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Transport of influenza virus envelope proteins from the Golgi 
complex to the apical plasma membrane in MDCK cells: pH- 
controlled interaction with a cycling receptor is not involved 
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In influenza virus-infected monolayers of the epithelial cell line MDCK the viral envelope proteins, haemagglutinin and 
neuraminidase, are targetted specifically to the apical surface. In this study we have tested the hypothesis that the pola- 
rized delivery of these proteins to the plasma membrane involves the operation of a receptor that cycles between the 
trans Golgi network and the plasma membrane, binding the proteins at low pH in the former compartment and releasing 
them at normal extracellular pH in the latter, The hypothesis predicts that apical, but not basolateral, low pH would 
eventually delay or block delivery of the proteins to the plasma membrane. We found that basolateral low pH in fact 
had the more profound effect, in line with its greater effect on intracellular pH. We conclude that the hypothesis is not 

valid, and that low extracellular pH causes its effect on protein transport by changing intracellular pH. 
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1. INTRODUCTION 

Despite intense interest, the mechanisms 
underlying transport of proteins between the Golgi 
complex and the plasma membrane remain largely 
obscure. It does appear, however, that a compart- 
ment on the trans side of the Golgi complex, the 
trans Golgi network (TGN) may be the site at 
which plasma membrane proteins are segregated 
from proteins that are resident in the Golgi com- 
plex or are destined for other locations, such as 
secretory granules or endosomes [1]. In epithelial 
cells, proteins, including the envelope proteins of 
some viruses [2], are targetted to one of two 
plasma membrane domains. The available 
evidence suggests that targetting to both domains 
involves a specific recognition event in the TGN 
and does not occur by default. For example, in 
several experiments in which sorting has been 
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disturbed, the result has been lack of sorting, and 
not targetting to a new destination [3-7]. 

The lumen of the TGN is mildly acidic (pH 
about 6.0) [1,8], and the maintenance of this low 
pH appears to be crucial to its normal functioning 
in epithelia. For example, treatment of MDCK cell 
monolayers with ammonium chloride delays the 
transport of influenza virus haemagglutinin from 
the TGN to the apical cell surface [9], while in the 
same cell line chloroquine causes mis-sorting of the 
basolaterally directed secretory proteins laminin 
and heparan sulphate proteoglycan to both sur- 
faces [5]. 

The best-characterised intracellular transport 
steps are those involved in the delivery of proteins 
to the endosome from the TGN [10] and from the 
cell surface [11]. In both cases, the protein to be 
transported is bound by a receptor at a high pH 
and released at a low pH (about 5.0) of the target 
compartment. The receptor then recycles to bind 
another ligand. We set out to test the hypothesis 
that a similar system operates for transport be- 
tween the TGN and the plasma membrane in 
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Fig. 1. Hypothetical mechanism for transport of a membrane 
protein from the TGN to the plasma membrane. (9) Protein to 
be transported; (7) receptor; (9) resident TGN protein; (9) 
vesicle marker; (~,) vesicle 'docking receptor' on the inside of 
the plasma membrane. The protein binds to its receptor at pH 
6.0 in the TGN and dissociates at normal extracellular pH. The 
receptor is then free to recycle to the TGN. If extracellular pH 
is lowered to 6.0, the protein should no longer dissociate from 
its receptor, which would eventually become saturated. Once 
saturation has occurred, newly synthesized protein should be 

transported as far as the TGN but no further. 

epithelial  cells. For  this t ransfer ,  r ecep to r - l igand  
af f in i ty  would  be high at pH 6.0 and  low at pH 7.4 
(f ig . l ) .  One  predict ion of  this hypothesis is that  
raising the pH inside the T G N  should delay or 
block t ranspor t  of  proteins  to the p lasma mem-  
brane .  As discussed above,  such an  effect has been 
seen. Ano the r  predict ion of  the hypothesis  is that  
low extracellular pH should have the same effect, 
by prevent ing r ecep to r - l igand  dissociat ion and  so 
sa turat ing the receptors.  Fur thermore ,  in epithelia, 
receptors should cycle th rough only  a single 
p lasma m e m b r a n e  domain ,  and  therefore the ef- 
fect o f  extracellular pH should be asymmetr ic .  We 
have tested this predict ion by examining  the effect 
of  asymmetr ical ly  lowered extracellular pH on  the 
delivery of  the in f luenza  envelope proteins,  
haemagglu t in in  and  neuraminidase ,  to the apical 
surface of  M D C K  cell monolayers .  

