

The characteristic polynomials of abelian varieties of dimensions 3 over finite fields

Safia Haloui
Institut de Mathématiques de Luminy, Marseille, France

A R T I C LE I N F O

Article history:

Received 26 February 2010
Accepted 15 June 2010
Communicated by David Goss

MSC:

14G15
11C08
11G10
11G25

Keywords:

Abelian varieties over finite fields
Weil polynomials

1. Introduction and results

The isogeny class of an abelian variety over a finite field is determined by its characteristic polynomial (i.e. the characteristic polynomial of its Frobenius endomorphism). We describe the set of characteristic polynomials which occur in dimension 3; this completes the work of Xing [10] (we will recall his results in this section). Since the problem has been solved in dimensions 1 and 2 (see [8,6] and [3]), it is sufficient to focus on simple abelian varieties.

Let $p(t)$ be the characteristic polynomial of an abelian variety of dimension g over \mathbb{F}_{q} (with $q=p^{n}$). Then the set of its roots has the form $\left\{\omega_{1}, \overline{\omega_{1}}, \ldots, \omega_{g}, \overline{\omega_{g}}\right\}$ where the ω_{i} 's are q-Weil numbers. A monic polynomial with integer coefficients which satisfies this condition is called a Weil polynomial. Thus every Weil polynomial of degree 6 has the form

$$
p(t)=t^{6}+a_{1} t^{5}+a_{2} t^{4}+a_{3} t^{3}+q a_{2} t^{2}+q^{2} a_{1} t+q^{3}
$$

[^0]for certain integers a_{1}, a_{2} and a_{3}. The converse is false; indeed, since the absolute value of the roots of $p(t)$ is prescribed (equal to \sqrt{q}), its coefficients have to be bounded. Section 2 is dedicated to the proof of the following proposition:

Theorem 1.1. Let $p(t)=t^{6}+a_{1} t^{5}+a_{2} t^{4}+a_{3} t^{3}+q a_{2} t^{2}+q^{2} a_{1} t+q^{3}$ be a polynomial with integer coefficients. Then $p(t)$ is a Weil polynomial if and only if either

$$
p(t)=\left(t^{2}-q\right)^{2}\left(t^{2}+\beta t+q\right)
$$

where $\beta \in \mathbb{Z}$ and $|\beta|<2 \sqrt{q}$, or the following conditions hold:
(1) $\left|a_{1}\right|<6 \sqrt{q}$,
(2) $4 \sqrt{ }\left|a_{1}\right|-9 q<a_{2} \leqslant \frac{a_{1}^{2}}{3}+3 q$,
(3) $-\frac{2 a_{1}^{3}}{27}+\frac{a_{1} a_{2}}{3}+q a_{1}-\frac{2}{27}\left(a_{1}^{2}-3 a_{2}+9 q\right)^{3 / 2} \leqslant a_{3} \leqslant-\frac{2 a_{1}^{3}}{27}+\frac{a_{1} a_{2}}{3}+q a_{1}+\frac{2}{27}\left(a_{1}^{2}-3 a_{2}+9 q\right)^{3 / 2}$,
(4) $-2 q a_{1}-2 \sqrt{q} a_{2}-2 q \sqrt{q}<a_{3}<-2 q a_{1}+2 \sqrt{q} a_{2}+2 q \sqrt{q}$.

The Honda-Tate theorem gives us a bijection between the set of conjugacy classes of q-Weil numbers and the set of isogeny classes of simple abelian varieties over \mathbb{F}_{q}. Moreover, the characteristic polynomial of a simple abelian variety of dimension 3 over \mathbb{F}_{q} has the form $p(t)=h(t)^{e}$ where $h(t)$ is an irreducible Weil polynomial and e is an integer. Obviously e must divide 6.

As remarked by Xing [10], e cannot be equal to 2 or 6 , otherwise $p(t)$ would have a real root and real q-Weil numbers ($\pm \sqrt{q}$) correspond to dimension 1 or 2 (according to the parity of n) abelian varieties (see [8]).

When $e=3$, using a result from Maisner and Nart [3, Proposition 2.5], we get the following proposition, proved by Xing, which gives us the form of $h(t)$.

Proposition 1.2 (Xing). Let $\beta \in \mathbb{Z},|\beta|<2 \sqrt{q}$. There exists a simple abelian variety of dimension 3 over \mathbb{F}_{q} with $h(t)=t^{2}+\beta t+q$ if and only if 3 divides n and $\beta=a q^{1 / 3}$, where a is an integer coprime with p.

