
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 881 (2014) 467–501

www.elsevier.com/locate/nuclphysb

Yang–Baxter operators and scattering amplitudes
in N = 4 super-Yang–Mills theory

D. Chicherin a,b, S. Derkachov a, R. Kirschner c,∗

a St. Petersburg Department of Steklov Mathematical Institute, Russian Academy of Sciences,
Fontanka 27, 191023 St. Petersburg, Russia

b Chebyshev Laboratory, St.-Petersburg State University, 14th Line, 29b, 199178 St. Petersburg Russia
c Institut für Theoretische Physik, Universität Leipzig, PF 100 920, D-04009 Leipzig, Germany

Received 10 October 2013; received in revised form 20 December 2013; accepted 12 February 2014

Available online 19 February 2014

Abstract

Yangian symmetry of amplitudes in N = 4 super-Yang–Mills theory is formulated in terms of eigenvalue
relations for monodromy matrix operators. The Quantum Inverse Scattering Method provides the appropri-
ate tools to treat the extended symmetry and to recover as its consequences many known features like
cyclic and inversion symmetry, BCFW recursion, Inverse Soft Limit construction, Grassmannian integral
representation, R-invariants and on-shell diagram approach.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

In the weak coupling context, dual superconformal symmetry of scattering amplitudes in
super-Yang–Mills theory at large N has been discovered in [1] and analyzed in [2]. Relying on
the gauge/string duality the relation of amplitudes to light-like Wilson loops has been established
earlier in [3]. Here the superconformal symmetry of the Wilson loop is important in the calcula-
tion of amplitudes at strong coupling. The relation of both superconformal symmetries has been
understood by string T-duality [4,5]. The integrability of the related sigma model has been used
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in strong coupling amplitude computations [6]. Yangian symmetry has been established as the
unification of both kinds of superconformal symmetries [7]. The extended symmetries became
part of the modern treatment and understanding of gauge theories and their relation to strings.
The Yangian symmetry of amplitudes appeared in the first instant as the elegant and compact for-
mulation of the symmetry properties of known amplitude expressions and their relation to Wilson
loop expectation values. Applications of Yangian symmetry of amplitudes have been studied e.g.
in [8,9]. It is desirable to use the extended symmetries as tools of calculation. We propose a for-
mulation which allows to exploit easily all the advantages of Yangian symmetry in calculations
and investigations of amplitudes.

In most investigations of this symmetry on amplitudes Drinfeld’s formulation in terms of alge-
bra generators [10] has been applied. In the case of the symmetry algebras g�(N) a formulation
in the framework of the Quantum Inverse Scattering Method (QISM) was worked out earlier by
L.D. Faddeev and collaborators [11–16]. We rely on the advantages of the QISM formulation
here. It has features appearing natural to physicists, because it emerged as the mathematical for-
mulation of the methods developed for the Heisenberg spin chain and other integrable models.
Our considerations are heavily based on the ideas and techniques of QISM. In particular this
means that we associate with a considered n-particle amplitude M a spin chain with n sites.

We are going to formulate the condition of Yangian symmetry of amplitudes M following
[17] in terms of the monodromy matrix T(u) as the eigenvalue relation

T(u)M = CM. (1.1)

The eigenvalues C play an auxiliary role here.
The monodromy matrix is an ordered matrix product of L-operators each referring to one site

of the spin chain. The L-operator is an operator-valued matrix with elements composed out of
the symmetry algebra generators in the relevant representation. In our case the representation
space is the one corresponding to the single particle states of the vector multiplet of the N = 4
extended SYM including their helicities and momenta.

The L-operator depends on the spectral parameter u and in general the monodromy matrix
depends on u1, . . . , un. The above symmetry condition refers to the homogeneous case of coin-
ciding spectral parameters.

In [17] considering g�(N)-symmetric spin chains the eigenvalue problem for inhomogeneous
quantum monodromy matrices has been formulated as the Yangian symmetry condition. Eigen-
functions of the monodromy called Yangian symmetric correlators have been constructed and
some relations implied by the symmetry condition have been derived.

The Yang–Baxter R-operator1 is another important ingredient of QISM. It acts in the ten-
sor product of two infinite-dimensional local quantum spaces and intertwines a pair of 2-site
monodromies, i.e. two representations of the Yangian algebra. The corresponding intertwining
relation is known as Yang–Baxter RLL-relation. We shall use Yang–Baxter R-operators to gen-
erate more solutions of the symmetry condition from given ones. This works under the condition
that the corresponding R-operators can be permuted with the monodromy matrix in the eigen-
value relation. In this perspective it has been proposed to consider generalized Yang–Baxter
relations [17] because higher point eigenfunctions of the monodromy define as kernels the cor-
responding generalized Yang–Baxter operators obeying these relations.

In this paper we are going to apply the methods developed in [17] to the g�(4|4)-symmetric
spin chain. This particular integrable quantum-mechanical system has played a crucial role in

1 The notion of R-operator is not to be confused with the one of R-invariants [1].
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unraveling the integrable structures of N = 4 super-Yang–Mills theory in composite operator
renormalization [20] and is the relevant one here. The comparison to the more general case
considered in [17] illustrates the specifics of the situation of super-Yang–Mills field theory. The
presentation of the present paper is kept basically self-contained with respect to the details of the
previous one.

Our main statement is the following: The Yangian symmetry can be formulated as the eigen-
value problem for the monodromy matrix and in solving it we recover the crucial constructions
for SYM scattering amplitudes such as the link integral representation, the Inverse Soft Limit
(ISL) construction, on-shell diagrams which have been pioneered by Arkani-Hamed and col-
laborators [21–25] and also R-invariants [1]. These concepts have been developed originally
without reference to Yangian symmetry or integrable structure. We emphasize that all these struc-
tures arise inevitably from the basic concepts of QISM. The only input for us is the appropriate
eigenvalue problem for monodromy matrices which we solve exploiting solely concepts and
constructions typical for QISM.

We shall show that the Yangian symmetry condition is compatible with the iterative BCFW
construction of amplitudes and that the elementary three-particle amplitudes are Yangian sym-
metric.

However, there are eigenfunctions of the Yangian symmetry condition more elementary rather
than those three-particle amplitudes, called basic states. They are formed by products of delta
functions of spinor variables each referring to one site of the n-site spin chain. The local structure
of these states implies absence of interactions.

It is remarkable that the amplitude terms can be obtained by acting on such basic states by
products of Yang–Baxter R-operators defined from the L matrices by the RLL intertwining re-
lation. The R-operators act bilocally touching just two sites of the spin chain. The sequential
action by Yang–Baxter R-operators on the basic state results in more and more entangled, non-
local solutions. The representation of amplitudes in terms of operator actions has been found
earlier in [26] without noticing the connection to Yang–Baxter relations. We shall also show the
relation to the Inverse Soft Limit (ISL) construction. Representing the R-operator in the form of a
contour integral a sequence of R-operator actions transforms into the Grassmannian link integral
representation [22].

The eigenvalue problem for the monodromy is invariant with respect to cyclic shifts of spin
chain sites and it transforms in a simple manner with respect to reflection of the site ordering.
The fact that a sequence of R-operators generates an eigenstate is based on the possibility to pull
the sequence through the monodromy matrix. The latter is provided by cyclicity, reflection and
the RLL-relation.

In order to recover on-shell diagrams from the perspectives of QISM we consider integral
operators in spinor-helicity variables whose kernels are eigenfunctions of the monodromy. In this
way we identify the Yang–Baxter R-operator, the basic tool of our construction, as the integral
operator with the cut 4-point amplitude as kernel.

We shall also consider the eigenvalue problem for the monodromy in super momentum twistor
variables introduced by Hodges [27]. The corresponding construction of eigenfunctions follows
the previous pattern. The basic state has a local form and it is formed as a product of delta
functions of super momentum twistors or identity each referring to one site of the spin chain.
The other eigenfunctions of the monodromy are generated again by acting on the basic state
with a sequence of bilocal R-operators now in super momentum twistor variables. We recover
R-invariants in this way.
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For all constructions relevant for SYM scattering amplitudes we can restrict ourselves to the
case of the homogeneous monodromy which is obtained from the inhomogeneous one by taking
all spectral parameters equal. Then the R-operators appear with argument value zero. Solving
the eigenvalue condition with inhomogeneous monodromy matrices we obtain spectral parame-
ter dependent deformations of the amplitude expressions. The deformation affects the dilatation
weights, i.e. the superconformal Casimir of the representation, shifting them off the physical
value originally determined by the scattering particles. Keeping the parameters at generic values
provides advantages related to analytic continuations. Parameter deformed amplitudes have been
considered and the use for regularization has been pointed out in [28]. We show that our tech-
niques allows to obtain easily deformed amplitude expressions and discuss their applications.

The plan of the paper is as follows. In Section 2 we introduce the basic notations and ob-
jects relevant for QISM such as the L-operator, the monodromy matrix and the R-operator in
the case of spinor-helicity variables for the g�(4|4) symmetry algebra recalling the framework
from [17]. In Section 3 we show that the BCFW recurrent procedure is compatible with Yangian
symmetry where we understand the latter from the point of view of QISM as the monodromy
eigenvalue condition. We also represent 3-point amplitudes in terms of R-operators acting on a
basic state. In Section 4 we prove that the eigenvalue relation for the homogeneous monodromy
is invariant with respect to cyclic shift of the spin chain sites and reflection of the site ordering. In
Section 5 we establish the connection with the ISL construction of scattering amplitudes. In Sec-
tion 6 we discuss canonical transformations which relate the present construction with the one
in [17]. In Section 7 we discuss eigenvalue problems for inhomogeneous monodromy matrices.
We construct 3- and 4-point eigenfunctions by a sequence of operators acting on basic states. In
Section 8 we recall the connection between the eigenvalue problem for the inhomogeneous mon-
odromy and the generalized Yang–Baxter relation and construct integral Yang–Baxter operators
whose kernels are eigenfunctions of the monodromy. We show in Section 9 that the R-invariants
appearing beyond the MHV level are recovered by Yang–Baxter operator action on appropriate
basic states in momentum twistor variables.

2. L-operator, R-operator and Yangian symmetry

Here we introduce the basic tools needed in our construction. We start with two sets of mu-
tually conjugate variables2 x = (xa)

N+M
a=1 and p = (pa)

N+M
a=1 where the index a enumerates N

bosonic components (a = 1, . . . ,N ) and M fermionic components (a = N + 1, . . . ,N + M).
These variables respect canonical commutation relations with the graded commutator {xa,pb] =
−δab , i.e. commutation relation for bosons (a, b = 1, . . . ,N ) and anticommutation relation for
fermions (a, b = N + 1, . . . ,N + M). Later we shall restrict our discussion to N = 4 bosons and
M = 4 fermions, i.e. 4|4, as it is the relevant case for N = 4 SYM. We are interested in Jordan–
Schwinger type representations of the symmetry algebra g�(N |M) whose generators xapb can
be unified in a matrix and supplemented with a spectral parameter u term proportional to the
unit matrix,

L(u) = u + x ⊗ p, (2.1)

or more explicitly in component notations,

Lab(u) = uδab + xapb.

2 p is not to be confused with a momentum of a scattering particle and x is not to be confused with a region momentum.
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This matrix is referred to as L-operator. It is easy to check that it satisfies the fundamental com-
mutation relation, called RLL-relation,

Rab,ef (u − v)Lec(u)Lf d(v) = Lbf (v)Lae(u)Ref,cd (u − v), (2.2)

with Yang’s R-matrix, R(u) = u + P, where P is the graded permutation and a, b, . . . =
1, . . . ,N + M . The latter equation for the L-operator is equivalent to the defining (anti)com-
mutation relations of g�(N |M).

