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Abstract The axisymmetric stagnation point flow over a stretching/shrinking surface with
second-order slip and temperature jump is studied numerically. The governing partial
differential equations are transformed into ordinary (similarity) differential equations. These
equations along with the corresponding boundary conditions are solved numerically using a
boundary value problem solver bvp4c in Matlab software. It is observed that dual (first and
second) solutions exist for the similarity equations. The effects of different parameters on the
velocity and the temperature distributions as well as the skin friction coefficient and the Nusselt
number are analyzed and discussed.
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1. Introduction

The study of boundary layer flow and heat transfer
toward a stagnation point has attracted the interest of many
researchers due to its important applications in engineering
and industry. The stagnation region characterizes the high-
est pressure, the highest heat transfer, and the highest rates
of mass deposition. Hiemenz [1] is the pioneer, who
ction and hosting by Elsevier B.V. This is an open access article under the
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obtained an exact solution for the steady two-dimensional
stagnation point flow, and then Homann [2] has extended
this work to axisymmetric case. Later, Howarth [3] inves-
tigated the flow near the steady axisymmetric stagnation
point. Since then, in parallel with these applications, many
authors have actively investigated the nature of solution
structure viewed from the fundamental point, such as
Chiam [4], Mahapatra and Gupta [5,6], Nazar et al. [7],
Reza and Gupta [8], Lok et al. [9,10] and Yacob and Ishak
[11], etc. These authors studied the problems of boundary
layer flow and heat transfer on a stretching sheet. Chiam [4]
combined the stretching sheet problem with two-
dimensional stagnation point flow, and found that the flow
near the stretching surface is the same as the inviscid flow
far from the surface resulting in a no boundary layer flow. It
is worth mentioning that the flow and heat transfer over a
stretching/shrinking sheet were considered by Zheng et al.
[12,13] and Yacob et al. [14].

Quite recently, the flow past a shrinking sheet was taken
into consideration because of its essential applications in
industries such as product packaging in obtaining proper
wrapping, manufacturing of certain polymers and high-
performance materials for aerospace coatings [15]. There
are two conditions that allow the existence of the solutions
for a shrinking sheet which whether an adequate suction on
the boundary is imposed [16] or a stagnation flow is added
[17] that causes the vorticity of the shrinking sheet is
confined in the boundary layer [18]. Wang [17] is the first
who introduced the concept of flow past a shrinking sheet
and he investigated the stagnation point flow towards a
shrinking sheet for both two-dimensional and axisymmetric
cases. He obtained dual solutions and unique solution for
specific values of the shrinking parameter. Wang's [17]
work has been extended by Ishak et al. [19] and then by
Bhattacharyya and Layek [20], Bhattacharyya et al. [21]
and Lok et al. [18] with different physical conditions.

All of the above-mentioned papers considered the no-slip
boundary condition which is known as a central tenet of the
Navier–Stokes theory [22]. However, there are some applica-
tions where the slip condition cannot be ignored. For instance,
rarefied gas flows with slip boundary conditions are applied in
Figure 1 Physical model and coordinate system
the micro-scale devices and low-pressure situations [23–25].
Furthermore, partial velocity slip often occurs for inhomoge-
neous fluid, especially slurries, gels, emulsions and foams [26].
Wall slip may happen when a thin film of light oil is attached to
the plate or when the plate is coated with special coatings such
as a thick monolayer of hydrophobic octadecylthichlorosilane
[27]. It is worth mentioning that very recently, Rosca et al. [28]
studied the mixed convection boundary layer flow near the
lower stagnation point of a horizontal circular cylinder with a
second-order slip velocity and reported the existence of multiple
solutions. A stability analysis was performed to determine
which solution is stable and thus physically reliable.

Wang [29] studied the stagnation-point flow with first-order
velocity slip of rarefied gases and he derived the exact solution
of the Navier–Stokes equation. He found that when the slip
parameter goes to infinity, the flow behaves as though it were
inviscid. The slip flow under different flow configurations has
been studied recently in Refs. [30–35]. Further, Fang et al.
[36] presented the exact solution of the MHD flow and mass
transfer under slip condition over a stretching sheet. It was
shown that there exists a unique solution for any combination
of the slip, magnetic and the mass transfer parameters. Then,
Hafidzuddin et al. [37] investigated a permeable exponentially
stretching/shrinking sheet with generalized slip velocity. They
noticed that dual solutions exist for a certain range of the
suction and stretching/shrinking parameters.

