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Stage- and segment-specific expression of cell-adhesion
molecules N-CAM, A-CAM, and L-CAM in the kidney
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Stage- and segment-specific expression of cell-adhesion molecules
N-CAM, A-CAM, and L-CAM in the kidney. CAM expression was
investigated immunohistochemically in tissue sections and in pure
cultures of human proximal and distal tubular cells. In the fetal kidney,
N-CAM immunoreactivity was detected in the non-induced and con-
densing metanephrogenic mesenchyme, and in all stages until the
S-shaped bodies. A-CAM (N-cadherin) first appeared in the non-
induced mesenchyme and remained present thereafter. Its expression
became exclusively associated with the lower limb of the S-shaped
bodies and the developing proximal tubule. In contrast, L-CAM (E-
cadherin; uvomorulin) staining was observed in the fetal collecting
duct, the upper limb of the S-shaped bodies, and the developing distal
tubule. This segment-specific expression of A-CAM and L-CAM in the
early developing nephron was maintained in the adult kidney: A-CAM
staining was restricted to adherens junctions in the proximal tubule and
thin limb, whereas L.-CAM was expressed in Bowman's capsule and in
all tubular segments except the proximal convoluted and straight
tubule. Also after in vitro culture, A-CAM expression was an exclusive
property of proximal tubular cells, while L-CAM was confined to distal
tubular cells. In conclusion, each major subdivision of the fetal and
adult nephron displays a characteristic combination of L-CAM and
A-CAM, suggesting that they may be the basis of segmental differenti-
ation and border formation between adjacent nephron segments.

The differentiation of dividing mesenchymal cells to an epi-
thelial phenotype by the inductive influence of the ureteric bud
and branching collecting duct is a key event during the devel-
opment of the mesonephric and metanephric kidney [1]. Cell-
adhesion molecules (CAMs), involved in selective cell-cell
adhesion, are therefore likely to be of particular relevance to
the fetal kidney. Moreover, the mammalian nephron is a
complex tubular structure, composed of different epithelial cell
types, grouped into sharply delineated segments which are
arranged in a well-defined sequence. As all nephrons display the
same basic structure, its development and preservation during
adult life must be strictly regulated. Although CAMs are known
to be particularly connected with pattern-formation in embryo-
genesis and with the maintenance of tissue pattern in adult life,
their possible role in segmentation of the nephron has not been
documented.

Several CAMs have been identified so far; three of them will
be addressed in this study. N-CAM, originally isolated on the
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basis of its role in neuronal cell adhesion [2], is a Ca®*-
independent cell-cell adhesion molecule. L-CAM, first de-
scribed by Gallin, Edelman and Cunningham [3] as a chicken
liver cell-adhesion molecule and homologous to mouse uvo-
morulin [4], mouse E-cadherin [S], canine Arc-1 [6], and human
Cell CAM 120/80 [7], provokes Ca®*-dependent cell-cell adhe-
sion. Chicken A-CAM, probably identical to chicken N-cad-
herin [8], is associated with intercellular adherens junctions and
also mediates Ca”*-dependent cell-cell adhesion. Both L-CAM
and A-CAM are seen at sites of adherens junctions, but are not
restricted to these areas [9].

These and other CAMs appear very early in development and
are seen at various times in derivatives of all three germ layers.
They regulate and are regulated by morphology [10, 11]. It has
furthermore been demonstrated that CAMs are also important
in pathology, such as in determining the invasive properties of
epithelial cells [12]. Inversely, mouse sarcoma cells acquire
epithelial characteristics by transfection with chicken L-CAM
or A-CAM cDNAs [9, 13]. Moreover, expression of L-CAM in
fibroblasts induces a redistribution of Na+ ,K+-ATPase, which
becomes similar to that in polarized epithelial cells [14]. The
biological importance of these molecules is further demon-
strated by their well-conserved structure throughout the animal
kingdom, including different classes of invertebrates [15].

The expression patterns of N-CAM, A-CAM, and L-CAM
during kidney morphogenesis and in the adult organ have been
described for the chick, mouse, and rat, but not in humans. In
the present study, the distribution of these molecules in the
human kidney was investigated immunohistochemically, and
their segment-specific localization was confirmed by compari-
son with the distribution pattern of seven segment-specific
differentiation markers covering the entire nephron. In addi-
tion, pure cultures of human proximal and distal tubular cells
were analyzed for the expression of these CAMs in vitro.
Finally, the universality of the observed expression patterns of
A-CAM and L-CAM in the human kidney was assessed by
comparison with a number of animal species.