One of the merits of the Quantum Inverse Scattering Method [11–16] is that it enables us
to construct involved nonlocal objects out of local ones, where the interaction of several copies
of the introduced degrees of freedom is included in integrable way. Pursuing this strategy we
consider n copies of canonical variables (x1, . . . ,xn) and (p1, . . . ,pn) which are interpreted as
the dynamical variables of a quantum spin chain with n sites, i.e. xi and pi are local variables of
the i-th site. Further we construct the homogeneous monodromy matrix T(u) of the n-site chain
as the ordered matrix product of n L-operators each referring to one site of the spin chain,

T(u) = L1(u)L2(u) · · ·Ln(u) = (2.3)

Here Li (u) is the L-operator (2.1) with xa,pa substituted by the local canonical pairs at site
i, xi,a,pi,a . It is easy to understand [11] that the highly nonlocal monodromy matrix satisfies
the fundamental commutation relation (2.2) too, which is also known as the Yangian relations.
In Section 7 we shall consider a more general situation of inhomogeneous monodromy which
depends on n spectral parameters.

In applications to SYM the Yangian algebra has been usually used in Drinfeld’s formula-
tion [10] working with generators J 0 and J 1, where J 0 generate g�(N |M). The equivalence of
the latter formulation to the QISM formulation used here is well known and has been explained
in detail in [29]. T(u) is the generating function of the Yangian algebra generators in a particular
representation,

Tab(u) =
n−1∑

m=−1

un−m−1Jm
ab. (2.4)

J 0
ab and J 1

ab represent the generators in Drinfeld’s formulation; we have J−1 = I and the other
ingredients Jm

ab,m > 1, are determined from the generators. The fundamental RLL-relation (2.2)
implies the Yangian algebra relations, i.e. the commutation relations of J 0

ab and J 1
ab and the Serre

relations. It implies also that the higher level Jm, m > 1, and the commutation relations between
them are consequences of the relations involving the lower two levels m = 0,1 only.

One may redefine the basis of generators by

J
(0)
ab = J 0

ab − αδab

∑
J 0

cc, J
(1)
ab = J 1

ab − β
∑

J 0
acJ

0
cb (2.5)

with arbitrary constants α and β . This does not change the algebra.
We formulate the condition of Yangian symmetry, applicable in particular to SYM scattering

amplitudes specifying (1.1), as the eigenvalue relation with the monodromy operator (2.3),

Tab(u)M(x1, . . . ,xN) = C(u)δabM(x1, . . . ,xN). (2.6)

The eigenvalue C depends on the spectral parameter u.
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In our case Tab(u) is constructed according to (2.3) with the L operators of the form (2.1).
This implies that J 0

ab are sums of the local generators of the symmetry algebra g�(N |M) of the
spin chain, and J 1

ab are bilocal generators

J 0
ab =

∑
1�i�n

xa,ipb,i , J 1
ab =

∑
1�i<j�n

xa,ipc,ixc,jpb,j .

The eigenvalue condition in terms of Tab(u) (2.6) implies by the decomposition (2.4) the follow-
ing conditions in terms of the Drinfeld generators,

J 0
abM = C0δabM, J 1

abM = C1δabM.

C0 and C1 appear in the expansion of C(u) as C(u) = un(1 + C0u
−1 + C1u

−2 + · · ·). The
eigenvalue conditions involving the higher level Jm, m > 1, are consequences of the latter ones
because the higher level operators are obtained from the ones on the first two levels. By the above
redefinition (2.5) with appropriate parameters α,β,α = 1

N+M
,β = C1

C2
0

the symmetry condition

can be cast into the form

J
(0)
ab M = 0, J

(1)
ab M = 0

as it appeared in the first papers on Yangian symmetry of amplitudes.
Being a generating function is not the main point for preferring the monodromy matrix. More

important are its composition from local building blocks of the spin chain and its connection to
Yang–Baxter relations of several types.

As a further tool of the QISM we introduce the R-operator by means of the intertwining
RLL-relation,

R12(u − v)L1(u)L2(v) = L1(v)L2(u)R12(u − v). (2.7)

As indicated by the subscripts the operator R12(u − v) acts nontrivially in two sites 1,2 of the
spin chain and as the result permutes the spectral parameters of the involved L-operators. We can
also say that R is an intertwining operator that intertwines a pair of representations, L1(u)L2(v)

and L1(v)L2(u), of the Yangian algebra defined by the fundamental commutation relation (2.2).
In the case of our interest to be specified below the RLL-relation (2.7) can be depicted as follows

(2.8)

It will be explained further in Section 8. To prevent confusion we add the remark that this Yang–
Baxter RLL-relation (2.7) differs from the fundamental Yang–Baxter relation (2.2). They are
different representations of a general algebraic relation. In (2.7) the L operators enter in matrix
product. They act on different spaces indicated by the subscripts 1,2. The operator R12 acts on
the tensor product of these two spaces and it is not a matrix in our case. In (2.2) both L act
on the same space. They enter in matrix tensor product (expressed by explicit indices). R is a
(N + M)2 × (N + M)2 matrix.

Eq. (2.7) can be taken as the defining condition of the R-operator and formal algebraic oper-
ations lead to the solution [18]

R12(u) = �(u)(p1 · x2)
−u =

∞∫
dz

z1−u
e−z(p1·x2) = i

2 sinπu

∫
dz

z1−u
e−z(p1·x2) (2.9)
0 C



D. Chicherin et al. / Nuclear Physics B 881 (2014) 467–501 473
where we use the shorthand notation for the inner product (p1 · x2) = pa,1xa,2 and the contour C
encircles clockwise the positive real semi-axis starting at +∞ − iε, surrounding 0, and ending
at +∞ + iε.

In [17] explicit expressions of 2, 3, 4, 5-point symmetric correlators and n-point correlators
for a particular configuration are given. Further an iterative procedure which allows to construct
higher point eigenfunctions has been proposed. Transformations which relate eigenfunctions for
different n-site monodromies have been discussed. In particular it has been shown that the eigen-
value problems for the monodromy with cyclically shifted or reflected labels of spin chain sites
is essentially equivalent to the initial one. The one-dimensional structure of the associated spin
chain is reflected in the cyclicity property of the eigenfunctions. In the construction the 2-point
correlators have played a special role and they turned out to be a basic tool for constructing
higher-point correlators. They have been identified with the particular Yang–Baxter R-operator
proposed in [18]. This kind of Yang–Baxter operators is related to one of the factors of the Yang–
Baxter operator in s�(N) and plays a role in Baxter operator constructions [19].

Up to now the formulation is rather general. We are going to specify the dynamical variables
x, p for application to scattering amplitudes in N = 4 SYM. We are interested in two types
of variables: spinor helicity variables (see next Subsection) and super momentum twistors (see
Section 9).

2.1. Spinor helicity variables

The external particle states of the color-stripped N = 4 SYM scattering amplitudes can be
parameterized by a light-like momentum p (i.e. p2 = 0) which factorizes in a pair of spinors
of opposite helicities p = λ ⊗ λ̃, i.e. pαα̇ = λαλ̃α̇ , and by particle type and helicity. The latter
information is encoded by a polynomial in the Grassmann variables ηA (A = 1, . . . ,4). Therefore
we take as local dynamical variables of the related spin chain the following specifications, x →
( λα, ∂λ̃α̇

, ∂ηA
) and p → ( ∂λα , −λ̃α̇, −ηA ). Then the L-operator (2.1) acquires the form

L(u) =
⎛
⎜⎝

u · 1 + λ ⊗ ∂λ −λ ⊗ λ̃ −λ ⊗ η

∂λ̃ ⊗ ∂λ u · 1 − ∂λ̃ ⊗ λ̃ −∂λ̃ ⊗ η

∂η ⊗ ∂λ −∂η ⊗ λ̃ u · 1 − ∂η ⊗ η

⎞
⎟⎠ . (2.10)

One sees that it is a matrix with operator elements being generators of the superconformal algebra
in super spinor variables [30]. The monodromy matrix (2.3) defines the Yangian algebra. The
action of the corresponding R-operator (2.9) on a function F produces the BCFW shift,

Rij (u)F (λi, λ̃i , ηi | λj , λ̃j , ηj ) =
∫

dz

z1−u
F (λi − zλj , λ̃i , ηi | λj , λ̃j + zλ̃i , ηj + zηi).

(2.11)

Now we have identified the spin chain dynamical variables with the variables describing exter-
nal states of the scattering amplitude, and the Yangian symmetry statement for amplitudes is
translated into the eigenvalue relation for the monodromy (2.6).

3. BCFW and Yangian symmetry

In [2] it has been checked that the BCFW recursion relations are compatible with the dual
superconformal symmetry. We are going to show how the monodromy condition (2.6) can be
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Fig. 1. The monodromy matrix (2.3) is symmetric with respect to cyclic shift of spin chain sites (legs of the on-shell
diagram) on the space of its eigenfunctions.

applied to check the Yangian symmetry of tree scattering amplitudes and leading singularities of
loop corrections. The known proofs of this fact are either based on the explicit form of the tree
amplitudes [7], i.e. on explicit solutions of the BCFW recursion [31], or exploit the Grassmannian
formulation [24]. We would like to understand the Yangian symmetry directly from the BCFW
recursion relations without solving them. We shall show that the procedure of BCFW iteration
is compatible with the Yangian symmetry: the building blocks, the 3-point amplitudes, obey
the Yangian symmetry condition and the BCFW construction preserves the symmetry. Let us
emphasize once more that we rely here only on the monodromy matrix formulation (2.6) of the
Yangian symmetry.

To set up the notations we start with recalling the BCFW relations [32,33] in their super-
symmetrized version [2,34,35]. Consider the color-stripped scattering amplitude of n particles in
N = 4 SYM

Mn =
∑

k

Mk,n = δ4

(
n∑

i=1

pi

)
Mn, Mn =

∑
k

Mk,n.

Here the four-dimensional delta function takes momentum conservation into account. Mk,n

(as well as Mk,n) has degree 4k in Grassmann variables ηA
i (A = 1, . . . ,4) specifying the exter-

nal states. Each momentum pi is light-like p2
i = 0 and factorizes into two spinors pi = λi ⊗ λ̃i .

The relation to the notation referring to the helicity violation is Mk,n = Nk−2MHVn and
M1,3 = MHV3. It is known that Mk,n and Mk,n are cyclically symmetric. How cyclic symmetry
follows in our approach relying on the monodromy matrix (2.3) will be discussed in Section 4
(see Fig. 1).

The supersymmetric BCFW relation [34] has the form

Mk,n =
∑
L,R

∫
d4ηML

(
η1, λ1(z∗), λ̃1;η,−P1···i (z∗)

)

× 1

P 2
1···i

MR

(
ηn(z∗), λn, λ̃n(z∗);η,P1···i (z∗)

)
(3.1)

where the amplitudes ML and MR have i+1 and n−i+1 legs respectively, the total Grassmann
degree of ML and MR is four units larger than the one of M. Here the dependence of ML

and MR on their spinor and Grassmann arguments î = (λi, λ̃i , ηi) is displayed only partially,
emphasizing those active in the considered relation. Further, the variables î + 1 in ML and n̂ in
MR are expressed in terms of the intermediate momentum P . The following standard notations
for the BCFW shift are used

λ1(z) = λ1 − zλn, λ̃n(z) = λ̃n + zλ̃1, ηn(z) = ηn + zη1,

z∗ = P 2
1···i , P1···i (z) = P1···i − zλnλ̃1, P1···i = p1 + p2 + · · · + pi. (3.2)
〈n|P1···i |1]
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The statement that we are to prove is that the amplitude Mk,n (with the momentum-conserving
delta function included) is an eigenfunction of the monodromy matrix (2.3)

T(u)Mk,n = uk(u − 1)n−k · Mk,n. (3.3)

Consequently the amplitude is an eigenfunction of the generators of Yangian algebra (2.4),

Jm
abMk,n = δab

(−)m+1(n − k)!
(m + 1)!(n − k − m − 1)! · Mk,n.

We have explained above (2.5) that one may redefine the basis of generators by J
(0)
ab = J 0

ab −
αδab

∑
J 0

cc, J
(1)
ab = J 1

ab − β
∑

J 0
acJ

0
cb with arbitrary constants α and β . In this example we have

the explicit form of the eigenvalues C(u) and thus of the expansion coefficients C0,C1. Then
with the particular choice of α = 1

N+M
,β = n−k−1

2(n−k)
the symmetry condition can be cast into the

form of the invariance conditions J
(0)
ab M = 0, J

(1)
ab M = 0.