Wu [38] proposed a new second-order slip velocity
model which matches better with the Fukui–Kaneko results
based on the direct numerical simulation of the linearized
Boltzmann equation [39]. Many authors applied Wu's
model to study the behavior of fluid flow on a solid surface
[40–42]. Moreover, there are many cases where temperature
jump along with velocity slip should be considered. Some
of the applications are in flow of rarefied gases at low
Knudsen numbers [43], flow past superhydrophobic micro-
surfaces [44,45] or flow against rough surfaces [46]. The
research on the forced convection stagnation flow on a solid
surface with slip boundary condition was done by Wang
[47]. Later, Wang and Ng [48] considered the three-
dimensional axisymmetric stagnation flow on a heated
vertical surface by considering first-order velocity slip and
. (a) Stretching case and (b) shrinking case.
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temperature jump. With this awareness, recently many
authors [49–51] have considered the effects of velocity slip
on the flow and temperature jump on the heat transfer
characteristics.
Our aim is to extend the work done by Wang and Ng [48]

to consider the second-order velocity slip condition on the
stretching/shrinking surface. Using a similarity transformation,
the governing partial differential equations are transformed
into a system of nonlinear ordinary differential (similarity)
equations. The obtained results are compared with those
reported by Wang and Ng [48] for a particular case.
2. Mathematical formulation

We consider an axisymmetric stagnation-point flow of a
viscous and incompressible fluid near a stretching/shrinking
surface with the xy-plane describing the horizontal surface. The
stagnation flow is symmetrical about the z-axis far from the
surface. It is assumed that the stretching/shrinking velocities of
the surface in the x and y directions are uw ðxÞ and vw ðyÞ,
respectively. Far from the surface ðz-1Þ the flow is a
potential stagnation flow ue ðxÞ ¼ ax; ve ðyÞ ¼ ay and
we ðzÞ ¼ � 2az, where a40 is the strength of the flow. It is
also assumed that the constant plate temperature is Tw and the
ambient fluid is T1 as shown in Figure 1.
The Navier–Stokes and energy equations are given by

(Wang and Ng [48]; Rosca and Pop [52]):
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We assume that Eqs. (1)–(5) are subjected to the
boundary conditions
Table 1 Initial values for axisymmetric stagnation flow on a
horizontal plate for K ¼ 1, λ¼ 0 and Λ¼ 0.

Δ Wang and Ng [48] Present study

f ″ð0Þ �θ0 ð0Þ f ″ð0Þ �θ0 ð0Þ

0 1.31194 0.3995 1.311938 0.399536
0.1 1.21009 0.4135 1.210087 0.413499
0.5 0.86688 0.4435 0.866879 0.443918
1.0 0.61730 0.4590 0.617300 0.458984
5.0 0.17928 0.4789 0.179287 0.478939
10.0 0.09460 0.4822 0.094597 0.482177
u¼ uw ðxÞ þ uslip ðxÞ; v¼ vw ðyÞ þ vslip ðyÞ; T ¼ Tw þ Tjump ðzÞ
at z¼ 0

u-ue ðxÞ; v-ve ðyÞ; w-we ðzÞ; T-T1
as z-1 ð6Þ

where uw ðxÞ ¼ cx; vw ðyÞ ¼ cy and Tjump ðzÞ ¼ C∂T=∂z with
C being the temperature jump coefficient.

Here u; v and w are the velocity components along the
x; y and z-axes, T is the fluid temperature, p is the pressure,
α is the thermal diffusivity of the fluid, ν is the kinematic
viscosity of the fluid and ρ is the density of the fluid. Further,
uslip ðxÞ and vslip ðyÞ are the slip velocities at the stretching/
shrinking surface, which due to Wu [38] are given as
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where A and B are constants, Kn is Knudsen number,
l¼ minð1=Kn; 1Þ, ε is the momentum accommodation
coefficient with 0oεr1, and δ is the molecular mean free
path. Based on the definition of l, it is seen that for any
given value of Kn, we have 0r lr1. Since the molecular
mean free path δ is always positive, it results in such that B
is a negative number.