It follows that a simple abelian variety of dimension 3 with a reducible characteristic polynomial has p-rank 0 ; this fact was proved by González [2]. Note that the Newton polygon of a polynomial from Proposition 1.2 is of type $1 / 3$ (see Fig. 4, Section 4).

It remains to see what happens when $p(t)$ is irreducible ($e=1$). First, we need an irreducibility criterion for Weil polynomials. In Section 3, we prove the following proposition:

Proposition 1.3. Set

$$
r=-\frac{a_{1}^{2}}{3}+a_{2}-3 q \quad \text { and } \quad s=\frac{2 a_{1}^{3}}{27}-\frac{a_{1} a_{2}}{3}-q a_{1}+a_{3}
$$

and

$$
\Delta=s^{2}-\frac{4}{27} r^{3} \quad \text { and } \quad u=\frac{-s+\sqrt{\Delta}}{2}
$$

Then $p(t)$ is irreducible over \mathbb{Q} if and only if $\Delta \neq 0$ and u is not a cube in $\mathbb{Q}(\sqrt{\Delta})$.

Next, we determine the possible Newton polygons for $p(t)$; this is the aim of Section 4.

Theorem 1.4. Let $p(t)=t^{6}+a_{1} t^{5}+a_{2} t^{4}+a_{3} t^{3}+q a_{2} t^{2}+q^{2} a_{1} t+q^{3}$ be an irreducible Weil polynomial. Then $p(t)$ is the characteristic polynomial of an abelian variety of dimension 3 if and only if one of the following conditions holds:
(1) $v_{p}\left(a_{3}\right)=0$,
(2) $v_{p}\left(a_{2}\right)=0, v_{p}\left(a_{3}\right) \geqslant n / 2$ and $p(t)$ has no root of valuation $n / 2$ in \mathbb{Q}_{p},
(3) $v_{p}\left(a_{1}\right)=0 v_{p}\left(a_{2}\right) \geqslant n / 2, v_{p}\left(a_{3}\right) \geqslant n$ and $p(t)$ has no root of valuation $n / 2$ in \mathbb{Q}_{p},
(4) $v_{p}\left(a_{1}\right) \geqslant n / 3, v_{p}\left(a_{2}\right) \geqslant 2 n / 3, v_{p}\left(a_{3}\right)=n$ and $p(t)$ has no root \mathbb{Q}_{p},
(5) $v_{p}\left(a_{1}\right) \geqslant n / 2, v_{p}\left(a_{2}\right) \geqslant n, v_{p}\left(a_{3}\right) \geqslant 3 n / 2$ and $p(t)$ has no root nor factor of degree 3 in \mathbb{Q}_{p}.

The p-ranks of abelian varieties in cases (1), (2), (3), (4) and (5) are respectively 3, 2, 1, 0 and 0 . The abelian varieties in case (5) are supersingular.

It is possible to make condition (5) of Theorem 1.4 more explicit. Indeed, in [5], Nart and Ritzenthaler gave the list of q-Weil numbers of degree 6 . We derive from it the following proposition (see Section 5).

Proposition 1.5. If $p(t)$ is the characteristic polynomial of a supersingular abelian variety of dimension 3 then one of the following conditions holds:
(1) $\left(a_{1}, a_{2}, a_{3}\right)=\left(q^{1 / 2}, q, q^{3 / 2}\right)$ or $\left(-q^{1 / 2}, q,-q^{3 / 2}\right), q$ is a square and $7 \nmid\left(p^{3}-1\right)$,
(2) $\left(a_{1}, a_{2}, a_{3}\right)=\left(0,0, q^{3 / 2}\right)$ or $\left(0,0,-q^{3 / 2}\right), q$ is a square and $3 \nmid(p-1)$,
(3) $\left(a_{1}, a_{2}, a_{3}\right)=(\sqrt{p q}, 3 q, q \sqrt{p q})$ or $(-\sqrt{p q}, 3 q,-q \sqrt{p q}), p=7$ and q is not a square,
(4) $\left(a_{1}, a_{2}, a_{3}\right)=(0,0, q \sqrt{p q})$ or $(0,0,-q \sqrt{p q}), p=3$ and q is not a square.