Methods
Tissues

Adult normal human kidney tissue was obtained: (1) from a
live 44-year-old female multi-organ donor, whose kidneys were
refused for transplantation because of their spotty appearance
after perfusion, and (2) at the moment of surgery from patients
with renal cancer partly involving one kidney and having
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normal renal function in the absence of proteinuria (N = 10).
The latter samples were taken at least five centimeters removed
from the tumor. All samples were processed within 15 minutes
after removal. Human fetal kidneys (N = 16) were obtained
from therapeutic abortions; they were of 11, 12, 13 (2 speci-
mens), 13.5, 14 (2 specimens), 15, 15.5, 16, 17 (2 specimens), 18,
19 (2 specimens), and 20.5 weeks gestational age. They were
processed within 15 minutes after receipt. All tissues were cut
into 1 to 2 mm thick slices, which were fixed during 1.5 hours at
room temperature in Formol-calcium fixative [4% formalde-
hyde (BDH Chemical Ltd, Poole, UK) in 0.1 M sodium caco-
dylate buffer, pH 7.4, containing 1% CaCl,], and were embed-
ded in low-melting point (49°C) paraffin (BDH Chemical Ltd
For the preparation of cryostat sections, tissue slices were
snap-frozen between two copper blocks at liquid nitrogen
temperature and were stored in liquid nitrogen. Formol-calcium
fixed paraffin-embedded kidney tissue from a monkey (Macaca
fascicularis), dog, mouse, and chicken were used for compari-
sons.

Terminology

The standard nomenclature and abbreviations for the differ-
ent kidney structures, as proposed by Kriz and Bankir [16] on
behalf of the Renal Commission of the International Union of
Physiological Sciences, were used throughout this study. They
are: CCD, cortical collecting duct; DCT, distal convoluted
tubule; IM, inner medulla; IMCD, inner medullary collecting
duct; ISOM, inner stripe of outer medulla; OMCD, outer
medullary collecting duct; OSOM, outer stripe of outer me-
dulla; PCT, proximal convoluted tubule, also designated as
S1-S2 segments; PST proximal straight tubule, also called
S3-segment; TAL, thick ascending limb; and TL, thin limb.

Culture of human proximal and distal tubular cells

Pure cultures of human PST cells and human distal tubule
cells were prepared from normal outer stripe of outer medulla
tissue by flow-cytometric isolation on the basis of their expres-
sion of GGT and HMFG, respectively, as described in another
study of this laboratory [17]. Briefly, a single-cell suspension
was prepared from minced tissue by digestion with collagenase
and by isopycnic centrifugation in a discontinuous Percoll
gradient. Specific fluorescent staining of the cells of interest was
performed by incubation either with monoclonal antibody
102D,K,C,, against human kidney GGT (donated by G. Siest,
University of Nancy, France) or with a mixture of the antibod-
ies HMFG1 and HMFG2 directed against human milk fat
globulin [18], followed by an indirect streptavidin-phyco-
erythrin staining. Cell sorting was performed using a FACS Star
Plus cell sorter (Becton Dickinson Immunocytometry Systems,
San Jose, California, USA). The purity after sorting was
checked by flow-cytometric reanalysis and by (immuno)histo-
chemical staining, and amounted to more than 95% for both
proximal and distal tubular cells. Three day old monolayer
cultures on an uncoated plastic substrate, after a total culture
time of 14 days, were rinsed with PBS, fixed in Formol-calcium
fixative during 10 minutes at room temperature, and stained for
N-CAM, A-CAM, and L-CAM.
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Immunohistochemical staining

Staining was performed on 4-micron paraffin sections, essen-
tially as described previously [19]. Briefly, sections were
mounted on poly-L-lysine (molecular wt > 300,000, Sigma
Chemical Co., St. Louis, Missouri, USA) coated glass slides,
hydrated, and treated for 20 minutes with 0.003% trypsin (type
IiI, 11,250 U/mg, Sigma Chemical Co.) in 10 mM Tris-HCl
buffer (pH 7.3) containing 0.9% NaCl and 1 mmM CaCl,. After
equilibration in TBS and treatment with normal horse serum
(1/5) for 20 minutes, the primary antibodies were applied
without washing, and incubation was performed overnight. The
sections were then washed and treated with biotinylated affin-
ity-purified horse anti-mouse immunoglobulin serum (Vector
Laboratories Inc., Burlingame, California, USA) for 30 minutes
followed by the avidin/biotin/peroxidase complex (Vector Lab-
oratories Inc.) for one hour. All dilutions were made in TBS.
After extensive washing, peroxidase was revealed with 0.02%
3-amino-9-ethylcarbazole (Sigma Chemical Co.) and 0.002%
H,0, in 20 mM acetate buffer (pH 5.2) containing 9.5% dimethyl
sulfoxide. The sections were counterstained with methyl green
and mounted in Kaiser’s glycerin/gelatin mounting medium.

Alternatively, 7-micron cryostat sections were air-dried and
were used either as such or after immersion during five minutes
in chloroform/aceton (1/1) at room temperature. They were
stained according to the same procedure as paraffin sections,
with omission of trypsin pretreatment.

