 a = 0,

� exp(i�b) +  exp(−i�b) − 1

�2 b = 0, (5.1)

where a= x̃(−0.1, �) and b= x̃(1.1, �). The choice of � and  implies that u(x, �) is the solution of Dirichlet boundary
value problem (2.5). And the source function f is generated by the true solution u, which becomes to x̃(x, �)�̃(x, �).
Fig. 1 represents the log–log plots of the E0 and E1 according to increasing frequency �. We know that for small value
of frequency �, the behaviors of relative error norms are similar to (1 + K/�2)(

√
1 + K/�2 + �(1 + K/�2))2 or

(1 + K/�2)(
√

1 + K/�2 + �(1 + K/�2)) , which K = ‖�̃(·, �)‖2∞.

6. Conclusion

For one-dimensional Helmholtz equation with first-order absorbing boundary condition, Douglas et al. [9] developed
the error analysis in L2 and H 1-norms. The analyses of this paper are a straight forward adaptation of ones of [9,16]. We
trace the damping factor � in the error bound and have proved the optimal error estimates and stability in both L2 and
H 1-norm. In addition, we showed that these results agree well with the experimental ones. The study for the extension
to multi-dimensional wave equation with PML boundary condition in the frequency domain is quite straightforward.
However, for implementation, special care is needed and thus will be further investigated in our future research works.
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Fig. 1. (a) E0 according to increasing frequency �, (b) E1 according to increasing frequency �. x-axis represents frequency and y-axis shows the
relative errors. Each scale has units log10.

Appendix A. Green’s function

Let us construct the Green’s function G(x, �) for the operator L ≡ −((�/�x)(1/�̃(x, �))(�/�x) + �2�̃) subject to
the homogeneous boundary condition G(−�) = G(1 + �) = 0.

�

�x

(
1

�̃(x, �)

�

�x
G

)
+ �2�̃(x, �)G = −�(x − �), (A.1)

G(−�) = G(1 + �) = 0. (A.2)

Since the homogeneous solution of (A.1) are

sin(�x̃(x)), cos(�x̃(x)).
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Because of the boundary condition, we have to choose the following solution:

G(x, �) =
{

A(�) sin(�(x̃(x, �) − a)), x < �,

B(�) sin(�(b − x̃(x, �))), x > �,
(A.3)

where a = x̃(−�, �) and b = x̃(1 + �, �). Let us apply continuous condition and jump condition. They should be
continuous at x = �,

A(�) sin(�(x̃(�, �) − a)) = B(�) sin(�(b − x̃(�, �))). (A.4)

From the jump condition, we can derive that

1

�̃(x, �)

�G(x, �)

�x

∣∣∣∣
�+0

− 1

�̃(x, �)

�G(x, �)

�x

∣∣∣∣
�−0

= −1. (A.5)

Applying (A.5) to (A.3), we get the following coefficients of Green’s function:

A(�) = sin(�(b − x̃(�, �)))

� sin(�(b − a))
, B(�) = sin(�(x̃(�, �) − a))

� sin(�(b − a))
. (A.6)

Therefore Green’s function of (A.1) becomes

G(x, �) =

⎧⎪⎪⎨
⎪⎪⎩

sin(�(b − x̃(�, �)))

� sin(�(b − a))
sin(�(x̃(x, �) − a)), x < �,

sin(�(x̃(�, �) − a))

� sin(�(b − a))
sin(�(b − x̃(x, �))), x > �.

(A.7)

Taking the derivative of G(x, �, �) gives

�G(x, �)

�x
=

⎧⎪⎪⎨
⎪⎪⎩

sin(�(b − x̃(�, �)))

sin(�(b − a))
cos(�(x̃(x, �) − a))�̃(x, �), x < �,

− sin(�(x̃(�, �) − a))

sin(�(b − a))
cos(�(b − x̃(x, �)))�̃(x, �), x > �.

(A.8)

Appendix B. Estimation of |H(x, 1 + ε)| and ‖Hx‖0

We can calculate easily the following lemma.

Lemma B.1. For all x ∈ �∞,

(a) M0 � | sin(�(b − a))|�
√

1 + M2
0 ,

(b) | sin(�(x̃(x) − a))|�
√

1 + M2
0 ,

(c) | sin(�(b − x̃(x)))|�
√

1 + M2
0 ,

where M0 = sinh(
∫
�∞ �(s) ds).
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From (A.8),

|H(x, 1 + �)| =
∣∣∣∣∣
∫ 1+�

−�

�G

�x
(x, t)�̃(t, �) dt

∣∣∣∣∣=
∣∣∣∣
∫ 1+�

−�

�G

�x
(x, t)�̃(t, �) dt

∣∣∣∣
=
∣∣∣∣
∫ x

−�
− sin(�(x̃(t, �) − a))

sin(�(b − a))
cos(�(b − x̃(x, �)))�̃(x, �)�̃(t, �) dt

+
∫ 1+�

x

sin(�(b − x̃(t, �)))

sin(�(b − a))
cos(�(x̃(x, �) − a))�̃(x, �)�̃(t, �) dt

∣∣∣∣
=
∣∣∣∣∣−cos(�(b − x̃(x, �)))�̃(x, �)

sin(�(b − a))

1

�
(cos(�(x̃(x, �) − a)) − 1)

−cos(�(x̃(x, �) − a))�̃(x, �)

sin(�(b − a))

1

�
(1 − cos(�(b − x̃(x, �))))

∣∣∣∣∣
= ‖�̃(·, �)‖∞

�

∣∣∣∣cos(�(b − x̃(x, �)))

sin(�(b − a))
− cos(�(x̃(x, �) − a))

sin(�(b − a))

∣∣∣∣
� C1‖�̃(·, �)‖∞

�
.

Here, C1 is independent of �. And for ‖Hx‖0,

‖Hx‖2
0 =

∫ 1+�

−�

∣∣∣∣
∫ s

−�
Gx(x, t)�̃(t, �) dt

∣∣∣∣
2

ds

=
∫ 1+�

−�

∣∣∣∣
∫ x

−�
Gx(x, t)�̃(t, �) dt +

∫ s

x

Gx(x, t)�̃(t, �) dt

∣∣∣∣
2

ds

=
∫ 1+�

−�

∣∣∣∣
∫ x

−�
− sin(�(x̃(t, �) − a))

sin(�(b − a))
cos(�(b − x̃(x, �)))�̃(x, �)�̃(t, �) dt

+
∫ s

x

sin(�(b − x̃(t, �)))

sin(�(b − a))
cos(�(x̃(x, �) − a))�̃(x, �)�̃(t) dt

∣∣∣∣
2

ds

=
∫ 1+�

−�

∣∣∣∣∣−cos(�(b − x̃(x)))�̃(x, �)

sin(�(b − a))

∫ x

−�
sin(�(x̃(t, �) − a))�̃(t, �) dt

+cos(�(x̃(x, �)) − a)�̃(x, �)

sin(�(b − a))

∫ s

x

sin(�(b − x̃(t, �)))�̃(t, �) dt

∣∣∣∣∣
2

ds

=
∫ 1+�

−�

∣∣∣∣∣ 1

�

cos(�(b − x̃(x, �)))�̃(x, �)

sin(�(b − a))

− 1

�

cos(�(x̃(x, �) − a))�̃(x, �)

sin(�(b − a))
cos(�(b − x̃(s, �)))

∣∣∣∣∣
2

ds

� C2

�2 ‖�̃(·, �)‖2∞.
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