2. The coefficients of Weil polynomials of degree 6

In this section, we prove Theorem 1.1. It is clear that a Weil polynomial with a real root must have the form

$$
\left(t^{2}-q\right)^{2}\left(t^{2}+\beta t+q\right)
$$

where $\beta \in \mathbb{Z}$ and $|\beta|<2 \sqrt{q}$. Conversely, these polynomials are Weil polynomials.
To deal with Weil polynomials with no real root, we use Robinson's method (described by Smyth in [7, §2, Lemma]). Fixing a polynomial of degree 3 and doing an explicit calculation we get the following lemma:

Lemma 2.1. Let $f(t)=t^{3}+r_{1} t^{2}+r_{2} t+r_{3}$ be a monic polynomial of degree 3 with real coefficients. Then $f(t)$ has all real positive roots if and only if the following conditions hold:
(1) $r_{1}<0$,
(2) $0<r_{2}<\frac{r_{1}^{2}}{3}$,
(3) $\frac{r_{1} r_{2}}{3}-\frac{2 r_{1}^{3}}{27}-\frac{2}{27}\left(r_{1}^{2}-3 r_{2}\right)^{3 / 2} \leqslant r_{3} \leqslant \frac{r_{1} r_{2}}{3}-\frac{2 r_{1}^{3}}{27}+\frac{2}{27}\left(r_{1}^{2}-3 r_{2}\right)^{3 / 2}$ and $r_{3}<0$.

Proof. If $f(t)$ has all real positive roots, so do all its derivates. Thus condition (1) is obvious. Let $f_{0}^{\prime}(t)$ be the primitive of $f^{\prime \prime}(t)$ vanishing at 0 ; if we add a constant to $f_{0}^{\prime}(t)$ so that all its roots are real and positive, we obtain (2). Repeating this process with a primitive of $f^{\prime}(t)$ vanishing at 0 , we obtain (3).

$$
\text { Let } x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{C}^{3} \text { and set }
$$

$$
\begin{gather*}
p_{x}(t)=\prod_{i=1}^{3}\left(t^{2}+x_{i} t+q\right) \\
f_{x}(t)=\prod_{i=1}^{3}\left(t-\left(2 \sqrt{q}+x_{i}\right)\right) \quad \text { and } \quad \tilde{f}_{x}(t)=\prod_{i=1}^{3}\left(t-\left(2 \sqrt{q}-x_{i}\right)\right) . \tag{1}
\end{gather*}
$$

If $p_{x}(t)$ is a Weil polynomial with no real root (thus $x_{i}=-\left(\omega_{i}+\overline{\omega_{i}}\right)$, where $\omega_{1}, \overline{\omega_{1}}, \ldots, \omega_{g}, \overline{\omega_{g}}$ are the roots of $p_{x}(t)$) then the roots of $f_{x}(t)$ and $\tilde{f}_{x}(t)$ are real and positive. Conversely, suppose that the roots of $f_{x}(t)$ and $\tilde{f}_{x}(t)$ are real and positive and that $p_{x}(t)$ has integer coefficients. Then $p_{x}(t)$ is a Weil polynomial.

For $i=1,2,3$, let a_{i} denote the coefficient associated to $p_{x}(t)$ in Theorem $1.1, s_{i}$ the i th symmetric function of the x_{i} 's and r_{i} and \tilde{r}_{i} the respective i th coefficients of $f_{x}(t)$ and $\tilde{f}_{x}(t)$.

Expanding the expression of $p_{x}(t)$ in (1), we find

$$
\begin{aligned}
& a_{1}=s_{1}, \\
& a_{2}=s_{2}+3 q, \\
& a_{3}=s_{3}+2 q s_{1} .
\end{aligned}
$$

In the same way, expanding the expressions of $f_{x}(t)$ and $\tilde{f}_{x}(t)$, we find

$$
\begin{array}{ll}
r_{1}=-6 \sqrt{q}-s_{1}, & \tilde{r}_{1}=-6 \sqrt{q}+s_{1}, \\
r_{2}=12 q+4 \sqrt{q} s_{1}+s_{2}, & \text { and } \\
r_{3}=-8 q \sqrt{q}-4 q s_{1}-2 \sqrt{q} s_{2}-s_{3}, & \tilde{r}_{3}=-8 q \sqrt{q}+4 q s_{1}-2 \sqrt{q} s_{2}+s_{3} .
\end{array}
$$