The following mouse monoclonal antibodies were used: clone
MCLA directed against human L-CAM/uvomorulin (Organon
Teknika), diluted 1/50; clone DECMA-1 against mouse uvo-
morulin (Sigma Chemical Co.), diluted 1/4,000; clone ERIC-1
against human N-CAM (Santa Cruz Biotechnology Inc., Santa
Cruz, California, USA), diluted 1/100; clone NCAM-OBI11
against rat N-CAM (Sigma Chemical Co.), diluted 1/50; clone
GC-4 against chicken heart A-CAM (Sigma Chemical Co.),
diluted 1/100; clone IAP250 directed against human intestinal
alkaline phosphatase [20], diluted 1/100; clone 14E4 directed
against tissue-unspecific alkaline phosphatase from human
liver, diluted 1/1,500; clones HMFG1 and HMFG2 against
human milk fat globule antigen [18], culture supernatant diluted
1/100 and 1/50, respectively. Tamm Horsfall protein was visu-
alized using a goat antiserum to human Tamm Horsfall protein
(Organon Teknika, Durham, North Carolina, USA), diluted
1/100,000. In addition to the monoclonal antibodies against rat
and human N-CAM, a rabbit polyclonal antiserum to rat
N-CAM (Affiniti Research Products Ltd., Ilkeston, UK) was
also used, diluted 1/1,000. The blocking serum and secondary
antibodies were adapted accordingly.

Positive and negative control tissues for the anti-CAM anti-
bodies comprised human jejunum, human heart, and human
brain tissue, processed in an identical way to the kidney tissue.

Trypsin pretreatment of sections from paraffin-embedded
tissues was essential for the demonstration of all antigens,
except for N-CAM when antibody NCAM-OB11 was used.
Since CAMs are sensitive to proteolytic treatment in the
absence of Ca®* [21], and to exclude that trypsin might have a
differential effect on the release and/or degradation of L-CAM
and A-CAM in different nephron segments in tissue sections
from fetal and adult kidney, the trypsinization time was varied
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Fig. 1. N-CAM staining (antibody ERIC-1) in 17 week fetal kidney. A and B, strong positivity in uncondensed and condensing mesenchyme,
pretubular condensate, and S-shaped bodies. C. S-shaped body with positive lower and middle limb connected via negative upper limb to collecting
duct; arrowheads indicate areas of N-CAM positivity in stroma cells in the viscinity of some collecting ducts. D. Positive staining in medullary
stroma; arrowhead indicates strongly positive nerve. (A-D, X 220) Abbreviations are: a, collecting duct ampulla; d, collecting duct; g, glomerulus;

p, pretubular mesenchyme condensation; s, S-shaped body.

between 0 and 40 minutes, and four calcium concentrations (0,
1, 10, and 50 mm CaCl,) were added to the trypsin solution.

Histochemical staining

Peanut lectin binding was performed using biotinylated pea-
nut agglutinin (E-Y Laboratories, San Mateo, California, USA)
at a concentration of 1 ug/ml, without trypsin pretreatment of
the sections. Gamma-glutamyl transferase was demonstrated
enzymatically, using 0.13 mg/ml gamma-glutamyl 1,4-methoxy-
B-naphtylamide (Karlan Chemical Co., Santa Rosa, California,
USA) as the substrate and 0.5 mg/ml Fast Blue B (Sigma
Chemical Co.) as the chromogen in the presence of 0.5 mg/ml
glycylglycine (Sigma Chemical Co.) in 0.03 M Tris-HCI buffer,
pH 7.4. The reaction product was stabilized with 0.1 M CuSO,.
Alkaline phosphatase (AP) staining was performed using 5-bro-
mo-4-chloro-3-indoxylphosphate-p-toluidine salt (Serva Fein-
biochemica GmbH, Heidelberg, Germany) as the substrate and
nitroblue tetrazolium (Sigma Chemical Co.) as the chromogen,
according to Gossrau [22]. In addition to the immunohistochem-
ical demonstration of IAP using monoclonal antibody IAP250,
this isoenzyme was also demonstrated enzyme-histochemically
by including 0.5 mM L-p-bromotetramisole in the incubation
mixture [23], an inhibitor of the tissue-unspecific isoenzymes of
AP [24]. Some fetal tissue sections were double-stained for both
AP (dark blue reaction product) and for L-CAM or A-CAM (red
reaction product).

Results
Specificity of the antibodies

N-CAM staining was strong in human brain tissue, but was
absent in jejunum (except strong staining in nerve fibers) and
heart. Strong staining was also seen in small and larger nerves
in the developing (Fig. 1D) and adult kidney. In the positive
control tissue for A-CAM, that is, adult human heart, strong
staining was localized on the intercalated discs of the muscle
cells (Fig. 2); there was no staining in jejunum or brain. Finally,
L-CAM staining in jejunum was strong on the apical sites of
contact between the epithelial cells while moderately strong
staining was seen on the lateral and occasionally also on the
basal plasma membrane (Fig. 3). Staining for L-CAM was
absent in heart and brain.

Variations in the duration of trypsin treatment of sections had
no effect on the topographic distribution pattern for A-CAM
and L-CAM in the fetal and adult kidney. The intensity of
staining was highest for both antigens after 20 minutes of
treatment. According to several reports [25, 26], inclusion of 1
mM CaCl, in the trypsin solution, as is routinely used in our
laboratory [19], is sufficient to reach a plateau in the protective
effect of Ca2* on the tryptic degradation of Ca®>*-dependent
CAMs. This was confirmed by comparing the staining levels for
L-CAM and A-CAM in human fetal and adult kidney sections



Fs

N/
e

o W»%é

| i
oy T i

<
ke [P diB
&7

Fig. 3. L-CAM staining (antibody MCLA) in human jejunum (x 275).

that had been pretreated with thrypsin containing 0, 1, 10, or 50
mM Ca?*,

Fetal kidney

The expression patterns for N-CAM, A-CAM, and L-CAM in
different stages of nephron development are summarized in
Figure 4.