3.1. Symmetry of the convolution

First we consider one term in the sum (3.1) and prove that after multiplying by the momen-
tum delta function it obeys (3.3) if the involved ML,MR obey the corresponding monodromy
eigenvalue relations. Then our argument proceeds by induction in the number of legs.

We deform the BCFW relations (3.1) by substituting propagators 1
P 2 → 1

(P 2)1−Δ in a special
manner. Indeed let us define Mn(Δ) by the recurrence relation

Mk,n(Δ) =
∫

d4η

∞∫
0

dz

z1−Δ

∫
d4P0 δ

(
P 2

0

)
ML

(
η1, λ1(z), λ̃1;η,−P0

)

× MR

(
ηn(z), λn, λ̃n(z);η,P0

)
. (3.4)

We emphasize that ML and MR do contain the momentum conservation delta function. The
analogous formula at Δ = 0 has been used in [21,26] to rewrite BCFW in twistor space. We
integrate easily over P0 and z because these variables enter via the energy–momentum delta
function contained in the product of the amplitudes,

∞∫
0

dz

z1−Δ

∫
d4P0 δ

(
P 2

0

)
δ4(P1···i − P0 − zλnλ̃1) = 〈n|P1···i |1]−Δ

(P 2
1···i )1−Δ

≡ 1

Π2
i (Δ)

. (3.5)

There are two ways to make the previous expression well-defined. The first one appeals to
split signature (2,2) of space–time such that all spinors are real. Then we can assume that
〈n|P1···i |1] > 0, P 2

1···i > 0 for the integration of the delta function over z in (3.5) to be well
defined. The second possibility is to consider complexified momenta and to interpret the delta
function in (3.5) according to Dolbeault. For more details see for example [36]. Thus (3.4) takes
the form

Mk,n(Δ) =
∫

d4ηML

(
η1, λ1(z∗), λ̃1;η,−P1···i (z∗)

)
× 1

Π2(Δ)
MR

(
ηn(z∗), λn, λ̃n(z∗);η,P1···i (z∗)

)

i
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that is a slight modification of one term in the BCFW sum (3.1). At Δ → 0 the standard BCFW
relation arises, Mk,n(Δ = 0) = Mk,n. Further we represent the BCFW shifts by differential oper-
ators

ML

(
η1, λ1(z), λ̃1;η,−P0

) = e−zλn∂λ1 ML(η1, λ1, λ̃1;η,−P0),

MR

(
ηn(z), λn, λ̃n(z);η,P0

) = e
zλ̃1∂λ̃n

+zη1∂ηn MR(ηn,λn, λ̃n;η,P0).

In view of (2.9) (or (2.11)) this allows to rewrite BCFW by means of the R-operator which acts
on the 1-st and n-th legs of the amplitude,

Mk,n(Δ) = R1n(Δ)

∫
d4η0 d4P0 δ

(
P 2

0

)
ML(η1, λ1, λ̃1;η0,−P0)MR(ηn,λn, λ̃n;η0,P0).

(3.6)

We are going to calculate the action of the monodromy matrix on the amplitude

Ln−1(u) · · ·L2(u)L1(u − Δ)Ln(u)M(Δ) at Δ → 0. (3.7)

Here we consider an inhomogeneous monodromy matrix, i.e. we introduce the regularization
parameter Δ in the monodromy matrix (2.3). We shall show in Section 4 that the orderings of
the spin chain sites in (2.3) and (3.7) are equivalent from the point of view of the monodromy
eigenvalue condition. This can be also understood taking into account the cyclic symmetry of the
color-stripped amplitude as a fact (known or to be proven separately as in Section 4). It is clear
that the previous relation does not contain singularities at Δ → 0 and we can freely substitute
Δ = 0 in the monodromy matrix and in the amplitude M(Δ). We notice that in spite of the
apparent pole in (2.9) at u = 0 the operator R12(u = 0) is finite on the space of distributions we
deal with. We will see this below on explicit examples.

Then we specify the assumption of the induction that the amplitude with a number of external
particles lower than n is an eigenfunction of the monodromy (2.3) with an eigenvalue Cm

Lm(u) · · ·L1(u)Mm = Cm · Mm, at m < n. (3.8)

Now we act by the monodromy matrix (3.7) on M(Δ) (3.6) suppressing integrations for a while

Ln−1(u) · · ·L2(u)L1(u − Δ)Ln(u)R1n(Δ)MLMR

= R1n(Δ)Ln−1(u) · · ·Li+1(u)Li (u) · · ·L1(u)MLLn(u − Δ)MR. (3.9)

In the previous formula we have been allowed to pull the R-operator through the monodromy
due to the RLL-relation (2.7) that is a key observation. To simplify the underlined factor we use
the assumption of induction in the form (3.8)

Li (u) · · ·L1(u)ML = CL · L−1
0 (u)ML, (3.10)

i.e. ML having i + 1 legs is an eigenfunction of the monodromy.
In order to invert the L-operator (2.1) we note that

L(u)L(v) = uv + (u + v − 1 + c)x ⊗ p (3.11)

where in the considered case of spinor helicity variables (2.10)

c ≡ (p · x) = 2 + λ∂λ − λ̃∂˜ − η∂η (3.12)
λ
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is the Casimir operator of the superconformal algebra characterizing the chosen representation.
It commutes with the L-operator, [L(u), c] = 0. The Casimir operator is related to the helicity
operator h as h = 1 − c

2 . For N = 4 SYM amplitudes h = 1 and we have c = 0. This simplifies
considerably all the following calculations with L-operators. Consequently at v = 1 − u (3.11)
takes the form

u(1 − u)L−1(u) = L(1 − u). (3.13)

Further we define the transposed L-operator integrating by parts∫
d4η

∫
d4P δ

(
P 2)[L(u)Φ

]
Ψ =

∫
d4η

∫
d4P δ

(
P 2)Φ[

LT (u)Ψ
]

where the functions Φ(P,η) and Ψ (P,η) are even in the Grassmann variables ηA. It is easy to
check that

LT (u) = −L(1 − u), (3.14)

and taking (3.13) and (3.14) together we have

u(u − 1)L−1T (u) = L(u). (3.15)

Thus we see that matrix inversion and operator transposition reproduce the L-operator with the
initial dependence on the spectral parameter. This is indispensable for the Yangian symmetry
to hold in the form (2.6) and is due to the vanishing of the Casimir operator c on the space of
amplitudes. In the case of nonzero Casimir operator the Mk,n can be an eigenfunction of the
inhomogeneous monodromy matrix (depending on a set of n arbitrary spectral parameters) only
if the propagator has the nonstandard form (3.5) with nonzero Δ that does not admit a direct field
theory interpretation. This case will be addressed in Section 7.

Thus substituting (3.10) in (3.9), taking into account integrations in (3.6) and integrating by
parts by means of (3.15) one obtains

CL

u(u − 1)
R1n(Δ)

∫
d4η0 d4P0 δ

(
P 2

0

)
MLLn−1(u) · · ·Li+1(u)L0(u)Ln(u − Δ)MR.

Then due to the induction assumption (3.8) we conclude that the underlined factor is equal to
CRMR +O(Δ), and taking Δ → 0 we obtain that the monodromy matrix applied to a particular
term M of the full amplitude, Ln−1(u) · · ·L2(u)L1(u)Ln(u)M , results in

CLCR

u(u − 1)

∞∫
0

dz

z

∫
d4η0 d4P0 δ

(
P 2

0

)
ML

(
η1, λ1(z), λ̃1;η,−P0

)

× MR

(
ηn(z), λn, λ̃n(z);η,P0

)
. (3.16)

Thus each term of the BCFW sum is an eigenfunction of the monodromy with eigenvalue CLCR

u(u−1)
.

Let us remind that each term of the BCFW sum is a residue of the contour integral over a Grass-
mannian. Thus we have shown that the residues are Yangian invariant, i.e. they are eigenfunctions
of the monodromy. It remains to check that this eigenvalue is the same for all terms and thus Mk,n

is also an eigenfunction of the monodromy. Stating the other way: all residues of the contour in-
tegral correspond to the same eigenvalue. To prove it we first check that the 3-point amplitudes
are eigenfunctions of the monodromy as the starting point of the induction, and then by means of
the BCFW iteration we calculate the eigenvalues for all tree amplitudes and leading singularities.
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3.2. Three-point amplitudes

The basis of BCFW recursion are the 3-point MHV and anti-MHV amplitudes,

M2,3(p1,p2,p3) = δ4(p1 + p2 + p3)δ
8(λ1η1 + λ2η2 + λ3η3)

〈12〉〈23〉〈31〉 , (3.17)

M1,3(p1,p2,p3) = δ4(p1 + p2 + p3)δ
4([12]η3 + [23]η1 + [31]η2)

[12][23][31] , (3.18)

out of which BCFW reconstructs arbitrary tree amplitudes. Exploiting this idea we will check
first that they respect Yangian symmetry, i.e. they are eigenfunction of the 3-site monodromy,
and then we extend it to all tree amplitudes and leading singularities by means of BCFW.

In order to represent the 3-point amplitudes in a convenient form we follow the general strat-
egy of Quantum Inverse Scattering Method constructing complicated nonlocal objects out of
local ones. We start with the direct product of trivial local states which we refer to as the basic
state Ωk,n,

Ω1,3 = δ2(λ1)δ
2(λ2)δ

2(λ̃3)δ
4(η3), (3.19)

and act on it by R-operator (2.11) two times obtaining nonlocal expression for the 3-point anti-
MHV amplitude (3.17),

M1,3(p1,p2,p3) = R12R23Ω1,3. (3.20)

Here and in the following we use the short-hand notation for the R-operator Rij ≡ Rij (0) taken
at zero spectral parameter. We see that the bilocal R-operator (2.9) generates just the nontrivial
interactions relevant for the super-Yang–Mills theory.

We have the analogous situation for the 3-point MHV amplitude

M2,3(p1,p2,p3) = R23R12Ω2,3, Ω2,3 = δ2(λ1)δ
2(λ̃2)δ

4(η2)δ
2(λ̃3)δ

4(η3). (3.21)

At the end of this subsection we check the latter formula.
Using formulae (3.20), (3.21) it is straightforward to check that the supersymmetric three-

point amplitudes (3.17), (3.18) are eigenfunctions of the monodromy matrix of three-site spin
chain and to calculate corresponding eigenvalues. Indeed, we take into account the explicit form
of the L-operator (2.10) and obtain immediately how it acts on delta functions of spinors which
are local basic states

L(u)δ2(λ) = (u − 1) · δ2(λ), L(u)δ2(λ̃)δ4(η) = u · δ2(λ̃)δ4(η). (3.22)

Consequently the basic state Ω2,3 (3.21) formed as the direct product of local basic states is an
eigenstate of the 3-site monodromy,

L1(u)L2(u)L3(u)Ω2,3 = u2(u − 1) · Ω2,3.

Then in view of (3.21) and the operator intertwining RLL-relation (2.7) we obtain that the 3-point
MHV amplitude (3.17) is an eigenfunction as well with the same eigenvalue,

L1(u)L2(u)L3(u)M2,3 = R23R12L1(u)L2(u)L3(u)Ω2,3

= (u − 1)u2 · R23R12Ω2,3 = (u − 1)u2 · M2,3.
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Complementing the latter calculation with the one for anti-MHV3 amplitude (3.18) we obtain a
pair of relations which constitute the basis of the induction proof started in the previous subsec-
tion,

L1(u)L2(u)L3(u)M2,3 = (u − 1)u2 · M2,3,

L1(u)L2(u)L3(u)M1,3 = u(u − 1)2 · M1,3. (3.23)

Let us note that (3.20), (3.21) are actually well known. In [26] the scattering amplitudes in super-
twistor variables have been represented in a form similar to (3.20) as a sequence of operators
of Hilbert transformations acting on delta functions of super-twistors. If we stay in the spinor-
helicity notations then the formulae (3.20), (3.21) correspond exactly to on-shell diagrams of
Arkani-Hamed et al. [25]. Further comments on this point will be given in Section 8.