We look for a similarity solution of Eqs. (1)–(5) of the
following form:

u¼ axf 0 ðηÞ; v¼ ayf 0 ðηÞ; w¼ �2
ffiffiffiffiffi
av

p
f ðηÞ;

θ ðηÞ ¼ ðT�T1Þ=ðTw�T1Þ; η¼ z
ffiffiffiffiffiffiffi
a=v

p
ð8Þ

where prime denotes differentiation with respect to η: The
pressure p can be derived from Eq. (4) and it is given by

p

ρ
¼ v

∂w
∂z

� w2

2
þ constant ð9Þ

Substituting Eq. (8) into Eqs. (2), (3) and (5), the
following set of ordinary differential equations reduce to

f‴þ 2f f ″þ 1� f 02 ¼ 0 ð10Þ
θ″þ 2Prf θ0 ¼ 0 ð11Þ
and the boundary conditions (6) become

f ð0Þ ¼ 0; f 0 ð0Þ ¼ λþ Δf ″ð0Þ þ Λf‴ð0Þ; θ ð0Þ ¼ 1þ Kθ0 ð0Þ;
f 0 ðηÞ-1; θ ðηÞ-0 as η-1 ð12Þ



Figure 2 Variation of the skin friction coefficient f ″ð0Þ with λ for
various values of first-order velocity slip parameter Δ when Λ¼ �0:3.
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where Pr ¼ v=α is the Prandtl number, λ¼ c=a is a
dimensionless constant parameter with λ 40 for a stretch-
ing surface and λ o0 for a shrinking surface,
Δ¼ A

ffiffiffiffiffiffiffiffi
a=ν

p
40 is the first-order velocity slip parameter,

Λ¼ Ba=νo0 is the second-order velocity slip parameter
and K ¼ C

ffiffiffiffiffiffiffiffi
a=ν

p
40 is the temperature jump parameter.

The physical quantities of interest are the skin friction
coefficient Cf and the local Nusselt number Nux, which are
defined as

Cf ¼
τw

ρu2e ðxÞ ; Nux ¼
xqw

k ðTw�T1Þ ð13Þ

where τw is the skin friction or shear stress along the
stretching/shrinking surface and qw is the heat flux from the
stretching/shrinking surface, which are given by

τw ¼ μ
∂u
∂z

� �
z ¼ 0

; qw ¼ �k
∂T
∂z

� �
z ¼ 0

ð14Þ

Using the similarity variables (8), we obtain

Re1=2x Cf ¼ f ″ð0Þ; Re�1=2
x Nux ¼ �θ0 ð0Þ ð15Þ

where Rex ¼ ue ðxÞ x=ν is the local Reynolds number.
Figure 3 Variation of the local Nusselt number �θ0 ð0Þ with λ for
various values of first-order velocity slip parameter Δ when
Λ¼ �0:3; K ¼ 0:2; Pr¼ 0:7.
3. Results and discussion

The nonlinear ordinary differential Eqs. (10) and (11)
along with the boundary conditions (12) were solved
numerically using the bvp4c package in Matlab. In this
method, since the present problem may have more than one
solution, the bvp4c needs more than one initial guesses that
satisfy the boundary conditions (12). Determining the initial
guesses for the first solution is easier than that of the second
solution, which is quite challenging due to the converging
issue. To overcome this difficulty, we start with a set of
parameter values for which the solution is easier to appear.
Then, we use the obtained results and consider it as an
initial guess for the next values of parameters. This
technique is called a continuation [53]. In our numerical
computations, we have chosen the condition η-1 as
η¼ 10 for the first solution, while for the second solution,
η¼ 40 was found sufficient for the profiles to reach the far
field boundary conditions asymptotically.