N-CAM

Clone ERIC-1 against human N-CAM, clone NCAM-OB11
against rat N-CAM, and the polyclonal antiserum against rat
N-CAM gave qualitatively the same staining patterns. Never-
theless, antibody ERIC-1 performed substantially better than
the other two reagents. Strong staining was observed on the
non-induced mesenchyme in the subcapsular area (Fig. 1 A-C)
and in the sheets of Bertin, in the early condensed mesenchyme
around the collecting duct endings (Fig. 1 A and B), the isolated
spherical cell masses (futher referred to as pretubular conden-
sates) (Fig. 1 A and C), the comma-shaped bodies, and the
lower and middle limb of the S-shaped bodies (Fig. 1C). During
carly glomerular development, the visceral and parietal glomer-
ular epithelium were both positive (Fig. 1 B and C); in the
former epithelium, positivity was mainly seen at the basis of the
cylindrical cells, whereas in all previous stages the entire cell
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surface was positive. Further developmental stages were com-
pletely negative. In addition, N-CAM staining was also ob-
served with each antibody in the tubulointerstitial cells of the
medullary region (Fig. 1 C and D). Although antibody NCAM-
OBI11 produced moderate staining on the luminal surface of the
epithelial cells lining the collecting duct ampullae, this could not
be confirmed with the other antibodies.

A-CAM

A-CAM staining was observed in all stages of metanephric
development, starting in the uncondensed and condensing
mesenchyme (Fig. 5A). The following stages of development,
including the pretubular condensates, the comma-shaped bod-
ies, and the S-shaped bodies (Fig. 5 A and C), were all positive.
In the latter, however, staining was restricted to the lower limb,
that is, the future proximal tubule (Fig. 5 B and C). In the early
developing glomerulus, A-CAM was seen in the parietal epithe-
lium and also at the antiluminal side of the cylindrical visceral
epithelium (Fig. 5 A and B). In all further stages, A-CAM
expression was restricted to the developing proximal tubule, as
evidenced by its overlapping with the histochemical staining
patterns for AP, the staining restricted to the apical intercellular
contact-sites (Fig. 5 D). Collecting ducts were always negative
for A-CAM.

L-CAM

The entire collecting duct system, including the growing bud,
was strongly L-CAM positive (Fig. 6 A and B). Staining was
absent in the undifferentiated metanephrogenic mesenchyme,
also after its condensation around the collecting duct endings
(Fig. 6 C-E) and its conversion into pretubular condensates and
comma-shaped bodies (Fig. 6C). L-CAM positivity first ap-
peared in the upper limb of the S-shaped bodies (Fig. 6D and E)
and continued to be present in the distal part of the developing
nephron (Fig. 6B). Staining was localized on the entire cell
surface of all cells lining the collecting ducts and developing
distal tubules. Combination of L-CAM immunohistochemical
staining with histochemical staining for total AP revealed that
they were mutually exclusive, except in the upper limb of the
S-shaped bodies, which demonstrates the absence of L-CAM in
the developing proximal tubule. The developing glomerular tuft
was negative (Fig. 6 C-E), but in later stages the lateral plasma
membranes of the parietal epithelial cells lining Bowman’s
capsule were occasionally positive.

IAP

In contrast to the adult kidney, intestinal alkaline phos-
phatase (IAP) staining could not be detected in the developing
kidney between 11 and 21 weeks gestation, neither immunohis-
tochemically using monoclonal antibody Mab 250, nor enzyme-
histochemically using 0.5 mM L-p-bromotetramisole to inhibit
the tissue-unspecific isoenzyme of AP. The absence of IAP in
all fetal kidneys investigated probably is due to a lack of
functional and morphological specialization between the early
and the late part of the proximal tubule at these stages of
development, hereby confirming our previous conclusion that
IAP in the human kidney is a differentiation marker for the
S3-segment [20].
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Adult kidney are more or less specifically expressed in different nephron

segments are summarized in Table 1. The following markers

No differences in the staining patterns for any of the CAMs  were used: the tissue-unspecific isoenzyme of alkaline phos-
were seen between the donor kidney and the normal tissues that  phatase (TUAP) and gamma-glutamyl transferase (GGT) as
were taken from tumor-affected kidneys. The staining patterns  markers for the proximal tubule [27], the intestinal-type isoen-
for N-CAM, A-CAM, and L-CAM, and for seven markers that zyme of alkaline phosphatase (IAP), exclusively expressed in
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Fig. 6. L-CAM staining (antibody MCLA) in fetal kidney. A. 17
weeks; overview showing strong staining on the entire cell surface of
all cells lining the branching collecting duct. B. Detail of Figure A;
arrowhead indicates transition between negative proximal tubule and
positive more distal part of nephron. C. 19 weeks; two positive
ampullae covered by negative condensing metanephrogenic
mesenchyme; negative comma-shaped bodies lie at angles between
ampullae and collecting ducts. D (19 weeks) and E (21 weeks). L-
CAM positive collecting duct buds covered by negative condensing
metanephrogenic mesenchyme, and connected to positive upper limb
of S-shaped bodies; the lower limb and developing glomeruli are
negative, (A, X 55; B, X 140; C-E, x 220) Abbreviations are: a,