The nontrivial part of our statement is that these amplitude constructions can be extracted
solely in the framework of Quantum Inverse Scattering Method solving an eigenvalue problem
for the monodromy (2.6) without resorting to any auxiliary concepts or assumptions.

In order to demonstrate (3.20), (3.21) we prove first the representation for the anti-MHV3
amplitude. It will be convenient for us here and in the following to adopt the shorthand notation
δ2|4(λ̃) ≡ δ2(λ̃)δ4(η) which is rather natural since λ̃ and η are subjected to identical BCFW shifts
(3.2). Taking into account (2.11) we have

R23δ
2(λ2)δ

2|4(λ̃3) =
∫

dz

z
δ2(λ3 − zλ3)δ

2|4(λ̃3 + zλ̃2)

= [12]
[13]δ

([23])δ2
(

λ2 + [31]
[21]λ1

)
δ4

(
η3 + [31]

[12]η2

)
,

where we have rewritten one of the delta functions as δ2(λ̃3 +zλ̃2) = [12]δ([23])δ([31]+z[21]).
We admit that this representation for delta function is not completely satisfactory since it does not
allow to fix the sign unambiguously. This representation is in the spirit of the paper [37] where
a delta function is substituted by an analytic function with a simple pole and corresponding
integrals are calculated by means of Cauchy’s theorem. Here and further in similar calculations
we apply the formal rule and do not pay attention to the overall sign which is not very important
since we are interested in eigenfunctions. Then we denote p = p1 + p2 + p3, q = q1 + q2 + q3
and apply once more an R-operator

R12R23Ω1,3

= [12]
[13]

∫
dz

z
δ
([23] + z[13])δ2(λ1 − zλ2)δ

2
(

p|1]
[21]

)
δ4

(
η3 + [31]

[12] (η2 + zη1)

)

= [12]
[23][31]δ

2
(

p|3]
[13]

)
δ2

(
p|1]
[21]

)
δ4

(
q

[12]
)

= δ4(p)δ4([12]η3 + cycl)

[12][23][31] .

This calculation clearly demonstrates that the R-operator (2.11) at vanishing spectral param-
eter argument is well defined on the space of distributions we deal with because their support
does not contain the point z = 0. In Section 7 we consider inhomogeneous monodromies and
construct their eigenfunctions which allows to keep the argument of the R-operator at nonzero
values. The present formulae follow from those in the limit of vanishing R-operator arguments
that is equivalent to taking all spectral parameters of the monodromy equal.

The formulae (3.20), (3.21) imply that the amplitudes can be constructed acting by
R-operators on the basic state formed by delta functions of spinors. They demonstrate that am-
plitudes which have rather nonlocal forms can be represented in fact as a sequence of operators
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each touching only two sites of the periodic spin chain applied to the basic state Ωk,n. It resem-
bles very much the Algebraic Bethe Ansatz diagonalization of the quantum spin chain and the
Separation of Variables method [16].

3.3. All eigenvalues

Having obtained the eigenvalues for the three point amplitudes we are ready to calculate the
eigenvalues for arbitrary tree amplitudes. The BCFW recursion for Nk−2MHV amplitude Mk,n

can be represented symbolically as [34]

Mk,n = M1,3 ⊗ Mk,n−1 +
k−3∑
i=2

n−1∑
m=3

Mi,m ⊗ Mk−i+1,n−m+2. (3.24)

This formula specifies the Grassmann degrees of the terms in (3.1). It says that the amplitudes
of degree 4k with n legs are constructed out of amplitudes with lower numbers of legs and lower
degree in Grassmann variables resulting in the inductive construction of tree amplitudes with
respect to k and n. Applying the eigenvalue relation (3.16) according to the pattern (3.24) it is
easy to check (3.3),

L1(u)L2(u) · · ·Ln(u) · Mk,n = uk(u − 1)n−kMk,n.

Indeed according to (3.16) M1,3 ⊗Mk,n−1 is an eigenfunction of the monodromy with eigenvalue

u(u − 1)2 · uk(u − 1)n−k−1

u(u − 1)
= uk(u − 1)n−k,

and Mi,m ⊗ Mk−i+1,n−m+2 corresponds to the eigenvalue

ui(u − 1)m−i · uk−i+1(u − 1)n−m+i−k+1

u(u − 1)
= uk(u − 1)n−k.

Thus each term in BCFW sum is an eigenfunction of the monodromy corresponding to the same
eigenvalue and consequently the amplitude Mk,n as well. Finally, the Yangian symmetry relation
(3.3) is proven and the eigenvalues of the monodromy matrix are calculated.

For on-shell diagrams including loops the BCFW iteration has been formulated in [24,25].
The above arguments can be adapted easily to include the terms involving the contributions
from cut loop propagators. The induction is to be set up to go first up in the number of legs
at fixed maximal loop order and then proceed to the next loop level. Leading singularities are
eigenfunctions of the monodromy matrix as well. Furthermore, the corresponding eigenvalues
are fixed by k and n, thus they are the same as for tree amplitudes (see (3.3)).

Notice that we have proven actually that any linear combination of the terms in the BCFW
sum is Yangian symmetric. The symmetry condition does not fix the particular one appearing as
the physical amplitude. In the Grassmannian approach to scattering amplitudes [22] the BCFW
terms of the tree amplitudes Mk,n and leading singularities of its loop corrections are identified
with residues of the contour integral over Grassmannian G(k,n). Thus such a contour integral is
an eigenfunction of the monodromy with eigenvalue uk(u − 1)n−k (see (3.3)).

4. Reflection and cyclicity

The eigenvalue relation (2.6), i.e. the Yangian symmetry statement, allows for reflection and
cyclic shift transformations of spin chain sites which looks especially simple in the considered
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case of g�(4|4) spin chain relevant for N = 4 SYM. Actually for nonzero values of Casimir
operator (3.12) or the other symmetry algebras the cyclic permutation leads to inhomogeneous
shifts of the spectral parameters in some L-operators and a change in the eigenvalue [17]. We
will address the case of nonzero Casimir operators in Section 7.

The reflection property appears by multiplication of the eigenvalue relation by the inverse of
the monodromy matrix. The latter is calculated from the inversion relation for the L-operators
(3.13).

L1(u) · · ·Ln(u)M(1, . . . , n) = CM(1, . . . , n)

⇒ Ln(1 − u) · · ·L1(1 − u)M(1, . . . , n) = C′M(1, . . . , n) (4.1)

where C′ = C−1un(1 − u)n.
Apparently a pair of monodromy matrices (2.3) with cyclically shifted sites are not related

to each other in a simple way. Actually these operators are different. However their eigenvalue
problems are equivalent. Now we demonstrate without reference to our previous results that
in the special case of g�(4|4)-symmetric spin chain the monodromy matrix (2.3) acts on its
eigenfunctions in cyclically symmetric way, i.e.

L1(u) · · ·Ln(u)M(1, . . . , n) = CM(1, . . . , n)

⇒ Lσ1(u) · · ·Lσn(u)M(1, . . . , n) = CM(1, . . . , n) (4.2)

where σ1, . . . , σn is a cyclic permutation of 1,2, . . . , n.
Let us define the graded matrix transposition of the matrix K with operator-valued entries

(bosonic as well as fermionic) by (Kt )ab = (−)āb̄Kba , where ā denotes the Grassmann degree
of the a-th row and b̄ the Grassmann degree of the b-th column. We also need the graded multi-
plication of matrices,

(K1 ∗ K2)ac ≡
∑

b

(−)bK1abK2bc.

It is easy to check that the graded matrix transposition relates the matrix multiplications of the
two types,

(K1K2 · · ·Kn)
t = Kt

n ∗ Kt
n−1 ∗ · · · ∗ Kt

1. (4.3)

We also need the inversion formula for L-operator (2.10) with respect to the graded matrix mul-
tiplication. Analogously to (3.13) one can check that[

Lt (u) ∗ Lt (1 − u)
]
ab

= u(1 − u)(−)āδab. (4.4)

The latter relation is valid only at the Casimir operator value equal zero (3.12).
Now we are ready to prove (4.2). We do this in four steps. First we multiply the eigenvalue

relation by the inverse of the L-operator in the first space using (3.13)

L2(u) · · ·Ln(u)M = C

u(1 − u)
L1(1 − u)M.

Then we perform the graded matrix transposition (4.3),

Lt
n(u) ∗ · · · ∗ Lt

2(u)M = C

u(1 − u)
Lt

1(1 − u)M.

We multiply from the left by Lt (u) in order to remove the matrix operator from r.h.s. using (4.4),
1
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[
Lt

1(u) ∗ Lt
n(u) ∗ · · · ∗ Lt

2(u)
]
ab

M = C(−)āδabM,

and apply the graded matrix transposition (4.3) once more,

L2(u) · · ·Ln(u)L1(u)M = CM.

In this way we have succeeded to perform a cyclic shift of the spin chain sites i → i+1, i+n ≡ i.
These results are compatible with the well-known fact that in N = 4 SYM color-stripped

scattering amplitudes are invariant with respect to reflections and cyclic shifts of their legs.
In the analysis of the previous and the following chapters the action of a R-operator on

both sides of a monodromy eigenvalue relation is applied repeatedly. If the sites i, j where
Rij (0) acts non-trivially appear in the monodromy matrix consecutively in the same order, i.e.
· · ·Li (u)Lj (u) · · ·, the Yang–Baxter relation (2.7) allows the commutation with this monodromy.
If the ordering is the opposite one, i.e. · · ·Lj (u)Li (u) · · ·, the operator Rij (0) can be pulled
through the monodromy nevertheless by the following argument: Turn first to the monodromy
eigenvalue relation with the reflected ordering, which is equivalent by the above results. Act then
by Rij on this relation, where the commutation is possible by (2.7). Return to the relation with
the original monodromy by applying the reflection once more. By application of cyclicity in an
analogous way one can perform the action of Rn1 on a monodromy eigenvalue relation, where
L1 is the first and Ln the last factor in the monodromy.

The eigenvalue relation and these operations with R can be extended to the case of inhomo-
geneous monodromy matrices. Then the R-operators at nonvanishing arguments enter. This case
will be addressed in Section 7.

5. Inverse soft limit

Rewriting the BCFW relation in the form (3.6) we have pulled out one R-operator acting
on the amplitudes ML and MR which are sewed together by one on-shell leg. In terms of [25]
this corresponds to the insertion of the BCFW bridge. Proceeding further we can represent the
amplitudes ML and MR in a similar way. In this way we obtain a sequence of R-operators acting
on an on-shell diagram constructed out of three-point amplitudes. But three-point amplitudes
can be represented in R-operator form too as we have shown above, (3.20), (3.21). Finally, any
amplitude term can be represented as a sequence of R-operators applied to a product of delta
functions corresponding to the external particle states.

Let us establish the connection of this R-operator reconstruction of amplitude terms with a
well-known Inverse Soft Limit (ISL) iterative procedure proposed in [22] and elaborated in [38].
It has been applied in [39,40] to reconstruct BCFW terms for arbitrary tree level amplitudes
starting with 3-point amplitude and inserting at each step one additional external state.

We start with the n − 1-leg amplitude Mk,n−1 and insert one further particle without a change
of the Grassmann degree producing Mk,n. One can easily check following the calculation of
Section 3.2 that in terms of R-operators this takes the form

Rn1Rnn−1Mn−1(1, . . . , n − 1)δ2(λn)

= 〈n − 11〉
〈n − 1n〉〈n1〉Mn−1

(
λ1,

(p1 + pn)|n − 1〉
〈1n − 1〉 , . . . , λn−1,

(pn−1 + pn)|1〉
〈n − 11〉

)
= Mn.

(5.1)

Thus two R-operators correspond to an insertion of one additional particle. Let us check that this
procedure is compatible with the monodromy eigenvalue condition (2.6). Assuming that Mn−1
is an eigenfunction of the (n − 1)-site monodromy,
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T1···n−1(u)Mn−1 = Cn−1 · Mn−1, (5.2)

we see that after multiplication by a local basic state in the n-th site we produce an eigenfunction
of the n-th site monodromy (see (3.22)),

T1···n(u)Mn−1δ
2(λn) = Cn−1 · Mn−1Ln(u)δ2(λn) = (u − 1)Cn−1 · Mn−1δ

2(λn).