Therefore we have

$$
\begin{array}{ll}
r_{1}=-6 \sqrt{q}-a_{1}, & \tilde{r}_{1}=-6 \sqrt{q}+a_{1}, \\
r_{2}=9 q+4 \sqrt{q} a_{1}+a_{2}, & \text { and } \quad \tilde{r}_{2}=9 q-4 \sqrt{q} a_{1}+a_{2}, \\
r_{3}=-2 q \sqrt{q}-2 q a_{1}-2 \sqrt{q} a_{2}-a_{3}, & \tilde{r}_{3}=-2 q \sqrt{q}+2 q a_{1}-2 \sqrt{q} a_{2}+a_{3} .
\end{array}
$$

The polynomials $f_{X}(t)$ and $\tilde{f}_{X}(t)$ satisfy condition (1) of Lemma 2.1 if and only if

$$
\left|a_{1}\right|<6 \sqrt{q} .
$$

The polynomials $f_{X}(t)$ and $\tilde{f}_{X}(t)$ satisfy condition (2) of Lemma 2.1 if and only if

$$
4 \sqrt{q}\left|a_{1}\right|-9 q<a_{2} \leqslant \frac{a_{1}^{2}}{3}+3 q .
$$

We find that the first inequality in condition (3) of Lemma 2.1 holds for $f_{x}(t)$ if and only if it holds for $\tilde{f}_{x}(t)$ if and only if

$$
-\frac{2 a_{1}^{3}}{27}+\frac{a_{1} a_{2}}{3}+q a_{1}-\frac{2}{27}\left(a_{1}^{2}-3 a_{2}+9 q\right)^{3 / 2} \leqslant a_{3} \leqslant-\frac{2 a_{1}^{3}}{27}+\frac{a_{1} a_{2}}{3}+q a_{1}+\frac{2}{27}\left(a_{1}^{2}-3 a_{2}+9 q\right)^{3 / 2} .
$$

Finally, $f_{x}(t)$ and $\tilde{f}_{x}(t)$ satisfy the second inequality in condition (3) of Lemma 2.1 if and only if

$$
-2 q a_{1}-2 \sqrt{q} a_{2}-2 q \sqrt{q}<a_{3}<-2 q a_{1}+2 \sqrt{q} a_{2}+2 q \sqrt{q} .
$$

Hence Theorem 1.1 is proved.

3. Irreducible Weil polynomials

Given a Weil polynomial $p(t)=\prod_{i=1}^{g}\left(t^{2}+x_{i} t+q\right)$, we consider its real Weil polynomial $f(t)=$ $\prod_{i=1}^{g}\left(t+x_{i}\right)$.

Proposition 3.1. Suppose that $g \geqslant 2$ and $p(t) \neq(t-\sqrt{q})^{2}(t+\sqrt{q})^{2}$. Then $p(t)$ is irreducible over \mathbb{Q} if and only if $f(t)$ is irreducible over \mathbb{Q}.

Proof. Suppose that $p(t)$ is reducible. It is sufficient to prove that $p(t)$ factors as the product of two Weil polynomials (then $f(t)$ will be the product of its associated polynomials). The polynomial $p(t)$ decomposes as $p(t)=(t-\sqrt{q})^{2 k}(t+\sqrt{q})^{2 \ell} h(t)$ where $h(t)$ has no real root. If $k \neq \ell$ then $\sqrt{q} \in \mathbb{Q}$ and $p(t)$ factors obviously. The same conclusion holds when $k=\ell \neq 0$ and $h(t) \neq 1$. If $k=\ell>1$ and $h(t)=1$, we have the decomposition $p(t)=\left[(t-\sqrt{q})^{2}(t+\sqrt{q})^{2}\right]\left[(t-\sqrt{q})^{2 k-2}(t+\sqrt{q})^{2 \ell-2}\right]$. Finally, if $k=\ell=0$, by hypothesis $h(t)$ is the product of two monic non-constant polynomials which are obviously Weil polynomials.

Conversely, if $f(t)$ is reducible, we can assume (possibly changing labels of the x_{i} 's) that there exists an integer k between 1 and $(g-1)$ such that the polynomials $\prod_{i=1}^{k}\left(t+x_{i}\right)$ and $\prod_{i=k+1}^{g}\left(t+x_{i}\right)$ have integer coefficients. Thus $\prod_{i=1}^{k}\left(t^{2}+x_{i} t+q\right)$ and $\prod_{i=k+1}^{g}\left(t^{2}+x_{i} t+q\right)$ have integer coefficients and their product is $p(t)$.

