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Neuroimaging techniques represent powerful tools to assess disease-specific cellular, biochemical and
molecular processes non-invasively in vivo. Besides providing precise anatomical localisation and
quantification, the most exciting advantage of non-invasive imaging techniques is the opportunity to
investigate the spatial and temporal dynamics of disease-specific functional and molecular events
longitudinally in intact living organisms, so called molecular imaging (MI). Combining neuroimaging
technologies with in vivo models of neurological disorders provides unique opportunities to understand the
aetiology and pathophysiology of human neurological disorders. In this way, neuroimaging in mouse models
of neurological disorders not only can be used for phenotyping specific diseases and monitoring disease
progression but also plays an essential role in the development and evaluation of disease-specific treatment
approaches. In this way MI is a key technology in translational research, helping to design improved disease
models as well as experimental treatment protocols that may afterwards be implemented into clinical
routine. The most widely used imaging modalities in animal models to assess in vivo anatomical, functional
and molecular events are positron emission tomography (PET), magnetic resonance imaging (MRI) and
optical imaging (OI). Here, we review the application of neuroimaging in mouse models of neurodegenera-
tion (Parkinson's disease, PD, and Alzheimer's disease, AD) and brain cancer (glioma).
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1. Introduction

Over the past years the development of animal models of neu-
rological disorders has progressed rapidly. Neurosciences also increas-
ingly demanded improvements in non-invasive imaging technologies,
which could be employed in the assessment of neurological diseases.
Especially in the central nervous system non-invasive classification
and characterisation of both disease stage and treatment efficacy has
become indispensable in the evaluationof establishedandexperimental
treatment strategies.

During the past decade, themolecular and genetic causes underlying
manyneurological disorders have been characterised. Knowledge of the
underlying genetic and molecular defects of specific diseases and
understanding of related pathophysiological changes are essential for
the development of novel efficient therapeutic approaches targeting
disease-causing molecular defects. To image molecular and cellular
processes in vivo several imaging modalities have been developed and
implemented in animal models. Imaging modalities can be roughly
divided into two groups: those primarily providing structural informa-
tion like computed tomography (CT),MRI or ultrasound (US); and those
primarily aiming at functional ormolecular information, like PET, SPECT
or optical imaging (OI). This subdivision, however, is arbitrary and has
overlapping boundaries. Some techniques can provide both types of
information depending on the imaging settings or administered drugs
(e.g. targeted or activatable probes). For instance, MRI cannot only be
used to reveal organ structure and soft tissue morphology, but can also
provide functional and metabolic information, such as vascular volume
and permeability, tissue perfusion, water diffusion, central nervous
system functional activation, metabolic spectroscopy, pH, pharmacoki-
netics and gene expression. Combining different imaging technologies
that merge structural and functional information enables accurate,
repetitive, non-invasive disease phenotyping and the measurement of
therapeutic outcomes. Furthermore, combining two or more imaging
modalities has the potential to exploit the strength and overcome the
shortcomings of eachmodality if used alone.Optical imaging techniques
are cost-effective and time-efficient, require less resources and space
than PET andMRI and have excellent temporal resolution. However, the
common disadvantages of these techniques are the limited spatial
resolution and depth penetration, making them only suitable for small
animal research, and the lack of optimal quantitative or tomographic
information. The nuclear imaging techniques PET and SPECThave a high
sensitivity, where very low levels of specific tracer accumulation can be
detected but have an inherently limited spatial resolution. MR imaging
techniques have a spectacular spatial resolution which is not limited
by detector geometry as with nuclear imaging or by tissue scattering
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properties as by optical imaging, however, temporal resolution is
limited and molecular probe detection is several orders of magnitude
less sensitive than nuclear imaging techniques.

A multitude of animal models have been established to mimic
human disorders. These animal models range from interventional
models (such as xenograft, neurotoxic or mechanical lesion models)
to knockout and transgenic (mono-, bi- or trigenic through cross-
breeding) animals. With the advance of these animal models, non-
invasive techniques for the evaluation of disease-associated function-
al, biochemical and anatomical changes have become indispensable,
and a variety of dedicated small animal imaging scanners with high
sensitivity, specificity and resolution have been developed. The non-
invasive characterization of disease phenotype in mouse models will
further increase our understanding of the genetic and molecular
alterations associated with disease initiation and progression and will
allow the design and evaluation of effective therapeutic interventions.
Furthermore, the findings in mouse models obtained by small animal
PET/SPECT and MR scanners can be directly compared to the human
situation with clinical scanners and represent true translational re-
search from bench-to-bedside and back to the bench again. However,
it should be kept in mind that up till now no true “humanized” animal
models have been developed and that interventional results obtained
in mouse models not necessarily will be translated to 100% in the
human situation.