In order to entangle the degrees of freedom of the n-th particle with the others we act with
Rn1Rnn−1 on both sides of the latter relation to obtain the symmetry condition for Mn,

T1···n(u)Mn = (u − 1)Cn−1 · Mn.

On the basis of cyclicity (4.2), reflection relation (4.1) and the RLL-relation (2.7) the operator
Rn1Rnn−1 can be pulled through the monodromy. More specifically, first we reflect the chain site
ordering 12 · · ·n → n · · ·21. Then we pull through Rnn−1 by means of the RLL-relation, perform
the cyclic shift nn − 1 · · ·21 → 1nn − 1 · · ·2, pull through R1n and, finally, get back to the initial
site ordering 12 · · ·n − 1n by combining a cyclic shift and the reflection.

Notice that for generating an amplitude term the possible R-operator actions are restricted
also by the condition that the additional delta function is absorbed by integration over the shifts.
This fixes uniquely the product of R-operators applicable here.

In a similar way we insert the particle of opposite chirality passing from Mk,n−1 to Mk+1,n,

R1nRn−1nMk,n−1(1, . . . , n − 1)δ2(λ̃n)δ
4(ηn)

= δ4([1n − 1]ηn + [n − 1n]η1 + [n1]ηn−1)

[n − 1n][n1][n − 11]3

· Mk,n−1

(
(p1 + pn)|n − 1]

[1n − 1] , λ̃1, . . . ,
(pn−1 + pn)|1]

[n − 11] , λ̃n−1

)
= Mk+1,n. (5.3)

The trivial insertion of the n-th particle without interaction is compatible with the eigenvalue
relation for the n-site monodromy (see (3.22)),

T1···n(u)Mk,n−1δ
2|4(λ̃n) = Cn−1 · Mn−1Ln(u)δ2|4(λ̃n) = uCn−1 · Mk,n−1δ

2|4(λ̃n).

This relation is preserved after pulling R1nRn−1n through the monodromy,

T1···n(u)Mk+1,n = uCn−1 · Mk+1,n.

Since arbitrary tree amplitudes and leading singularities of loop corrections can be constructed
iteratively by means of ISL we conclude that they can be represented as well as a sequence
of R-operators acting on basic state Ωk,n formed by the direct product of k delta functions
δ2(λ̃i)δ

4(ηi) and n − k delta functions δ2(λj ).
In Section 7 we present analogues of the formulae (5.1), (5.3) that allow to construct eigen-

functions of inhomogeneous monodromy matrices.

6. Representations of the Yangian symmetry condition

In this section we expose some constructions from [17] in order to relate them with the results
obtained above. Having fixed the representation in algebraic sense, the underlying canonical vari-
ables can be chosen in different ways related by canonical transformations. We shall distinguish
representations also in this sense which are related to each other like the position and momentum
representations in Quantum Mechanics.
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In the general case of g�(N |M) the Yangian symmetric correlators are defined as functions of
n points in N + M dimensional superspace, where to each point xk one attributes a sign κk = ±,
a dilatation weight 2�k and a spectral parameter uk , obeying the monodromy eigenvalue relation

Tκ1,...,κn(u1, . . . , un)M(x1, . . . ,xn) = CM(x1, . . . ,xn). (6.1)

The signature divides the set of n points into the subset I carrying sign + and J carrying sign −.
In the representation used in [17] the monodromy matrix has been composed from L-operators

of two types L± depending besides of the spectral parameter on signature,

L+(u) = u + p ⊗ x, L−(u) = u − x ⊗ p,

such that in analogy with (2.3)

Tκ1,...,κn(u1, . . . , un) = Lκ1
1 (u1) · · ·Lκn

n (un) = (6.2)

Let us indicate the relation with the notation used in (2.1), L−(u) = −L(−u).
In this representation the operators L± and T act on functions of N |M-component points

xk, k = 1, . . . , n and pk act as derivatives. The simplest solution of the eigenvalue condition (6.1)
playing the role of a basic state is represented by the constant function M = Ω ≡ 1.

The corresponding eigenvalue is

C0 =
∏
i∈I

(ui + 1)
∏
j∈J

uj .

A general ansatz is given by the link integral form or equivalently as a sum of monomials of fixed
dilatation weight with respect to each site of the spin chain

M =
∫

dc φ(c) exp

(
−

∑
i∈I,j∈J

cij (xi · xj )

)
=

∑
b(λ)

∏
i∈I,j∈J

(xi · xj )
λij .

The special feature of this representation is that Yangian symmetric correlators are regular func-
tions, i.e. working with it we can avoid distributions.

Starting from this representation further ones can be obtained by canonical transformations
and in particular the representation we have formulated in Section 2 as the initial one for this
paper.

Let us first describe the transformation to the uniform representation. We apply elementary
canonical transformations at the canonical pairs associated with the points i ∈ I exchanging
there momenta and positions, xi → −pi and pi → xi . This corresponds to Fourier transform of
the arguments xi . By this transformations

L+
i (u) −→ L−

i (u)

and the monodromy (6.2) acquires the form independent of the signature like (2.3). The informa-
tion about the signature carries over to the basic state which acquires the form of the distribution

ΩI =
∏
i∈I

δN |M(xi ) (6.3)

and other solutions appearing as some operators acting on Ω keep this information about I, J .
The general ansatz for this signature is now
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M =
∫

dc φ(c) exp
(∑

cij (pi · xj )
)
ΩI =

∫
dc φ(c)

∏
i∈I

δN |M
(

xi + i
∑
j∈J

cij xj

)
.

We shall use the uniform representation in Section 9 discussing Yangian symmetry and Yang–
Baxter operators in the specification to momentum-twistor variables.

Now we describe the canonical transformation to spinor-helicity variables. We separate the
N |M components of each point k = 1, . . . , n in two subsets labeled correspondingly by (α̇,A)

and α

xk = (λ̃α̇,k, ηA,k, λα,k).

We have changed here the notations of the coordinates. The variables matching the spinors appear
in the next step. The canonical pairs of the points i ∈ I are substituted according to the elementary
canonical transformation

(λα,i; ∂α,i) −→ (−∂α,i;λα,i)

and the canonical pairs of the points j ∈ J are transformed as

(λ̃α̇,j , ηA,j ; ∂̃α̇,j , ∂A,j ) −→ (∂̃α̇,j , ∂A,j ;−λ̃α̇,j ,−ηA,j ).

The substitutions at i ∈ I and j ∈ J lead from −L+(−u) and −L−(−u) to one and the same
form of the L-operator (2.10) such that the monodromy (6.2) acquires again a form independent
of the signature. The transformation leads also from the original form of the basic state to

Ωk,n =
∏
I

δ2(λi)
∏
J

δ2(λ̃j )δ
4(ηj )

where the size of the index set I is n − k and of J is k. Here we have specified the superspace
dimensions as N |M = 4|4 and the variable separation as appropriate for our case.

The eigenfunctions of the monodromy T(u1, . . . , un) are in particular eigenfunctions of its
non-diagonal elements with eigenvalue zero. In the spinor-helicity representation and in the ho-
mogeneous case u1 = u2 = · · · = un = u in the expansion of the monodromy in u at the (n−1)-st
power we have at non-diagonal positions the total momentum and supercharge

n∑
1

λαλ̃α̇M = 0,

n∑
1

λαηAM = 0.

Therefore the eigenfunction M is proportional to the corresponding bosonic and fermionic delta
functions,

M ∼ δ4|0
(

n∑
1

λαλ̃α̇

)
δ0|8

(
n∑
1

λαηA

)
. (6.4)

From this point of view the feature of SYM amplitudes that the related MHV amplitude including
the above delta functions can be factorized appears natural.

We have seen that eigenfunctions can be generated by the action on the basic state by a se-
quence of R-operators, if it can be pulled through the monodromy according to the procedures
described at the end of Section 4. The integrations involved in the R-operator actions absorb some
of the delta functions in the basic state. In any case the factor of the momentum and supercharge
conservation (6.4) is left. Amplitude contributions are the ones with no more delta functions left
besides the ones of this factor.
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7. Inhomogeneous monodromy

It can be shown easily that the symmetry conditions and the action by R-operators can be
considered as limits of the ones where the monodromy is inhomogeneous and R-operators enter
with non-zero arguments. As a sidestep from the main line of discussion we work out examples
of solutions of the deformed symmetry condition involving general inhomogeneous monodromy
matrices in spinor-helicity variables. We introduce the inhomogeneous monodromy matrix con-
structed from L-operators

T12···n(u1, u2, . . . , un) = L1(u1)L2(u2) · · ·Ln(un) = (7.1)

where u1, . . . , un are spectral parameters and the lower indices refer to the spin chain sites. We
will suppress the dependence of the monodromy on the latter when it does not cause misunder-
standings.

The Casimir operator c (3.12) commutes with the L-operator. Consequently ci = (pi · xi ),
i = 1, . . . ,N , commute with the monodromy whose eigenfunctions are eigenfunctions of this
set of Casimir operators as well. In the case of homogeneous monodromy (2.3) appropriate for
dealing with scattering amplitudes one has ci = 0. This does not hold in the inhomogeneous case.
Therefore the formulae for the inversions of the L-operator with respect to standard (3.13) and
graded (4.4) matrix products modify

L(u)L(1 − u − c) = u(1 − u − c),[
Lt (1 − u − c) ∗ Lt (1 − u)

]
ab

= u(1 − u − c)(−)āδab. (7.2)

As a result the appropriate modification of the cyclicity relation for inhomogeneous monodromy
takes the form

T12···n(u1, u2, . . . , un)M = CM

⇒ T2···n1(u2, . . . , un,u1)M = C
(u1 − 1)(u1 + c1)

u1(u1 + c1 − 1)
M. (7.3)

The reflection relation (4.1) 12 · · ·n → n · · ·21 also modifies in an obvious manner by means
of (7.2).

The formulae of the previous sections can be recovered from the following ones taking all
spectral parameters equal. Since the basic state Ωk,n factorizes it is an eigenfunction of the inho-
mogeneous monodromy as well.

7.1. 3-point eigenfunctions

In Section 3.2 we have reproduced the 3-point MHV and the anti-MHV amplitudes by the
action of R-operators (2.11) at u = 0 on basic states which factorize in the product of local basic
states,

Ω2,3 = δ2(λ1)δ
2(λ̃2)δ

4(η2)δ
2(λ̃3)δ

4(η3).

Now we are going to generalize this by taking the Yang–Baxter operator R(u) at arbitrary u. As
we shall see shortly this leads to solutions of the inhomogeneous eigenvalue problem.

Let us start with the parameter deformation of MHV3 = M2,3 (cf. (3.21)) and show that
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R23(a)R12(b)Ω2,3 = δ4(p1 + p2 + p3)δ
8(q1 + q2 + q3)

〈12〉1−a〈23〉1+b〈31〉1+a−b
≡ MHV3(a, b). (7.4)

In order to prove (7.4) we take into account (2.11) and obtain

R12(b)δ2(λ1)δ
2|4(λ̃2) =

∫
dz

z1−b
δ2(λ1 − zλ2)δ

2|4(λ̃2 + zλ̃1)

= δ
(〈12〉)δ2|4

(
λ̃2 + 〈13〉

〈23〉 λ̃1

)( 〈23〉
〈13〉

)1−b

,

where we have rewritten one of the delta functions as δ2(λ1 −zλ2) = 〈23〉δ(〈12〉)δ(〈13〉−z〈23〉)
projecting its argument on two spinors λ2 and λ3. We could equally well take any other pair of
auxiliary spinors without a change in the final answer. Then we apply one more R-operator

R23(a)R12(b)Ω2,3

=
( 〈23〉

〈13〉
)1−b ∫

dz

z1−a
δ
(〈12〉 − z〈13〉)δ2|4

(
λ̃2 + 〈13〉

〈23〉 λ̃1

)
δ2|4(λ̃3 + zλ̃2)

= 〈23〉1−b

〈12〉1−a〈13〉1+a−b
δ2|4

(
λ̃2 + 〈13〉

〈23〉 λ̃1

)
δ2|4

(
λ̃3 + 〈12〉

〈13〉 λ̃2

)

= δ4(p)δ8(q)

〈12〉1−a〈23〉1+b〈31〉1+a−b
.