Now we focus on the case $g=3$. In order to know if $p(t)$ is irreducible, it is sufficient to check if $f(t)$ (a polynomial of degree 3 with all real roots) is irreducible. To do this, we use Cardan's method. Let us recall quickly what it is.

Fixing a polynomial $h(t)=t^{3}+r t+s$, we set $\Delta=s^{2}-\frac{4}{27} r^{3}$. If $h(t)$ has all real roots, we have $\Delta \leqslant 0$. Moreover, $\Delta=0$ if and only if $h(t)$ has a double root. When $\Delta<0$, we set $u=\frac{-s+\sqrt{\Delta}}{2}$. The roots of $h(t)$ are in the form ($v+\bar{v}$) where v is a cube root of u.

We apply this to $f(t)=t^{3}+a_{1} t^{2}+\left(a_{2}-3 q\right) t+\left(a_{3}-2 q a_{1}\right)$:
Proof of Proposition 1.3. We set $h(t)=t^{3}+r t+s$ so that $f(t)=h\left(t+\frac{a_{1}}{3}\right)$. The polynomial $f(t)$ is reducible if and only if it has a root in \mathbb{Q} if and only if $h(t)$ has a root in \mathbb{Q}.

If $\Delta=0, f(t)$ is reducible. Suppose that $\Delta<0$. If u is the cube of a certain $v \in \mathbb{Q}(\sqrt{\Delta})$, we have obviously $(v+\bar{v}) \in \mathbb{Q}$. Conversely, if $h(t)$ has a root in \mathbb{Q} then u has a cube root $v=a+i b$ with $a \in \mathbb{Q}$ and we have

$$
u=v^{3}=\left(a^{3}-3 a b^{2}\right)+i b\left(3 a^{2} b-b^{2}\right)
$$

If $a \neq 0$, identifying real parts in the last equality, we see that $b^{2} \in \mathbb{Q}$, then, identifying imaginary parts, $b \in \mathbb{Q}(\sqrt{-\Delta})$. Therefore $v \in \mathbb{Q}(\sqrt{\Delta})$. If $a=0$, then $s=0$ and $\Delta=\frac{4}{27} r^{3}=\left(\frac{2}{3} r\right)^{2} \frac{r}{3}$. Thus $u=$ $\frac{1}{2} \sqrt{\frac{4}{27} r^{3}}=\left(\sqrt{\frac{r}{3}}\right)^{3}$ is a cube in $\mathbb{Q}(\sqrt{\Delta})=\mathbb{Q}\left(\sqrt{\frac{r}{3}}\right)$.

4. Newton polygons

Let $p(t)$ be an irreducible Weil polynomial of degree 6 and e the least common denominator of $v_{p}(f(0)) / n$ where $f(t)$ runs through the irreducible factors of $p(t)$ over \mathbb{Q}_{p} (the field of p-adic numbers). By [4], $p(t)^{e}$ is the characteristic polynomial of a simple abelian variety. Thus $p(t)$ is the characteristic polynomial of an abelian variety of dimension 3 if and only if e is equal to 1 that is, $v_{p}(f(0)) / n$ are integers. One way to obtain information about p-adic valuations of the roots of $p(t)$ is to study its Newton polygon (see [9]). The condition " $v_{p}(f(0)) / n$ are integers" implies that the projection onto the x-axis of an edge of the Newton polygon having a slope $\ell n / k$ (with $\operatorname{pgcd}(\ell, k)=1$) has length a multiple of k. We graph the Newton polygons satisfying this condition and in each case, we give a necessary and sufficient condition to have $e=1$. The obtained results are summarized in Theorem 1.4.

Ordinary case: $\boldsymbol{v}_{\boldsymbol{p}}\left(\boldsymbol{a}_{\mathbf{3}}\right)=\mathbf{0}$. The Newton polygon of $p(t)$ is represented in Fig. 1 and we always have $e=1$.

Fig. 1. Ordinary case.

Fig. 2. p-rank 2 case.

Fig. 3. p-rank 1 case.

Fig. 4. Type $1 / 3$ case.

Fig. 5. Supersingular case.
p-rank 2 case: $\boldsymbol{v}_{p}\left(a_{3}\right)>0$ and $v_{p}\left(a_{2}\right)=0$. The only Newton polygon for which $e=1$ is represented in Fig. 2.