the straight segment of the proximal tubule (PST) [20], Tamm-
Horsfall protein (THP) as a marker for the thick ascending limb
(TAL) [28], human milk fat globule antigen (HMFG) [18],
homologous to epithelial membrane antigen (EMA), and peanut
lectin (PNA) binding capacity, both present along the entire
distal nephron. The CAM expression patterns are schematically
represented in Figure 7.

The staining patterns for A-CAM and L-CAM on paraffin
sections were identical to those obtained on unfixed or chloro-
form/aceton-fixed frozen sections.

N-CAM

When antibody ERIC-1 against human N-CAM or the rabbit
antiserum against rat N-CAM were used, no staining could be
detected in the adult kidney, except for interstitial nerve fibers
and nerves, which were strongly positive. With antibody
NCAM-OBI11 against rat N-CAM, some TL cross-sections in
the ISOM and IM contained a number of cells displaying strong
N-CAM staining on their apical cell surface, and some glomer-
uli contained a few weakly stained cells.

A-CAM

A-CAM positive staining in the cortex and medullary rays
(Fig. 8 A and B), and in the OSOM co-localized completely with

collecting duct ampulia; ¢, comma-shaped body; e, early condensing
mesenchyme; g, glomerulus; s, S-shaped body.

the histochemical staining pattern for the proximal tubular
markers GGT (Fig. 8C) and TUAP, whereas no overlapping
was seen with the distal tubular markers HMFG2, HMFGI,
THP, and PNA. This illustrates that in these areas A-CAM
immunoreactivity was found exclusively and in all segments of
the proximal tubule. In addition, staining was also observed in
the thin loop of Henle in the ISOM and IM (Fig. 8D). Staining
was present in all cells lining these nephron segments. In the
S1-S2 segments of the proximal tubule, A-CAM positivity was
particularly evident at the apical sites of intercellular contact,
presumably adherens junctions, and in an apparently continu-
ous band just below the brushborder (Fig. 8A), whereas in the
S3-segment (Fig. 8A) and in the thin loop of Henle (Fig. 8D),
staining was seen only at the apical sites of intercellular contact.
In tangential cross-sections through S1-S2 proximal tubules,
staining was seen as zig zagging line segments between the cell
apices (Fig. 8A). In contrast, in the S3-segments it consisted of
straight line segments (Fig. 8A). In addition to the strong apical
staining, there was substantially weaker staining associated
with the basal cell surface of proximal tubular cells. Weak
staining was also seen at the intercellular contact sites in
Bowman’s capsule. The described A-CAM staining pattern was
present in all kidneys investigated, but, like for L-CAM, there
was considerable variation in the intensity. The staining levels
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Fig. 7. Schematic representation of the segment-specific expression of
A-CAM and L-CAM along the adult human nephron. Symbols are: (N)
A-CAM, (@) L-CAM, (B) both.

for both antigens were positively correlated and they also
seemed to be correlated with the quality of tissue preservation.
In the other mammalian species investigated, A-CAM could
not be demonstrated with antibody GC-4 against chicken
A-CAM. In the chicken, strong staining was seen only in the
connective tissue capsula and septa (data not shown).

L-CAM

All specimens of human kidney were analyzed using antibody
MCLA against human L-CAM; some were also stained with
antibody DECMA-1 against mouse uvomorulin. The obtained
staining patterns were identical, apart from a slightly higher
level of staining with the former antibody. All tubular cross-
sections in which L-CAM staining could be detected were also
positive for HMFG2 and for PNA, in the cortex (Fig. 9 A-C),
medullary rays and OSOM, ISOM, and IM. The thin limb was
L-CAM positive (Fig. 9D), but HMFG2 negative. All HMFG1-
immunoreactive DCT and collecting ducts were L-CAM posi-
tive as well. Furthermore, also all THP positive TAL cross-