In a similar way one can prove that the same deformation of MHV3 can be obtained applying
another sequence of R-operators

R13(a)R12(b)Ω2,3 = δ4(p1 + p2 + p3)δ
8(q1 + q2 + q3)

〈12〉1−a〈23〉1+a+b〈31〉1−b
. (7.5)

Consequently we have the relation between (7.4) and (7.5)

R23(a)R12(a + b)Ω2,3 = R13(a)R12(b)Ω2,3.

Using the representation (7.4) of the 3-point function MHV3(a, b) we are going to check
that it is an eigenfunction of the monodromy. The RLL-relation (2.7) relates unambiguously the
parameters a and b in (7.4) with the spectral parameters of the monodromy. Indeed, one can
commute the R-operators through the monodromy permuting its spectral parameters in view of
the RLL-relation only in case of appropriate arguments,

T(u1, u2, u3)R23(u3 − u2)R12(u3 − u1) = R23(u3 − u2)T(u1, u3, u2)R12(u3 − u1)

= R23(u3 − u2)R12(u3 − u1)T(u3, u1, u2). (7.6)

The previous intertwining relation corresponds to the following sequence of permutations on the
set of spectral parameters

u1, u2, u3 → u1, u3, u2 → u3, u1, u2.

Applying the operator relation (7.6) to the basic state Ω2,3 and taking into account that Ω2,3 is
an eigenfunction of the monodromy, T(u3, u1, u2)Ω2,3 = u1u2(u3 − 1)Ω2,3, we have

T123(u1, u2, u3)MHV3(u32, u31) = u1u2(u3 − 1) · MHV3(u32, u31),



488 D. Chicherin et al. / Nuclear Physics B 881 (2014) 467–501
where we adopt the shorthand notation uij ≡ ui − uj . Evidently the eigenfunction
MHV3(u32, u31) (7.4) is invariant under the simultaneous cyclic shift of space labels i → i + 1
(amplitude legs) and spectral parameters ui → ui+1 in agreement with the cyclicity property of
the inhomogeneous monodromy (cf. (7.3)).

In a similar way we proceed with the anti-MHV3. We start from another basic state

Ω1,3 = δ2(λ1)δ
2(λ2)δ

2(λ̃3)δ
4(η3)

and acting on this by R-operators we obtain the two-parameter deformation of anti-MHV3,

R12(a)R23(b)Ω1,3 = δ4(p1 + p2 + p3)δ
4([12]η3 + [23]η1 + [31]η2)

[12]1+b[23]1−a[31]1+a−b

= MHV3(a, b). (7.7)

In a similar manner the RLL-relation (2.7) connects the parameters a and b in (7.7) to the spectral
parameters of the monodromy resulting in the eigenvalue relation

T(u1, u2, u3)MHV3(u21, u31) = u1(u2 − 1)(u3 − 1) · MHV3(u21, u31).

The expressions for the parameter-deformed amplitudes MHV3,MHV3 have been obtained
in [28] by another method.

Now we shall demonstrate on the very simple example of MHV3(a, b) that the representation
of the eigenfunctions of the monodromy as an excitation of the basic state can be cast into the
familiar form of integrals over a Grassmannian [22]. We substitute the R-operators (2.11) in the
form of integrals over auxiliary parameters in (7.4) and perform the BCFW shifts in the delta
function arguments

R23(a)R12(b)Ω2,3

=
∫

dz1

z1−a
1

dz2

z1−b
2

δ2(λ1 − z2λ2 + z1z2λ3)δ
2|4(λ̃2 + z2λ̃1)δ

2|4(λ̃3 + z1λ̃2).

In order to get rid of bilinear combinations of the auxiliary parameters we perform the variable
change z1 → − z3

z2
resulting in the standard integral over link variables

MHV3(a, b) =
∫

dz2dz3

z1+a−b
2 z1−a

3

δ2(λ1 − z2λ2 − z3λ3)δ
2|4(λ̃2 + z2λ̃1)δ

2|4(λ̃3 + z3λ̃2).

In the next section we shall show how this works for the 4-point eigenfunction.

7.2. The deformed inverse soft limit

In Section 5 we have established relations between the R-operator construction of Yangian
invariants and the ISL iterative procedure. Now we generalize (5.1) and (5.3) to the case of the
inhomogeneous monodromy. Calculations similar to the one in the previous subsection allow to
entangle the local basic state δ2(λn) with the (n − 1)-point eigenfunctions Mn−1,

Rn1(a)Rnn−1(b)Mn−1(1, . . . , n − 1)δ2(λn)

= 〈n − 11〉1−a−b

〈n − 1n〉1−a〈n1〉1−b
Mn−1

(
λ1,

(p1 + pn)|n − 1〉
〈1n − 1〉 , . . . , λn−1,

(pn−1 + pn)|1〉
〈n − 11〉

)
.

(7.8)
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The analogous formula for the opposite chirality local basic state δ2(λ̃n)δ
4(ηn) is

R1n(a)Rn−1n(b)Mn−1(1, . . . , n − 1)δ2|4(λ̃n)

= δ4([1n − 1]ηn + [n − 1n]η1 + [n1]ηn−1)

[n − 1n]1−a[n1]1−b[n − 11]3+a+b

· Mn−1

(
(p1 + pn)|n − 1]

[1n − 1] , λ̃1, . . . ,
(pn−1 + pn)|1]

[n − 11] , λ̃n−1

)
. (7.9)

If Mn−1 is an eigenfunction of the (n − 1)-site monodromy then the amplitude Mn with one
more leg inserted is an eigenfunction of the n-site monodromy. This can be checked using cyclic-
ity (7.3) and reflection relations for inhomogeneous monodromy matrices. In the next subsection
we show how it works in the case of the 4-point eigenfunction.

7.3. 4-point eigenfunction

The ISL procedure allows to construct higher point eigenfunctions from lower ones. In this
manner we add one leg to the deformed 3-point amplitude (7.4)

M2,4(a, b, c, d) = R14(a)R12(b)R34(c)R23(d)Ω2,4 (7.10)

where the basic state is now

Ω2,4 = δ2(λ1)δ
2(λ2)δ

2(λ̃3)δ
4(η3)δ

2(λ̃4)δ
4(η4), (7.11)

and (7.8) leads to

M2,4(a, b, c, d) = δ4(p1 + · · · + p4)δ
8(q1 + · · · + q4)

〈12〉1−a〈23〉1−c〈34〉1+d〈41〉1−b〈24〉a+b+c−d
. (7.12)

Then we have to adjust the parameters a, b, c, d for M2,4(a, b, c, d) to become an eigenfunction
of the monodromy matrix T1234(u1, u2, u3, u4) of the 4-site spin chain.

We start with the 4-point term obtained by acting three times by R-operators on the basic state
Ω2,4 which is the analogue of the cut 4-point MHV amplitude

M2,4(b, c, d) = R12(b)R34(c)R23(d)Ω2,4. (7.13)

It is an eigenfunction of the monodromy if the parameters are set to the values b = u21, c = u43,
d = u41,

T1234(u1, u2, u3, u4)M2,4(u21, u43, u41) = u1(u2 − 1)u3(u4 − 1) · M2,4(u21, u43, u41),

(7.14)

due to the RLL-relation (2.7). This sequence of R-operators corresponds to the sequence of
permutations

u1, u2, u3, u4 → u2, u1, u3, u4 → u2, u1, u4, u3 → u2, u4, u1, u3

on the set of the monodromy parameters.
In order to construct the full amplitude (7.10) we have to consider the permutation of the

operator R14 with the monodromy. However we cannot do this directly in the eigenvalue relation
(7.14) by means of the RLL-relation. We have to transform at first (7.14) by applying reflection
and cyclic shift. We reflect the sequence of spin chain sites in the monodromy (7.14) inverting



490 D. Chicherin et al. / Nuclear Physics B 881 (2014) 467–501
L-operators by means of (7.2) and take into account the eigenvalues of the Casimir operators
(3.12) on the function M2,4(u21, u43, u41)

c1 → u21, c2 → u42, c3 → u13, c4 → u34.

Thus (7.14) is transformed into

T4321(1 − u3,1 − u1,1 − u4,1 − u2)M2,4(u21, u43, u41)

= (u1 − 1)u2(u3 − 1)u4 · M2,4(u21, u43, u41).

Next we apply the cyclicity relation (7.3) to perform the shift of chain sites 4321 → 1432,

T1432(1 − u2,1 − u3,1 − u1,1 − u4)M2,4(u21, u43, u41)

= u1(u2 − 1)(u3 − 1)u4 · M2,4(u21, u43, u41).

Now we can pull straightforwardly R14(u32) through the monodromy matrix in the previous
eigenvalue relation,

T1432(1 − u2,1 − u3,1 − u1,1 − u4)M2,4(u32, u21, u43, u41)

= u1(u2 − 1)(u3 − 1)u4 · M2,4(u32, u21, u43, u41).

From this eigenvalue relation we can return to the original one by applying a cyclic shift 1432 →
4321, once more and by reflecting the spin chain site ordering 4321 → 1234

T1234(u1, u2, u3, u4)M2,4(u32, u21, u43, u41)

= u1u2(u3 − 1)(u4 − 1) · M2,4(u32, u21, u43, u41), (7.15)

where according to (7.12)

M2,4(u32, u21, u43, u41) = δ4(p1 + · · · + p4)δ
8(q1 + · · · + q4)

〈12〉1+u23〈23〉1+u34〈34〉1+u41〈41〉1+u12
= (7.16)

The meaning of the latter picture becomes clear by taking into account the results of Section 8
where the R-operator is identified with the BCFW bridge. The expression for the parameter-
deformed amplitude MHV4 has been obtained in [28] by other methods.

Thus we have obtained two nontrivial 4-point solutions M2,4 (7.13) and M2,4 (7.16) of the
inhomogeneous monodromy eigenvalue problem. Let us note that we could equally well con-
struct M2,4 (7.16) by means of the BCFW-procedure following the pattern from Section 3 with
appropriate modifications due to the inhomogeneity of the monodromy matrix. In that case the
parameter deformed 4-point MHV-amplitude can be obtained by sewing the deformed MHV3
and anti-MHV3 each of which satisfies the eigenvalue relation with the 3-site inhomogeneous
monodromy.

It is evident that we can continue acting by R-operators on the basic state Ω2,4 in a way
compatible with the monodromy eigenvalue condition. Doing so we have to take into account
cyclicity, reflection and RLL relations allowing to pull the sequence of R-operators through the
monodromy matrix. It amounts to fix the dependence of the sequence of R-operators on the
spectral parameters u1, . . . , un of the inhomogeneous monodromy. Thus we can excite the basic
state Ω2,4 with any number of R-operators producing highly nontrivial eigenfunctions of the
monodromy.
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In the language of on-shell diagrams (see (2.8)) each R-operator is equivalent to sewing a
BCFW bridge. It introduces one additional integration. As we have shown in (6.4) the delta
function of the total momentum conservation always factorizes. Thus we have to skip 4 delta
functions in counting the difference of the number of integrations induced by a sequence of R
operators to the number of bosonic delta functions in the basic state. Acting three times by a
R-operator on Ω2,4 we obtain M2,4 which contains one extra bosonic delta function. Acting four
times we get M2,4 with no extra bosonic delta function left. If we proceed acting a fifth time by
an R-operator on the basic state Ω2,4 we come out with one nontrivial integration left and there
is no bosonic delta function to do it trivially.