This is the Newton polygon of $p(t)$ if and only if $v_{p}\left(a_{3}\right) \geqslant n / 2$. If this condition holds, $p(t)$ has a factor in \mathbb{Q}_{p} of degree 2 with roots of valuation $n / 2$ and thus $e=1$ if and only if this factor is irreducible, that is, if and only if $p(t)$ has no root of valuation $n / 2$ in \mathbb{Q}_{p} (note that when n is odd, this last condition always holds).
p-rank 1 case: $\boldsymbol{v}_{\boldsymbol{p}}\left(a_{3}\right)>\mathbf{0}, \boldsymbol{v}_{\boldsymbol{p}}\left(a_{2}\right)>\mathbf{0}$ and $\boldsymbol{v}_{\boldsymbol{p}}\left(\boldsymbol{a}_{1}\right)=\mathbf{0}$. The only Newton polygon for which $e=1$ is represented in Fig. 3.

This is the Newton polygon of $p(t)$ if and only if $v_{p}\left(a_{2}\right) \geqslant n / 2$ and $v_{p}\left(a_{3}\right) \geqslant n$. If these conditions hold, $p(t)$ has a factor in \mathbb{Q}_{p} of degree 4 with roots of valuation $n / 2$ and thus $e=1$ if and only if this factor has no root in \mathbb{Q}_{p}, that is, if and only if $p(t)$ has no root of valuation $n / 2$ in \mathbb{Q}_{p}.
p-rank 0 case: $\boldsymbol{v}_{p}\left(a_{3}\right)>0, v_{p}\left(a_{2}\right)>0$ and $v_{p}\left(a_{1}\right)>0$. There are two Newton polygons for which $e=1$. One is represented in Fig. 4.

This is the Newton polygon of $p(t)$ if and only if $v_{p}\left(a_{1}\right) \geqslant n / 3, v_{p}\left(a_{2}\right) \geqslant 2 n / 3$ and $v_{p}\left(a_{3}\right)=n$. If these conditions hold, $p(t)$ has two factors in \mathbb{Q}_{p} of degree 3 , one with roots of valuation $2 n / 3$ and the other with roots of valuation $n / 3 ; e=1$ if and only if those factors are irreducible in \mathbb{Q}_{p}, that is, if and only if $p(t)$ has no root in \mathbb{Q}_{p}.

The other Newton polygon is represented in Fig. 5; the corresponding abelian varieties are supersingular.

This is the Newton polygon of $p(t)$ if and only if $v_{p}\left(a_{1}\right) \geqslant n / 2, v_{p}\left(a_{2}\right) \geqslant n$ and $v_{p}\left(a_{3}\right) \geqslant 3 n / 2$. If these conditions hold, $e=1$ if and only if $p(t)$ has no root nor factor of degree 3 in \mathbb{Q}_{p}.

5. Supersingular case

Nart and Ritzenthaler [5] proved that the only supersingular q-Weil numbers of degree six are

$$
\begin{array}{ll}
\pm \sqrt{q} \zeta_{7}, \quad \pm \sqrt{q} \zeta_{9}, & \text { if } q \text { is a square, } \\
\sqrt{q} \zeta_{28}(p=7), \quad \sqrt{q} \zeta_{36}(p=3), & \text { if } q \text { is not a square }
\end{array}
$$

where ζ_{n} is a primitive nth root of unity.
We will use this result to obtain a list of possible supersingular characteristic polynomials as stated in Proposition 1.5. We will have to calculate the minimal polynomial of some algebraic integers; in order to do this, we will often use the (trivial) fact that if α is a root of $f(t)=\sum_{i=0}^{n} b_{i} t^{n-i}$ and $a \in \mathbb{C}$ then $a \alpha$ is a root of $f_{a}(t)=\sum_{i=0}^{n} b_{i} a^{i} t^{n-i}$. We denote by $\phi_{n}(t)$ the nth cyclotomic polynomial.