2. M A T E R I A L S  A N D  M E T H O D S  

MDCK cells grown as monolayers in Eagle's minimum essen- 

tial medium (EMEM) supplemented with 10070 newborn calf 
serum, non-essential amino acids and 50 IU/ml penicillin/50/~g 
per ml streptomycin at 37°C in an atmosphere of 5070 CO2 in 
air. Media and supplements were supplied by Flow 
Laboratories, Rickmansworth, England. MDCK ceils used for 
the experiments on haemagglutinin transport were obtained 
from Flow Laboratories. Experiments on neuraminidase 
transport were carried out on a high-passage strain that was 
originally obtained from Dr K. Simons (EMBL, Heidelberg, 
FRG). 

The X-31 strain of influenza virus, and a monoclonal an- 
tibody to the X-31 haemagglutinin, were obtained from Dr A. 
Hay (NIMR, London). The WSN strain of influenza virus was 
obtained from Dr S.C. Inglis (Department of Pathology, 
University of Cambridge). Semliki Forest virus (SFV) was ob- 
tained from Dr T.R. Hesketh (Department of Biochemistry, 
University of Cambridge). Viruses were grown, purified and 
assayed as described previously [12]. 

MDCK cells were grown until just confluent on either 2.5 cm 
nitrocellulose filters (0.45/~m pore size; Millipore, Harrow, 
England) in perspex chambers or 3 cm culture dishes. 
Monolayers were washed twice with 2 ml EMEM containing 
0.2% BSA and infected with > 10 plaque-forming units of in- 
fluenza virus in the same medium for 1 h at 37°C. The medium 
was then replaced with bicarbonate-free EMEM of appropriate 
pH containing 20 mM Hepes, 25 mM Mes, 10 mM Pipes and 
207o newborn calf serum. 

Delivery of haemagglutinin to the plasma membrane was 
followed by radioimmunoassay on paraformaldehyde-fixed 
monolayers, using anti-haemagglutinin ascites fluid (103 × dilu- 
tion) and ~25I-labelled sheep anti-mouse immunoglobulin 
(specific activity 10 /zCi//~g; Amersham International, En- 
gland). 

Delivery of neuraminidase to the cell surface was assayed as 
described previously [12,13]. 

Intracellular pH (pHi) was measured through the partitioning 
of [~4C]benzoic acid (120 mCi/mmol; Amersham Interna- 
tional) across the plasma membrane, as described by Davoust 
et al. [14]. To measure pHi in monolayers growing on 
nitrocellulose filters and exposed to different pHs on its two 
surfaces, [~4C]benzoic acid was added to both sides at the 
equilibrium concentration ratio predicted by the equation 

(cOn Cconc [l'Clbenz°ic[14C]benzoic aCidacid (ap)~ pH(ap) - pHcoi) = log (~I)/ 

Specifically, the concentration of tracer in medium of pH 7.4 
was 25-times that in medium of pH 6.0 (1,925:0.077/~Ci/ml). 
pHi was calculated from the mean value obtained by consider- 
ing partitioning across both apical and basolaterai membranes. 

Intracellular ATP levels were determined using a luciferin- 
luciferase assay (Boehringer, Mannheim, FRG), as described by 
Davoust et al. [14]. 