It is rather evident that applying the ISL-procedure (7.8) and (7.9) and using the previous ar-
guments we can construct the eigenfunctions Mk,n of the monodromy for any number of legs n

and arbitrary Grassmannian degree 4k. Following this procedure we have to respect the eigen-
value relation for the inhomogeneous monodromy matrix by specifying the arguments of the
sequence of R-operators as we have seen above in the example of the 4-point eigenfunction M2,4.
In particular this method enables us to write down the n-point eigenfunction being a parameter
deformation of a MHVn amplitude and depending on the differences of n spectral parameters
u1, . . . , un. Moreover we can act as many times by R-operators on the basic state Ωk,n as we
want. Acting by R-operators 2n − 4 times we result in an analytic function multiplied by the
ubiquitous total momentum delta function (6.4). In the next steps of the procedure nontrivial
integrations arise. In this case as before the monodromy eigenvalue relation determines the de-
pendence of the inserted R-operators on the spectral parameters u1, . . . , un. Let us emphasize
that the described method of Yang–Baxter operators allows to construct in a rather simple way
eigenfunctions that are analogues of loop corrections to scattering amplitudes.

8. Integral R-operators and generalized Yang–Baxter relations

In this section we are going to study integral operators whose kernels are eigenfunctions of
inhomogeneous monodromy matrices, namely the deformed 4-point terms M2,4 (7.13) and M2,4
(7.16). In order to show that this is meaningful let us recall the relation between the eigenvalue
problem for the inhomogeneous monodromy and generalized Yang–Baxter relations introduced
in [17]. We invert k L-operators using (7.2) together with the fact that the eigenfunctions of the
monodromy are also eigenfunctions of the Casimir operators ci (3.12), i = 1, . . . , n, to rewrite
the eigenvalue problem in the form

Lk+1(uk+1) · · ·Ln(un)M(x1, . . . ,xn) = C′Lk(uk) · · ·L1(u1)M(x1, . . . ,xn). (8.1)

The latter relation can be cast in the form of the intertwining relation

Lk+1(vk+1) · · ·Ln(vn)R̂ = CRR̂Lk(vk) · · ·L1(v1), (8.2)

where the intertwining operator R̂ is considered as the integral operator with the kernel
M(x1, . . . ,xn) being an eigenfunction of the monodromy

[R̂ · F ](xk+1, . . . ,xn) =
∫

dx1 · · ·dxkM(x1, . . . ,xk,xk+1, . . . ,xn)F (x1, . . . ,xk).

The equivalence of (8.1) and (8.2) is established by partial integration using (3.14). Thus we
see that the eigenvalue problem for the inhomogeneous monodromy is definitely related with a
Yang–Baxter equation. Solving the eigenvalue problem we automatically obtain integral Yang–
Baxter operators. As a particular case the eigenfunction of the 4-point monodromy is the kernel
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of integral R-operator which satisfies the ordinary RLL-relation (2.7). The solution of Yang–
Baxter RLL-relations by the Yangian conditions on the corresponding 4-point kernel has been
constructed for the case of the s�(2|1) symmetry algebra in [41].

Still working in the spinor-helicity representation we are going to take the eigenfunction M2,4
(7.13) as the kernel of an integral operator and to show that this operator coincides with the
R-operator (2.11) which we have used extensively so far. By this calculation the relation of the
on-shell diagrams [25] to the QISM approach will become evident.

Let us define the integral operator M̂2,4 as follows

[M̂2,4F ](p2, η2 | p3, η3)

=
∫

d4η1 d4η4 d4p1 d4p4 δ
(
p2

1

)
δ
(
p2

4

)
M2,4(a, b, c)F (p1, η1 | p4, η4) (8.3)

where we integrate over on-shell momenta. The explicit expression for M2,4 (7.13) is

M2,4(a, b, c) = δ(〈12〉)δ4(p1 − p2 − p3 + p4)δ
8(q1 − q2 − q3 + q4)

〈23〉1−b〈34〉1+c〈41〉1−a〈24〉a+b−c

= (8.4)

We choose the legs 1,4 to be incoming and 2,3 outgoing.
We simplify the integral (8.3) in several steps. First we rewrite the delta function in (8.4) in

the form δ(〈12〉) = [12]δ((p1 − p2)
2) and consider the measure of integration∫

d4p1 d4p4 δ
(
p2

1

)
δ
(
p2

4

)
δ
(
(p1 − p2)

2)δ4(p1 − p2 − p3 + p4) · · · . (8.5)

It is clear that in (8.5) only one integration (over z) remains such that p1 = p2 + z|2〉[3| re-
spects the constraints imposed by three delta functions in (8.5). In order to obtain the integration
measure in z we relax the delta function constraints parameterizing an arbitrary 4-vector p1 as

p1 = p2 + z|2〉[3| + z1|2〉[a| + z2|b〉[3| + z3|b〉[a|.
Here λ̃a = [a| and λb = |b〉 is a pair of auxiliary spinors. At z1 = z2 = z3 = 0 the delta function
constraints are satisfied. Performing the change of integration variables from the four-component
vector p1 to z, z1, z2, z3 we have to calculate the Jacobian of the transformation detK ,

d4p1 = detK · dz dz1 dz2 dz3, K = (|2〉[3|, |2〉[a|, |b〉[3|, |b〉[a|).
For this we apply the reference formula (see [42])

〈ij〉[j l]〈lm〉[mi] = 1

2
(sij slm − silsjm + simsjl) − 2iεμνρσ k

μ
i kν

j k
ρ
l kσ

m,

sij ≡ 2ki · kj , ki ≡ |i〉[i|
and obtain detK = i

4 〈2b〉2[a3]2. The arguments of the delta functions in (8.5) are

p2
1 = 〈b2〉(z2[23] + z3[2a] − zz3[a3] + z1z2[a3]),

(p1 − p2)
2 = [a3]〈b2〉(z1z2 − zz3),

p2 = (p1 − p2 − p3)
2 = [a3](z1〈23〉 + z3〈b3〉 + z1z2〈b2〉 − zz3〈b2〉).
4
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Substituting to (8.5) and performing sequentially trivial integrations over z3, z1, z2 we obtain the
wanted integration measure

1

〈23〉[32]
∫

dz

z
· · · .

Notice that the auxiliary spinors [a| and |b〉 have disappeared as it should be. Further we note
the factorizations of the momenta |1〉[1| = p1 = |2〉([2| + z[3|), |4〉[4| = p4 = (|3〉 − z|2〉)[3|
corresponding to the relations between spinors of incoming and outgoing states which have the
form of a BCFW shift,

|1〉 = |2〉, |1] = |2] + z|3], |4〉 = |3〉 − z|2〉, |4] = |3]. (8.6)

The integrations over the Grassmann variables η1, η4 are done easily since

δ8(q1 − q2 − q3 + q4) = 〈14〉4δ4(η1 − η2 − zη3)δ
4(η4 − η3),

where we take into account (8.6). Simplifying the kernel (8.4) by means of (8.6) we obtain that
the operator (8.3) takes the form

[M̂2,4F ](p2, η2 | p3, η3) =
∫

dz

z1+c
F (λ2, λ̃2 + zλ̃3, η2 + zη3 | λ3 − zλ2, λ̃3, η3)

= R32(−c)F (p2, η2 | p3, η3).

Thus the operator M2,4 induces the supersymmetric BCFW shift and coincides with the
R-operator (2.9). This statement clarifies the meaning of the picture form of the RLL-relation
(2.8). Now we have shown explicitly that the R-operator does correspond to the BCFW
bridge and has a natural interpretation in terms of on-shell diagrams [25]. Thus a sequence of
R-operators acting on the basic state Ω corresponds to inserting successively BCFW bridges
producing on-shell diagrams.

Let us consider now the integral operator corresponding to the 4-point eigenfunction (7.16)
related to the 4-point MHV amplitude,

[M̂2,4F ](p2, η2 | p3, η3)

=
∫

d4η1 d4η4 d4p1 d4p4 δ
(
p2

1

)
δ
(
p2

4

)
M2,4(u32, u21, u43, u41)F (p1, η1 | p4, η4). (8.7)

As in the previous case we choose the legs 1,4 to be incoming and the legs 2,3 outgoing.

In order to rewrite the integral operator (8.7) in a more familiar form we start with the integral
over the bosonic delta functions∫

d4p1 d4p4 δ
(
p2

1

)
δ
(
p2

4

)
δ4(p1 − p2 − p3 + p4) · · · (8.8)

and parametrize the 4-component momentum p1 by z1, z2, z3, z4,

p1 = p2 + z1|2〉[3| − z1z2|3〉[3| + z3|3〉[2| + z4|2〉[2|.
This leads to the transformation of the integration measure d4p1 = − i

4 〈23〉2[23]2z1 ·
dz1 dz2 dz3 dz4. Taking into account the explicit form of the arguments of the bosonic delta
functions

p2
1 = 〈23〉[23](z1z3 + z1z2z4 + z1z2),

p2 = (p1 − p2 − p3)
2 = 〈23〉[23](z1z3 + z1z2z4 + z4),
4
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and performing two integrations in (8.8) we are left with a double integral
∫

dz1 dz2 · · · and the
relations z3 = −z2(1+z1z2), z4 = z1z2 that result in the factorization of the momenta p1 and p4:

|1〉 = |2〉 − z2|3〉, |1] = (1 + z1z2)|2] + z1|3] = |2] + z1
(|3] + z2|2]),

|4] = |3] + z2|2], |4〉 = (1 + z1z2)|3〉 − z1|2〉 = |3〉 − z1
(|2〉 − z2|3〉). (8.9)

The previous formulae obviously imply two consecutive BCFW shifts. In view of (8.9) the Grass-
mann delta function simplifies as follows

δ8(q1 − q2 − q3 + q4) = 〈14〉4δ4(η1 − η2 − z1η3 − z1z2η2)δ
4(η4 − η3 − z2η2)

supersymmetrizing the BCFW shifts. Finally we can rewrite the action of the integral operator
(8.7) as follows∫

dz1 dz2

z
1+u41
1 z

1+u23
2

F
(
λ2 − z2λ3, λ̃2 + z1(λ̃3 + z2λ̃2), η2 + z1(η3 + z2η2)

∣∣
λ3 − z1(λ2 − z2λ3), λ̃3 + z2λ̃2, η3 + z2η2

)
.

Now it is obvious that two consecutive BCFW shifts in the latter formula can be factorized into
the ones of the product of two R-operators (2.11)

[M̂2,4F ](p2, η2 | p3, η3) = R23(u32)R32(u14)F (p2, η2 | p3, η3).

The latter operator relation corresponds to the factorization of the kernel

(8.10)

In the beginning of this section we have recalled that the eigenvalue problem for the inhomoge-
neous 4-point monodromy matrices is equivalent to the RLL-relation [17]. Let us show explicitly
how this works. First we perform the cyclic shift 1234 → 4123 in the monodromy eigenvalue
problem (7.15) by means of the cyclicity relation for inhomogeneous monodromy (7.3). Then
we invert the L-operators of the 1-st and 4-th sites using (7.2),

L2(u2)L3(u3)M2,4(u32, u21, u43, u41) = L1(1 − u3)L4(1 − u2)M2,4(u32, u21, u43, u41).

Next by partial integration in view of (3.14) we rewrite the above equation as an intertwining
relation for the integral operator M̂2,4 (8.7)

L2(u2)L3(u3)M̂2,4 = M̂2,4L2(u3)L3(u2).

Thus the product R23(u)R32(u) respects the RLL-relation as well as our basic R-operator (2.11).
This factorization is a direct analogue of the Yang–Baxter operators factorization used in the
construction of Baxter Q-operators in [19].

Let us note that if we repeat the previous calculation omitting the cyclic shift 1234 → 4123
then we arrive at the factorization with respect to the second unitarity cut in (8.10). The obtained
results are in accordance with Zwiebel’s observation [43] that the kernels of dilatation operators
coincide with MHV amplitudes.

Since each R-operator action (2.11) contains one integration over an auxiliary parameter z a
sequence of m R-operators is equivalent to a multiple integration over z1, . . . , zm. Previously in
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Section 7.1 we have written down such a multiple integration in the case of MHV3 and shown
that it corresponds to the link integral representation [22]. Now we are going to show how this
works in the less trivial example of the 4-point eigenfunction MHV4. We act by the appropriate
sequence of R-operators on the basic state Ω2,4 (7.11),

R14(a)R12(b)R34(c)R23(d)Ω2,4

=
∫

dz1

z1−a
1

dz2

z1−b
2

dz3

z1−c
3

dz4

z1−d
4

δ2(λ1 − z1λ4 − z2λ2)δ
2(λ2 − z4λ3 + z3z4λ4)

· δ2|4(λ̃3 + z2z4λ̃1 + z4λ̃2)δ
2|4(λ̃3 + z1λ̃1 + z3λ̃3).