Fig. 8. A-CAM staining in adult human kidney. A. Difference in
A-CAM localization between S1-S2 and S3 proximal tubular cells.
Tangential tubular cross-sections show staining as zig-zagging line
segments along cellular interdigitations between S1-S2 cells (arrow-
head), in contrast to the straight line segments between S3-cells which
lack intercellular interdigitations (arrow). B and C. Adjacent sections
containing cortex and medullary ray. B, A-CAM staining; C, GGT
histochemical staining that completely overlaps with the staining in B;
D, A-CAM staining in TL segments of inner stripe of outer medulla. (A,
x 275; B-C, x 70; D, x 175)
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sections in the OSOM and ISOM were L-CAM positive. These
comparisons demonstrate that L-CAM expression was detected
in all segments downstream to the proximal tubule, that is, from
the thin limb to the inner medullary collecting duct, including
the entire distal nephron (Table 1). This L-CAM staining
pattern was consistently observed in the eleven specimens
investigated, although there was considerable variation in the
staining intensity. When staining was strong, it was present on
the entire cell surface of the tubuloepithelial cells; when it was
less intense, it was predominantly localized at the apical sites of
intercellular contact. These patterns resemble the localization
of staining in jejunal epithelial cells (vide supra; Fig. 3). No
overlapping existed in cortex and OSOM between L-CAM
staining and staining for GGT, TUAP, or IAP, illustrating that
L-CAM is not expressed in the S1, S2 and S3-segments of the
proximal tubule. IAP was present exclusively on the brush
border of the epithelial cells lining the S3-segment of the
proximal tubules in the medullary rays and OSOM, as described
previously [17]. Finally, positive L-CAM staining was also
present on the lateral membranes of the parietal epithelial cells
of the Bowman’s capsule (Fig. 9A).

This absence of L-CAM expression in the proximal convo-
luted and straight tubule was also seen in the monkey (antibod-
ies MCLA and DECMA-1) and dog kidney (antibody DECMA-1;
data not shown). In contrast, in the mouse, L-CAM staining
(antibody DECMA-1) was seen both in proximal and distal tubular
cross sections; staining was particularly strong in collecting ducts,
mainly along the basolateral cell surfaces (data not shown). No
staining could be obtained in the chicken kidney.

Cell cultures from adult kidney

Cell cultures from distal tubular origin were positive for
L-CAM (Fig. 10), and negative for A-CAM, like their in vivo
counterparts. In analogy, cultures of proximal tubular cells
were positive for A-CAM and negative for L-CAM (Fig. 11).
Positive staining in both types of cultures was found as line
segments along the lateral plasma membranes of neighbouring
cells. N-CAM could not be detected in either type of culture.

Discussion

Because of their specific adhesive properties, CAMs are
potential effectors of morphogenesis. However, since the addi-
tion of an excess of neutralizing antibodies to N-CAM or
L-CAM failed to inhibit the major events in embryonic kidney
development [29, 30], their biological significance in nephrogen-
esis has been questioned. Nevertheless, similar experiments
revealed their importance in cell-adhesion in preimplantation
mouse embryos [4, 7, 31] and in the morphogenesis of other
organ systems, such as during feather development of chick
embryo skin in vitro (32), motor neuron migration in vitro [33],
and the alignment of cell layers in neural retina [11].

Fig. 9. L-CAM staining (antibody MCLA) in adult human kidney. A.
Positive staining at the lateral cell contacts in parietal epithelium of
Bowman’s capsule (small arrowheads) and in the DCT and CCD;
absence of staining in the PCT (S1). B-C. Comparison on adjacent
sections in cortex of L-CAM staining (B) with the distribution pattern
for the distal tubular marker HMFG2 (C). D. L-CAM staining in thin
limbs and collecting ducts in inner medulla. (A, x 175; B-C, x 70; D,
x 275)
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Table 1. Comparison of the staining pattern for N-CAM, A-CAM, and L-CAM in the adult human kidney with the distribution of seven
segment-specific markers

Zone Segment N-CAM A-CAM L-CAM HMFG2 PNA HMFGI1 THP GGT TUAP IAP
Cortex GLOM - + ++ - - - - - -
PCT - +++ - - - - + +++ -
TAL - - ++ +++ +++ + +++ - - -
DCT - - ++ +++ ++ +++ - - - -
CCD - - ++ +++ +++ +++ - - -
OSOM PST - ++ - - - - +++ ++ ++
TAL - - ++ +++ + - +++ - - -
OMCD = - +++ +++ ++ +++ - - - -
ISOM TL - +4+ ++ + + - - - -
TAL - - ++ +++ + - +++ - - -
OMCD - - +++ +++ ++ +++ - - - -
M TL - ++ ++ + + - - - -
IMCD - - ++ ++ ++ +++ - - - -

Abbreviations are: CCD, cortical collecting duct; DCT, distal convoluted tubule; GGT, gamma-glutamyl transferase; GLOM, glomerulus;
HMFG, human milk fat globulin; IAP, intestinal-type alkaline phosphatase; IM, inner medulla: IMCD, inner medullary collecting duct; ISOM,
inner stripe of outer medulla; OMCD, outer medullary collecting duct; OSOM, outer stripe of outer medulla; PCT, proximal convoluted tubule;
PNA, peanut agglutinin binding; PST proximal straight tubule; TAL, thick ascending limb; THP, Tamm-Horsfall protein; TL, thin limb; and

TUAP, tissue-unspecific alkaline phosphatase.

Fig. 10. L-CAM staining (antibody MCLA) in confluent cultures of
human distal tubular cells (X 550).