3. RESULTS A N D  D I S C U S S I O N  

pHi in M D C K  cell monolayers  grown on filters 
was determined for cells exposed to med ium of pH 
7.4 and  6.0, either asymmetr ical ly  or symmetrical-  
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ly. The results obtained for both strains of  MDCK 
cell are given in table 1. It can be seen that ex- 
posure of  the cells to pH 6.0 on the basolateral sur- 
face causes a more profound fall in intracellular 
pH than exposure to pH 6.0 apically. Table 1 also 
shows the values of  pH~ for cells grown on dishes 
that produce the same values of  pHi as those ob- 
tained for cells grown on filters. 

Since ATP is required for various steps in the 
biosynthetic transport pathway [15,16], the 
possibility was considered that variation in pHi 
might produce effects as a result of  a depletion of  
cytosolic ATP.  However, ATP levels, in both 
strains of  cell, were found not to fall significantly 
below the control value of  26 nmol /mg protein, 
even when pile was lowered as far as 5.4. 

Exposure of  monolayers to pH~ 6.0 apically 
f rom 3 h post-infection did not delay the arrival of  
haemagglutinin at the cell surface; however, ex- 
posure to pile 6.0 basolaterally did cause a delay 
(fig.2a). Since pHi falls further when basolateral 
pile is lowered than when apical pile is lowered, 
the most likely explanation of  these results is that 
the delivery of  haemagglutinin to the cell surface is 
delayed progressively as pHi falls. To confirm this, 
monolayers grown on dishes were exposed to 
media of  pile that would produce ph i  values iden- 
tical to those found in the asymmetric conditions. 
The results obtained (fig.2b) were very similar to 
those shown in fig.2a. 

Neuraminidase activity at the cell surface was 
assayed through its ability to cleave free [3H]sialic 
acid from SFV containing envelope proteins with 
3H-labelled sialic acid residues. The time-points 
chosen were 3 h post-infection, when activity is 
just detectable, and 6 h post-infection, which is 
just before activity reaches a plateau [13]. When 
MDCK cells were grown on filters, the effect of  
lowering apical pile to 6.0 on neuraminidase 

Table 1 

Dependence of  pHi on pile 

Apical pH 
Basolateral pH 
phi ,  MDCK (Flow) 
pHc on dishes 
pHi, MDCK (EMBL) 
pile on dishes 

7.4 6.0 7.4 6.0 
7.4 7.4 6.0 6.0 
7.4 7.2 6.9 6.5 
7.4 7.0 6.4 5.7 
7.4 7.2 7.0 6.4 
7.4 7.0 6.5 5.5 

a 

i i t i i 

3 4 5 6 7 
t I I J 
3 4 5 6 7 

flew (h) 

Fig.2. Delivery of  haemagglutinin to the plasma membrane. (a) 
Cells grown on filters. (o) Control; (e) pile 6.0 apically (pHi 
7.2); (zx) pile 6.0 basolaterally (pHi 6.9). (b) Cells grown on 
dishes, (o) Control; (e) pile 7.0 (pHi 7.2); (A) pile 6.4 (pHi 
6.9). Values are means + SE (n = 3). Error bars are not shown 

where they lie within the dimensions of  the symbol. 

delivery to the cell surface was not as severe as that 
of  lowering basolateral pile (fig.3a). Lowering pile 
on both sides of  the monolayers produced a pro- 

. - . l - -  

4 

1 
20 _ L  

,..X. 

o 

o-L. I o 
pHap 7.4 6.0 7.4 6.0 

PHbl 7.4 7.4 6.0 6.0 pH e 7.4 7.0 6.5 5.5 

PH i 7.4 7.2 7.0 6.4 pH i 7.4 7.2 7.0 6.4 

Fig.3. Delivery of  neuraminidase to the plasma membrane. (a) 
Cells grown on filters. (b) Cells grown on dishes. Filled bars, 
3 h post-infection; open bars, 6 h post-infection. Values are 

means _+ SE (n = 3). 
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f o u n d  effect. A similar pat tern was seen when the 
cells were grown on dishes and pile was lowered to 
p roduce  pHi values identical to those found  in cells 
g rown on  filters (fig.3b). 