The numerical computations were performed for several
values of the dimensionless parameters which are
stretching/shrinking parameter λ, Prandtl number Pr, the
first-order velocity slip parameter Δ¼ A

ffiffiffiffiffiffiffiffi
a=ν

p
40, the

second-order velocity slip parameter Λ¼ B a=νo0 and
the temperature jump parameter K ¼C

ffiffiffiffiffiffiffiffi
a=ν

p
40. The

value of parameters Pr and K are fixed to 0.7 and 0.2,
respectively. Comparative study for the skin friction coeffi-
cient f ″ð0Þ and the rate of heat transfer �θ0 ð0Þ with the
numerical results of Wang and Ng [48] was carried out to
validate the numerical results obtained when λ¼ 0 (non-
stretching/shrinking case) and Λ¼ 0 (non-second-order
velocity slip case). The comparison shows a favorable
agreement, as can be seen in Table 1. Therefore, we can
expect that the numerical results for other cases are correct
and reliable.

The variations of the skin friction coefficient f ″ð0Þ and
the local Nusselt number �θ0 ð0Þ against λ for first-order
velocity slip Δ¼ 0:1 ; 1; 5 are shown in Figures 2 and 3,
respectively. The solid lines denote the first solution, while
the dash lines indicate the second solution. From both
figures, we can observe that there exist dual solutions for
Eqs. (10) and (11) subject to the boundary Eq. (12) when
λo0. The value of f ″ð0Þ being zero when λ¼ 1. This is due
to the fluid and the solid surface which move in the same
velocity, and thus there is no friction at the fluid-solid
interface. However, in Figure 3 there is heat transfer at the
surface, even though no friction occurred. This happens
because of the temperature difference between the fluid and
the solid surface.

For the shrinking case, the solutions exist up to a critical
values of λ denoted by λc. The values of λc for the
corresponding values of Δ are depicted in Figures 2 and
3. It is remarked that the range of the first and second
solutions significantly increase as parameter Δ increases and
no similarity solutions exist for λoλc. The wide range of
solutions is due to physical phenomena of the slip effect.
The generation of vorticity for shrinking velocity is slightly
reduced for increasing slip on the solid surface. Hence, that
vorticity remains bounded in the boundary layer region for
larger shrinking velocity and thus the steady solution is
possible for large values of λ [28]. As can be seen in
Figure 3, the rate of heat transfer increases with increasing



Figure 6 Velocity profiles f 0 ðηÞ for various values of Λ when
Δ¼ 0:3; K ¼ 0:2; λ¼ �1:2 and Pr ¼ 0:7.

Figure 7 Temperature profiles θ ðηÞ for various values of Λ when
Δ¼ 0:3; K ¼ 0:2; λ¼ �1:2 and Pr ¼ 0:7.
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values of λ and Δ for the first solution and it decreases with
increasing λ and Δ for the second solution.
Figures 4 and 5 illustrate the variations of the skin

friction coefficient f ″ð0Þ and the rate of heat transfer �θ0 ð0Þ
with λ for second-order velocity slip Λ¼ �0:1; �1; �5:
It is indicated that when the magnitude of second-order
parameter increases the solution range for both figures
increases. An interesting behavior is found in Figure 4
which the pattern of each curve is significantly different for
each value of Λ. For Λ¼ �0:1, the curve is similar to
parabolic as expected and for Λ¼ �5 the curve tends to
shape an ellipse but when Λ¼ �1, the curve seems to form
a straight line. For the value of magnitude of Λ¼ �0:1 and
�1, the value of the first solution is larger than the second
solution as predicted, but differs from those of Λ¼ �5. It is
noticeable, the range of solution increases whenever the
magnitude of Λ is increased. As reported by Rosca and Pop
[41] for a similar problem where dual solutions exist, the
first solution is physically stable and reliable while the
second solution is not. Apparently, Figures 2–5 show that
for the first solution, in the presence of slip effects, the skin
friction decreases while the heat transfer rate increases.
The velocity f 0 ðηÞ and temperature θ ðηÞ profiles for

various values of Λ and λ are portrayed in Figures 6–9.
Through Figures 6 and 7, we can see the effects of Λ on
both figures. The thickness of the boundary layer decreases
as the magnitude of Λ is increased for the first solution and
vice versa for the second solution. However, the
Figure 4 Variation of the skin friction coefficient f ″ð0Þ with λ for
various values of second-order velocity slip parameter Λ when
Δ¼ 0:3:

Figure 5 Variation of the local Nusselt number �θ0ð0Þ with λ for
various values of second-order velocity slip parameter Λ when
Δ¼ 0:3; K ¼ 0:2; Pr ¼ 0:7:

Figure 8 Velocity profiles f 0 ðηÞ for various values of λ when
Δ¼ 5; Λ¼ �0:3; K ¼ 0:2 and Pr ¼ 0:7.