Since N-CAM is present in both non-induced and condensing
metanephrogenic blastema cells, it is not very likely to be the
adhesive factor responsible for this condensation. Moreover,
N-CAM remains present in fetal medullary interstitial cells, for
which there is no reason to suppose that they could be involved
in cell condensation at a later stage. Also L-CAM poses some
problem in this regard, as its expression is detected rather late
after completion of the epithelial conversion, that is, early
before the upper limb of the S-shaped body, that will further
develop into the distal tubule, merges with the collecting duct.
The biological rationale for the switch to L-CAM expression in
the upper limb may be to promote this fusion through the
expression of the same type of CAM as in the other fusion
partner, the L-CAM positive collecting duct. As A-CAM, like
N-CAM, is expressed both in the non-induced and condensing
mesenchyme, its mere presence is again unlikely to be respon-
sible for the mesenchyme-to-epithelium conversion. However,
its expression from the very beginning and throughout human
nephron development is interesting, and its exact role during
kidney morphogenesis should be further investigated. A-CAM

Fig. 11. A-CAM staining in confluent cultures of human proximal
tubular cells (X 275).

was first isolated from purified chick cardiac intercalated discs
[34] and is structurally related to L-CAM. Conflicting data exist
on whether or not they interact in a heterotypic manner [9, 35].

Our results on the expression of N-CAM, A-CAM, and
L-CAM in the fetal human kidney are in general in agreement
with available data for a few other species, but there are
nevertheless some important differences. Our N-CAM expres-
sion pattern is identical to that described by others for the
developing meso- and metanephric avian kidney [36] and for the
metanephric mouse kidney [37]. Comparison between our
A-CAM data and the described pattern for A-CAM [8] and
N-cadherin [38] in the developing meso- and metanephric
chicken kidney reveals two important dissimilarities. In addi-
tion to the A-CAM positivity as seen in the human kidney, the
chicken displays staining in the Wolffian duct and the collecting
ducts. Moreover, A-CAM is gradually replaced by L-CAM in
the maturing nephron, first in the proximal and subsequently in
the distal tubules. Finally, our L-CAM staining pattern is
essentially the same as in the chicken embryonic kidney, except
that in the latter all developing metanephric tubules become
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positive {39]. A similar pattern was described during earlier
mesonephric development [36, 39, 40]. Also, in the fetal mouse
a distinct reaction was reported to be present on all cells both in
the proximal and the distal tubules, in contrast to the human
fetal kidney, and no reaction could be detected at any stage
within the developing glomeruli [41].

The complementary segment-specificity in the expression of
A-CAM and L-CAM that becomes apparent very early in the
developing human nephron was also recognized in the adult
human kidney, where it was further evidenced by comparisons
with staining patterns obtained for seven segment-specific
markers covering the entire nephron. L-CAM staining on the
one side was restricted to cells lining the entire distal nephron,
from the thin limb in the inner stripe of the outer medulla to the
collecting duct in the inner medulla, and in Bowman’s capsule.
An exclusive distal tubular expression of L-CAM could also be
detected in the monkey and dog kidney, but not in the mouse,
which illustrates that the human expression pattern is not an
exception. Moreover, this association between L-CAM expres-
sion and the distal nephron was conserved after in vitro culture
of human distal tubular cells for two weeks. Similarly, the
MDCK dog kidney cell line, displaying a number of distal
tubular characteristics, is also known to express uvomorulin
[42]. These data demonstrate that L-CAM is an important
differentiation marker for all nephron segments downstream to
the proximal tubule. A-CAM staining, on the other hand, was
detected only in the proximal tubule and thin limb, and to a
lesser extent in the epithelium lining Bowman’s capsule. Stain-
ing was predominantly associated with the apical zones of
intercellular contact, presumably adherens junctions. Again,
the exclusive association between the expression of A-CAM
and the proximal nephron was conserved after in vitro culture
of human proximal tubular cells for two weeks.

As for the fetal kidney, there are similarities and differences
between our CAM staining patterns in the adult human kidney
and those reported for three animal species.

The absence of N-CAM is in agreement with available data
for the mouse, where N-CAM and its mRNA are lost during
kidney development [37].

A-CAM staining has been previously reported only for the
human and chicken kidney. Using clone GC-4 on frozen sec-
tions, A-CAM has been detected on the basolateral surface of
the tubular epithelial cells throughout the length of the nephron
in the adult human kidney [43]. This is in contradiction with our
data for the same antibody on formalin-fixed paraffin-embedded
tissue and on frozen sections as well, However, the reliability of
our A-CAM stainings is supported by the following features: (1)
staining in both the fetal and adult proximal tubule is found only
on the apical contact sites between the cells, as is to be
expected for an adherens-junction-specific cell adhesion mole-
cule; (2) the difference in A-CAM staining between S1-S2 and
S3 proximal tubular celis in the adult kidney is in accordance
with known differences in the amount of adherens-junction
components between these cells, as lateral interdigitations are
abundant between S1-S2 cells and are absent between S3-cells
[44]; (3) A-CAM expression in vitro is again restricted to cells of
proximal tubular origin; (4) staining in human heart is restricted
to the intercalated discs of muscle cells. Our inability to detect
A-CAM in tubules of the adult chicken kidney is in accordance
with the lack of staining reported by others [8].