Our  results show that  the t ranspor t  o f  the two 
envelope proteins o f  influenza virus f rom the T G N  
to the plasma membrane  does no t  involve pH-  
mediated binding and release o f  the proteins by a 
receptor  that  cycles between the two membrane  
compar tments .  The evidence presented points in- 
stead to an effect o f  pi le  on intracellular protein 
t ranspor t  th rough  its effect on  pHi. Such an effect 
is p robab ly  not  surprising, since it has been 
demons t ra ted  that  other  steps in intracellular pro- 
tein t ranspor t ,  such as early stages in endocytosis  
[14,17], are sensitive to acidification o f  the cytosol.  

The  possibility remains that  bo th  a receptor and 
the low p H  are involved in sorting, but  not  in the 
way  envisaged here. For  example, the low p H  m a y  
be necessary to cause the protein to adopt  a con- 
fo rma t ion  that  is recognised by the receptor and 
the receptor  may  then be responsible for  the 
packaging o f  proteins into vesicles, without  itself 
being t ranspor ted  to the plasma membrane .  Alter- 
natively, the receptor may  travel to the cell surface 
with the protein,  but  p ro te in - recep to r  dissociation 
may  occur  en route.  

Acknowledgements: We are grateful to the MRC and the Na- 
tional Kidney Research Fund for financial support. 

R E F E R E N C E S  

[1] Griffiths, G. and Simons, K. (1986) Science 234, 438-443. 
[2] Rodriguez-Boulan, E. and Pendergast, M. (1980) Cell 20, 

45-54. 
[3] Gottlieb, T.A., Beaudry, G., Rizzolo, L., Colman, A., 

Rindler, M., Adesnik, M. and Sabatini, D.D. (1986) 
Proc. Natl. Acad. Sci. USA 83, 2100-2104. 

[4] Caplan, M.J., Stow, J.L., Newman, A.P., Madri, J., 
Anderson, H.C., Farquhar, M.G., Palade, G.E. and 
Jamieson, J.D. (1987) Nature 329, 632-635. 

[5] Gonzalez, A., Rizzolo, L., Rindler, M., Adesnik, M., 
Sabatini, D.D. and Gottlieb, T. (1987) Proc. Natl. Acad. 
Sci. USA 84, 3738-3742. 

[6] Puddington, L., Woodgett, C. and Rose, J.K. (1987) 
Proc. Natl. Acad. Sci. USA 84, 2756-2760. 

[7] Urban, J., Parczyk, K., Leutz, A., Kayne, M. and 
Kondor-Koeh, C. (1987) J. Cell Biol. 105, 2735-2743. 

[8] Anderson, R.G.W. and Pathak, R.K. (1985) Cell 40, 
635-643. 

[9] Marlin, K.S. (1986) J. Biol. Chem. 261, 15172-15178. 
[10] Geuze, H.J., Slot, J.W., Strous, G.J.A.M., Hasilik, A. 

and Von Figura, K. (1985) J. Cell Biol. 101, 2253-2262. 
[11] Brown, M.S., Anderson, R.G.W. and Goldstein, J.L. 

(1983) Cell 32, 663-667. 
[12] Daniels, P.U. and Edwardson, J.M. (1988) Biochem. J. 

252, 693-700. 
[13] Daniels, P.U. and Edwardson, J.M. (1989) FEBS Lett. 

244, 57-60. 
[14] Davoust, J., Gruenberg, J. and Howell, K.E. (1987) 

EMBO J. 6, 3601-3609. 
[15] Balch, W.E., Elliot, M.M. and Keller, D.S. (1986) J. Biol. 

Chem. 261, 14681-14689. 
[16] Balch, W.E. and Keller, D.S. (1986) J. Biol. Chem. 261, 

14690-14696. 
[17] Sandvig, K., Olsnes, S., Petersen, O.W. and Van Deurs, 

B. (1987) J. Cell Biol. 105, 679-689. 

410 