- If q is a square, as $\phi_{7}(t)=t^{6}+t^{5}+t^{4}+t^{3}+t^{2}+t+1$, the minimal polynomial of $\sqrt{q} \zeta_{7}$ (respectively $-\sqrt{q} \zeta_{7}$) is $p(t)=t^{6}+q^{1 / 2} t^{5}+q t^{4}+q^{3 / 2} t^{3}+q^{2} t^{2}+q^{5 / 2} t+q^{3}$ (respectively $p(t)=t^{6}-q^{1 / 2} t^{5}+q t^{4}-$ $q^{3 / 2} t^{3}+q^{2} t^{2}-q^{5 / 2} t+q^{3}$). If $p \neq 7, p(t)$ has no factor of degree 1 and 3 over \mathbb{Q}_{p} if and only if \mathbb{Q}_{p} and its cubic extensions do not contain a 7 th primitive root of unity; this is equivalent (see [1, Proposition 2.4.1, p. 53]) to

$$
7 \nmid\left(p^{3}-1\right) .
$$

In the same way, $\phi_{9}(t)=t^{6}+t^{3}+1$ and the minimal polynomial of $\sqrt{q} \zeta_{9}$ (respectively $-\sqrt{q} \zeta_{9}$) is $p(t)=t^{6}+q^{3 / 2} t^{3}+q^{3}$ (respectively $p(t)=t^{6}-q^{3 / 2} t^{3}+q^{3}$). If $p \neq 3, p(t)$ have no factor of degree 1 and 3 over \mathbb{Q}_{p} if and only if

$$
3 \nmid(p-1) .
$$

If $p=7$ in the first case or $p=3$ in the second case, $p(t)$ is irreducible over \mathbb{Q}_{p} (apply Eisenstein's criterion to $p(t+1)$).

- Suppose that q is not a square. When $p=7$, as $\phi_{28}(t)=t^{12}-t^{10}+t^{8}-t^{6}+t^{4}-t^{2}+1$, the monic polynomial with roots $\sqrt{q} \zeta_{28}$ is $t^{12}-q t^{10}+q^{2} t^{8}-q^{3} t^{6}+q^{4} t^{4}-q^{5} t^{2}+q^{6}$ which is the product of

$$
t^{6}+\sqrt{p q} t^{5}+3 q t^{4}+q \sqrt{p q} t^{3}+3 q^{2} t^{2}+q^{2} \sqrt{p q} t+q^{3}
$$

and

$$
t^{6}-\sqrt{p q} t^{5}+3 q t^{4}-q \sqrt{p q} t^{3}+3 q^{2} t^{2}-q^{2} \sqrt{p q} t+q^{3}
$$

When $p=3$, as $\phi_{36}(t)=t^{12}-t^{6}+1$, the monic polynomial with roots $\sqrt{ } \zeta_{36}$ is $t^{12}-q^{3} t^{6}+q^{6}$ which is the product of

$$
t^{6}+q \sqrt{p q} t^{3}+q^{3}
$$

and

$$
t^{6}-q \sqrt{p q} t^{3}+q^{3}
$$

The resulting polynomials are characteristic polynomials of abelian varieties of dimension 3 (see [5]).

Acknowledgments

I would like to thank Christophe Ritzenthaler for suggesting this work and for helpful discussions. I would also like to thank my thesis advisor, Yves Aubry, for his helpful comments and Hamish IveyLaw for his careful reading of this paper.

References

[1] Y. Amice, Les nombres p-adiques, P.U.F., 1975.
[2] J. González, On the p-rank of an abelian variety and its endomorphism algebra, Publ. Math. 42 (1998) 119-130.
[3] D. Maisner, E. Nart, Abelian surfaces over finite fields as jacobians, Experiment. Math. 11 (2002) 321-337, appendix of E.W. Howe.
[4] J. Milne, W. Waterhouse, Abelian varieties over finite fields, in: 1969 Number Theory Institute, in: Proc. Sympos. Pure Math., vol. XX, Amer. Math. Soc., Providence, RI, 1971, pp. 53-64; vol. 76, 1990, pp. 351-366.
[5] E. Nart, C. Ritzenthaler, Jacobians in isogeny classes of supersingular threefolds in characteristic 2, Finite Fields Appl. 14 (2008) 676-702.
[6] H.G. Rück, Abelian surfaces and Jacobian varieties over finite fields, Compos. Math. 76 (1990) 351-366.
[7] C. Smyth, Totally positive algebraic integers of small trace, Ann. Inst. Fourrier 33 (1973) 285-302.
[8] W. Waterhouse, Abelian varieties over finite fields, Ann. Sci. Ecole Norm. Sup. (4) 2 (1969) 521-560.
[9] E. Weiss, Algebraic Number Theory, McGraw, New York, 1963.
[10] C.P. Xing, The characteristic polynomials of abelian varieties of dimension three and four over finite fields, Sci. China 37 (3) (1994) 147-150.

[^0]: E-mail address: haloui@iml.univ-mrs.fr.