Figure 9 Temperature profiles θ ðηÞ for various values of λ when
Δ¼ 5; Λ¼ �0:3; K ¼ 0:2 and Pr ¼ 0:7.
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temperature and the thermal boundary layer decrease with
the increment of the magnitude of Λ and conversely for the
second solution. In consequence, the velocity at the surface
f 0 ð0Þ increases, which resulted in the decrease of the skin
friction coefficient at the surface f ″ð0Þ, while decreases the
Table 2 Variations of the skin friction coefficient f ″ð0Þ and the
local Nusselt number �θ0 ð0Þ for λ¼ �1:2, K ¼ 0:2, Pr ¼ 0:7 and
Δ¼ 0:3.

Λ First solution Second solution

f ″ð0Þ �θ0 ð0Þ f ″ð0Þ �θ0 ð0Þ

�0.1 1.35203151 0.30552092 0.69033355 0.05025554
�1.0 1.19354866 0.62222864 0.64772804 0.03879292
�5.0 0.35497908 0.75748119 0.58721674 0.02444822

Figure 10 Streamlines in the plane y¼ 0 for Δ¼ 0:3, Λ¼ �0:1 and
λ¼ 1:2 (stretching surface).

Figure 11 Streamlines in the plane y¼ 0 for Δ¼ 0:3, Λ¼ �0:1 and
λ¼ �1:2 (shrinking surface).
surface temperature θ ð0Þ leads to the increase of the heat
transfer rate at the surface �θ0 ð0Þ for the first solution. This
happens due to the diminishing and rising values of the skin
friction coefficient and the local Nusselt number, respec-
tively as shown in Table 2.

Moreover, the dual velocity profiles of Figure 8 depicts
that the velocity decreases with increasing of the magnitude
of λ which corresponds to a faster shrinking velocity for the
first solution. Opposite behavior is observed for the second
solution. As plotted in Figure 9 for the first solution, the
temperature increases slightly while for the second solu-
tions, the temperature decreases and both profiles reduce
gradually to zero. For the first solution in Figure 9, the
function θ ðηÞ has a negative gradient at the surface and it
shows that the heat slowly disperses from the solid surface
to the fluid. Apparently, the boundary layer thickness for
the first solution is lower than that of the second solution for
all profiles. The velocity and temperature profiles satisfy the
far field boundary conditions (12) asymptotically, thus
support the validity of the numerical results obtained and
the existence of the dual solutions displayed in Figures 2–5.

Figures 10 and 11 demonstrate the streamlines in the
presence of the first and second order slip parameters for the
stretching at λ¼ 1:2 and shrinking at λ¼ �1:2, respec-
tively. Figure 10 shows a symmetry stagnation flow towards
the stretching surface, while different pattern is seen in
Figure 11, which shows a double layer. There exists in this
figure a horizontal line that separates the flow into two parts
where the flow on the upper part seems to have a similar
pattern with the stretching case. While obviously seen, a
reverse rotating flow is formed in the lower part.
4. Concluding remarks

The problem of a three-dimensional axisymmetric stag-
nation point flow over a stretching/shrinking surface with
first and second-order velocity slip and temperature jump
was studied in this paper. The governing boundary layer
equations were solved numerically for both stretching/
shrinking surface using problem solver bvp4c in Matlab
software. The existence and multiplicity (duality) of solu-
tions were displayed and explained by looking at the
combined effects of the stretching/shrinking parameter, slip
parameters Δ and Λ with temperature jump parameter K and
Prandtl number Pr remain unchanged. The dual solutions
exist for the shrinking case, while the solution is unique for
the stretching case. The results showed that the presence of
first and second order slip decreased the skin friction while
increased the rate of heat transfer.
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