Nouwen et al: Adhesion molecules in human kidney

As for L-CAM, Biddlestone and Fleming [43] were unable to
demonstrate this molecule on frozen sections of adult human
kidney, using monocional antibody DECMA-1 against mouse
uvomorulin. In contrast, we could demonstrate L-CAM in the
distal nephron using this antibody and also using the anti-human
L-CAM antibody MCLA on frozen as well as on paraffin
sections. The absence in our study of L-CAM in the proximal
tubule also is in disaggreement with the available information
on the chicken [39, 40], mouse and rat [31, 41]. In the chicken,
L-CAM staining has been observed in all tubule structures and
on the parietal cells of Bowman’s capsule [39]. In the adult
mouse [31] and rat [41], positive L-CAM staining was localized
mostly on epithelia of the collecting tubules. In another study,
the authors report that both proximal and distal tubules in adult
mouse are positive for L-CAM, but that they are more weakly
stained than the collecting ducts [29]. Glomeruli were described
to be negative. We could confirm this expression pattern by
using antibody DECMA-1 on formalin-fixed paraffin-embedded
mouse kidney tissue. This proves that the disparities in the
L-CAM staining pattern between human and mouse reflect a
biological reality and are not the consequence of differences in
methodologies used. Finally, E-cadherin has also been demon-
strated in kidney tubules from Xenopus laevis [45]; staining was
found in the Wolffian duct and some mesonephric tubules,
although most tubules of the early mesonephros were negative.

It is intriguing that tubuloepithelial differentiation along the
human nephron is accompanied by the segment-specific expres-
sion of the cell adhesion molecules A-CAM and L-CAM. This
might indicate that the functional load of discrete nephron
segments imposes different demands on mechanical linkage
between adjacent cells. Alternatively, it could be a means to
establish during development, and to conserve thereafter, the
sharp borders between nephron segments, that is, to prevent
the intermingling of different cell types at the transition between
segments. The latter explanation seems more plausible, since
the segment-specific CAM expression is already installed from
the very beginning of segment-specific development of the
nephron (the S-shaped body), that is, before the acquisition of
functionality, and also since it is conserved in vitro in condi-
tions in which a normal functioning of the cells is unlikely to
occur. Moreover, there is an abrupt switch in the expression of
L-CAM and/or A-CAM at each sharp morphological border
between adjacent parts of the nephron, that is, between Bow-
man’s capsule and the proximal tubule, between the proximal
tubule and the thin limb, and between the thin limb and the
distal tubule. No information is available on the mechanisms by
which these sharp morphological transitions between adjacent
segments could be installed and maintained. It is unlikely that
they would be the mere consequence of cellular adaptations to
axial gradients in the pericellular microenvironment, resulting
from the processing of vltrafiltrate by the tubuloepithelial cells,
as such gradients can hardly be sharp. A possible role for CAMs
in intraepithelial sorting is further supported by several reports
demonstrating that adhesive properties of individual cells are
governed by varying combinations of multiple CAMs (10, 11],
and that segregation and border formation occurs between cells
expressing a different combination of L-CAM and A-CAM, in
vivo and in vitro [9, 11, 46, 47]. Earlier reports have shown that
also cell-matrix interactions are involved in segment-specific
differentiation of the nephron. In the developing human kidney,



Nouwen et al: Adhesion molecules in human kidney

the a2- and a3-subunits of integrins are characteristically ex-
pressed in distal tubules and collecting ducts, and the patterns
are retained in the adult nephron {48]. In the mouse kidney, the
laminin A chain is found in the basement membrane of proximal
tubules only [49].

It thus appears that A-CAM and L-CAM expression are basic
properties of cells from proximal and distal tubular lineage,
respectively, especially since their expression becomes specif-
ically associated very early with those parts of the S-shaped
bodies that will further develop into the proximal and distal
tubuie, and also since human kidney cells maintain their typical
CAM expression in vitro, in spite of the fact that some other
differentiated properties are significantly less well-preserved
[17]. This implies that A-CAM and L-CAM are apt to play key
roles in steering segment-specific epithelial regeneration and
differentiation after tubular injury. The involvement of several
CAMs in regenerative processes has been demonstrated in
other organ systems, such as L1 and N-CAM being involved in
supporting axon regrowth on the surface of Schwann and
fibroblast-like cells during nerve regeneration [50], and an
increase in the amount of N-CAM immunoreactivity has been
demonstrated in the sarcolemma and intercalated discs of
hypertrophic myocardium of the right ventricle of rats [51]. As
for the possible occurrence and pathophysiologic consequences
of abberant CAM expression in the kidney, there is at present
very little information on this matter. Rocco et al [52] reported
an early reduction in the mRNA levels encoding N-CAM and
E-cadherin in polycystic kidney disease of the mouse, and they
deduced that these alterations may contribute to the pathogen-
esis of cyst formation.

In conclusion, the fetal and adult human kidney expresses the
cell-adhesion molecules N-CAM, A-CAM, and L-CAM during
specific developmental stages and at specific sites of the
nephron. Since cells expressing different combinations of
CAMs are known to have reduced adhesive properties, expres-
sion of different CAMs along the fetal and adult nephron
probably plays a role in establishing and conserving its division
into well-delineated morphologically and functionally distinct
segments.
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