The product of delta functions in the previous formula can be rewritten as

δ2(λ1 − z2z4λ3 − (z1 − z2z3z4)λ4
)
δ2(λ2 − z4λ3 + z3z4λ4)

· δ2|4(λ̃3 + z2z4λ̃1 + z4λ̃2)δ
2|4(λ̃4 + (z1 − z2z3z4)λ̃1 − z3z4λ̃2

)
,

where we perform a sequence of variable changes

z1 → z1 + z2z3z4, z2 → z2

z1
, z3 → −z3

z1

in order to get rid of the quadratic and cubic terms in auxiliary parameters. Then we take into
account the restriction on the parameters d = a + b + c in (7.10) induced by the monodromy
condition (see (7.15)) and obtain the familiar link integral representation

M2,4(a, b, c, a + b + c)

=
∫

dz1 dz2 dz3 dz4

(z1z4 − z2z3)1−az1−b
2 z1−c

3

∏
i=1,2

δ2(λi − cjiλj )
∏

j=3,4

δ2|4(λ̃j + cji λ̃i)

where sums over repeated indices i = 1,2 and j = 3,4 are assumed and the matrix of link
variables is to be identified with the matrix in the integration variables as

∥∥cji(z)
∥∥ =

(
c31 c32

c41 c42

)
=

(
z2 z4

z1 z3

)
.

Thus the R-operator construction naturally leads to link integrals over a Grassmannian and to
on-shell diagrams.

9. Monodromy in super momentum-twistor variables

In Section 6 we have seen that the eigenfunctions of the homogeneous monodromy always
contain the delta functions of total momentum and supercharge conservation (6.4). It is easy to
realize that the same is true for the inhomogeneous monodromy (7.1). Indeed we can perform
the shift of spectral parameters ui → ui + u, i = 1, . . . , n, without changing the eigenfunction
Mn since the latter depends on the differences uij of spectral parameters. Then we expand the
equation in powers of u and follow the argumentation of Section 6.

This motivates to choose variables in such a way that this delta function condition is automati-
cally taken into account. It is well known that the (super) momentum twistor variables introduced
by Hoges in [27] have this property.

Super momentum twistors Z = (Z,χ) = (λ,μ,χ) are defined by the following quasilocal
algebraic transformation [36]
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λ̃i = μi−1〈ii + 1〉 + μi〈i + 1i − 1〉 + μi+1〈i − 1i〉
〈i − 1i〉〈ii + 1〉 (9.1)

ηi = χi−1〈ii + 1〉 + χi〈i + 1i − 1〉 + χi+1〈i − 1i〉
〈i − 1i〉〈ii + 1〉 . (9.2)

The formulae (9.1) are not invertible. Arbitrary amplitudes can be represented in the form [23,36]

Mk,n = M2,nPk−2,n,

where the MHV amplitude M2,n contains the delta function of the total momentum and su-
percharge conservation. The factor Pk−2,n contains all the nontrivial information about the
amplitude Nk−2MHVn. In fact the function Pk−2,n is a sum of a product of k − 2 R-invariants.
The R-invariant introduced in [1] depends on the variables of five points. In [31] all tree ampli-
tudes have been constructed solving BCFW relations in terms of R-invariants in spinor-helicity
variables. In [36] it has been shown that in super momentum twistor space the R-invariants are
expressed in a particularly simple form. The simplest R-invariant has the form

[1,2,3,4,5] = δ4(χ1〈2345〉 + χ2〈3451〉 + χ3〈4512〉 + χ4〈5123〉 + χ5〈1234〉)
〈1234〉〈2345〉〈3451〉〈4512〉〈5123〉 (9.3)

where 〈abcd〉 ≡ det(ZaZbZcZd) and it is well known [1] that for the NMHV amplitudes the
factor P1,n is simply a sum of such invariants.

Let us choose now the momentum twistors to be the local dynamical variables of the spin
chain by the following specifications for coordinates x → Z and their conjugate momenta
p → ∂Z = (∂Z,−∂χ ). The corresponding L-operator (2.1) – the local building block of the mon-
odromy – takes the form

L(u) = u · 1 +Z ⊗ ∂Z =
(

u · 1 + Z ⊗ ∂Z −Z ⊗ ∂χ

χ ⊗ ∂Z u · 1 − χ ⊗ ∂χ

)
. (9.4)

Unlike the spinor-helicity representation (see Section 2.1) the R-operator in momentum twistor
variables intertwining in the RLL-relation (2.7) products of L-operators in the form (9.4) acts
nontrivially only in one of two sites,

Rij (u)F (Zi | Zj ) =
∫

dz

z1−u
F (Zi − zZj ,χi − zχj | Zj ,χj ). (9.5)

The momentum twistor representation is a particular case of the uniform representation with
coordinates x identified by Z and conjugated momenta p by the corresponding derivatives. In
this case the basic state has the form (6.3)

ΩI =
∏
i∈I

δ4|4(Zi ).

It is an eigenfunction of the monodromy built from momentum twistor L-operators (9.4)

T(u1, . . . , un)ΩI =
∏
i∈I

(ui − 1)
∏
j∈J

uj · ΩI .

Let us remind that I ∪ J = {1,2, . . . , n} and I ∩ J =∅. Indeed from the formulae for local basic
states it follows immediately that

L(u) · 1 = u · 1, L(u) · δ4|4(Z) = (u − 1) · δ4|4(Z).



D. Chicherin et al. / Nuclear Physics B 881 (2014) 467–501 497
Now acting on ΩI by a sequence of R-operators (9.5) in a way compatible with the monodromy
condition we construct more involved eigenfunctions. Let us consider a simple example rel-
evant for scattering amplitudes. We take the 5-point monodromy matrix and the basic state
Ω = δ4|4(Z1). We act on it four times by R-operators in order to absorb the four bosonic delta
functions.

R45(u54)R34(u53)R23(u52)R12(u51)δ
4|4(Z1)

= 〈2345〉u15〈1345〉u21〈1245〉u32〈1235〉u43〈1234〉u54[1,2,3,4,5]. (9.6)

It is easy to see that this sequence is compatible with the monodromy condition and matches the
permutation

u1, u2, u3, u4, u5 → u5, u1, u2, u3, u4

of spectral parameters. Consequently the corresponding eigenvalue is equal to u1u2u3u4(u5 −1).
The calculation in (9.6) is rather simple and generalizes the one presented in Section 7.1 from
spinors to momentum twistors. For example after the first BCFW shift we rewrite the bosonic
delta function in the form

δ4(Z1 − zZ2) = 〈2345〉3δ
(〈1234〉)δ(〈1523〉)δ(〈1452〉)δ(〈1345〉 − z〈2345〉)

by projecting on four different 3-dimensional planes.
The case relevant for scattering amplitudes corresponds to the homogeneous monodromy

where all spectral parameters are equal. In this case the constructed eigenfunction reproduces
the R-invariant (9.3)

[1,2,3,4,5] = R45R34R23R12δ
4|4(Z1). (9.7)

Once again we see that the involved highly nonlocal object [1,2,3,4,5] is obtained by acting in a
local way. As an immediate consequence of the formula (9.7) we conclude that P1,n is an eigen-
function of the n-site homogeneous monodromy and corresponds to the eigenvalue un−1(u− 1).

By repeated R-operator actions one can reconstruct more involved R-invariants which are
obtained from the simplest one (9.3) by shifts of its arguments. In order to demonstrate how this
works let us indicate here the following formula

R45R34R23R12δ
4|4(Z1)F (Z2,Z3,Z4,Z5)

= [1,2,3,4,5]F (
Z1, 〈2345〉Z1 + 〈3451〉Z2, 〈5123〉Z4 + 〈1234〉Z5,Z5

)
,

where the function F is assumed to have dilatation weight zero with respect to each of its four
arguments. Consequently the R-operator actions reproduce the typical shifts which appear in
more involved R-invariants. Taking into account the previous formula we expect that the explicit
solution for all tree amplitudes in terms of super momentum twistors [44,45] can be rewritten as
sequences of R-operators acting on the basic state ΩI .

10. Discussion

We have formulated Yangian symmetry of super-Yang–Mills amplitudes in terms of an eigen-
value relation involving the monodromy matrix. We have demonstrated that the Quantum Inverse
Scattering Method on which this approach is based provides convenient tools for the calculation
and the investigation of amplitudes. The essential information about the algebraic structure of the
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symmetry and the particular structure of the representation relevant in the application to super-
Yang–Mills field theory enters via the choice of the L matrix. It is the basic elementary block
from which the monodromy matrix is constructed. Another important tool is a Yang–Baxter
R-operator defined by a standard intertwining relation with L matrices.

We have shown in particular that the proposed Yangian symmetry condition is compatible with
the BCFW iterative calculation. The elementary three-particle amplitudes obey this symmetry
and as a consequence also the results of the BCFW iteration starting with them.

Solutions of the symmetry condition can be obtained by multiple action with Yang–Baxter
R-operators on basic states. The latter appear in the spinor-helicity representation as products of
delta distributions in the spinor variables depending on signature in relation to the Grassman-
nian degree. The construction of amplitude contributions by R-operators has been demonstrated
in a number of examples and the connection to the Inverse Soft Limit construction has been
explained.

The action of the R-operator induces a particular BCFW shift with an integral over the shift
parameter. The integrations involved in a term with a multiple R action on a basic state can be
transformed into the standard Grassmannian link integral. If one prefers instead of this transfor-
mation to do the integrals the number of delta distribution factors present in the basic state is
gradually reduced. In a physical amplitude term all those singular factors are removed in this
way up to the deltas expressing the conservation of total momentum and supercharge.

Symmetric amplitude terms can be viewed as integral kernels of operators acting symmetri-
cally. We have shown that the R-operator in integral form has the unitarity cut of the four-particle
amplitude as its kernel. By this observation one understands the direct relation between the
R-operator construction and the on-shell diagram approach.

Our approach allows to consider loop contributions not only in connection with the on-shell
diagram method. We see further ways which deserve more detailed investigations. The relation
of amplitudes to integral operator kernels allows to generate more symmetric amplitude con-
tributions from given ones by fusion in terms of integration over the variables of a number of
identified legs as discussed in [17]. The multiple action by R-operators on a basic state may
be continued after having reproduced the tree amplitude contributions as considered in examples
here. In both ways Yangian invariants are generated which are naturally related to loop correction
of amplitudes.

It is convenient to consider the Yangian symmetry condition without imposing any reality
constraints related in particular to the signature of space–time. On the other hand being a tool for
generating amplitude contributions this symmetry does not determine completely the physical
amplitudes.

The Yangian symmetry condition for amplitude terms involves the homogeneous monodromy
matrix being a product of L matrices including a L factor for each leg with coinciding spectral
parameters. The R-operator appearing in the mentioned construction of amplitude contributions
appears at zero value of its spectral parameter. We like to consider the relations for amplitudes
as the limiting case of the ones with the parameters in the L matrices not all coinciding (inho-
mogeneous monodromy matrices) and general values of the spectral parameter argument of the
R-operator. We have shown that this is possible and have provided a number of examples.

Our method allows to construct higher point Yangian invariants for amplitudes with many
legs. Presently we do not see straight ways to compact formulae.

The factor remaining in a general amplitude after the separation of the MHV amplitude in-
cluding the momentum and supercharge conservation is known to be Yangian symmetric as well.
Regarding this factor we have formulated the symmetry condition in terms of momentum twistors
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and reconstructed by Yang–Baxter R-operator actions the R-invariant being the basic structure
therein.

In this way we have demonstrated how basic and well-known features of SYM amplitudes can
be easily derived from Yangian symmetry. Relying on the QISM approach Yangian symmetry has
been turned from a statement into a practicable working tool.
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