2. Neurodegeneration

Although no perfect neurodegenerative animalmodel exist yet, the
current models of Parkinson's disease (PD) and Alzheimer's disease
(AD) feature complementary aspects of the underlying neurodegen-
erative processes. These animal models are important in understand-
ing the aetiology, pathophysiology and progression of PD and AD and
are essential in the development of therapeutic interventions. In
combination with non-invasive neuroimaging techniques they pro-
vide a powerful tool to follow the disease process, examine the
compensatory mechanisms and investigate the effects of potential
treatments preclinically to derive knowledge that will ultimately
guide clinical decisions [1].

2.1. Parkinson's Disease

2.1.1. Pathophysiology
Parkinson's disease (PD) is one of the most common neurodegen-

erative disorders, characterised by clinical symptoms of bradykinesia,
resting tremor, rigidity and postural instability. Non-motor symptoms,
such as dementia, dysautonomia, olfactory dysfunction and psychiat-
ric features occur frequently, especially in advanced stages of the
disease. However, overt PD symptoms only appear when 80% of the
striatal dopamine (DA) or 50% of the nigral cells are lost [2,3]. Thus, the
majority of neurodegeneration in PD already occurs before motor
dysfunction develops and therefore objective diagnostic methods,
such as neuroimaging, are required which can monitor central
dopaminergic neuronal loss before the onset of motor symptoms.

PD is characterised by depigmentation and cell loss of neurome-
lanin-containing cells within the substantia nigra (SN) and other
brain stem nuclei. This neuronal loss is associated with Lewy body
inclusions in these cells and leads to the fundamental degeneration of
the nigrostriatal pathway resulting in DA depletion from the reticular
formation (pars compacta) to the striatum, especially the putamen.
Later in the disease course, other neurotransmitter systems involving
serotonergic cells in themedian raphe, noradrenergic cells in the locus
ceruleus and cholinergic cells in the nucleus basalis of Meynert also
become involved in the neurodegenerative process and are respon-
sible for most of the non-motor symptoms.

The exact aetiology of PD is still unknown; the disease is thought to
result from a complex interaction between multiple predisposing
genes and environmental exposures [4]. Overall, PD is idiopathic with
a subset (b15%) with a family history of PD. An increasing number of
loci linked to familial parkinsonism have been found (PARK1-
PARK11) [5]. Molecular genetic studies have identified 7 genes
associated with these loci. Of these genes, four have been identified
to cause autosomal dominant parkinsonism (α-synuclein, UCHL1,
NURR1, LRRK2) and three to cause autosomal recessive disease (DJ-1,
PINK1, parkin) [6]. Recessively inherited loss-of-function mutations
were found to cause early onset (b50 years at onset), L-3,4-
dihydroxyphenylalanin (L-DOPA)-responsive Parkinsonism. In con-
trast, dominantly inherited gain-of-function mutations result in more
typical, late-onset, Lewy body Parkinsonism with multi-system
involvement [7].

2.1.2. Animal models
Most insights into PD aetiology and pathogenesis come from

investigations performed in experimental models of PD. For an
extensive overview see Refs. [7–9]. These models aim to reproduce
key pathogenic features of PD including movement disorder induced
by progressive loss of dopaminergic neurons in the substantia nigra
and the formation of α-synuclein containing Lewy body inclusions.
Experimental PD models can be divided in toxin-induced models and
genetic models.

2.1.2.1. Toxin-induced PD models. The key neurotoxic models of PD
use the toxins 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat or epoxomicin.

Historically, 6-OHDA has been introduced as a catecholaminergic
neurotoxin more than 30 years ago and has been used essentially in
small animals such as rodents. 6-OHDA shares some structural
similarities with dopamine and norepinephrine, exhibiting a high
affinity for several catecholaminergic plasma membrane transporters
such as the dopamine (DAT) and norepinephrine transporters (NET)
[8]. Consequently, 6-OHDA can enter both dopaminergic and
noradrenergic neurons and inflict damage to the catecholaminergic
pathways of both the central and peripheral nervous systems. 6-
OHDA destroys catecholaminergic structures by a combined effect of
reactive oxygen species (ROS) and quinines [10]. 6-OHDA adminis-
tration causes nigrostriatal depletion and gliosis when stereotactically
injected into the substantia nigra, median forebrain bundle or
striatum. However, Lewy body formation has never been convincingly
demonstrated in the brain of 6-OHDA-lesioned rats. Unilateral
injections result in a typical asymmetric circling motor behaviour
whose magnitude in rodents depend on the degree of nigrostriatal
lesion and is most prominent after administration of drugs that
stimulate dopaminergic receptors such as apomorphine (rotation
away from the lesion), or drugs that stimulate the release of dopamine
such as amphetamine (rotation toward the lesion). The unilateral 6-
OHDA rat model has been and continues to be one of themost popular
experimental models of PD when it comes to the preclinical testing of
new symptomatic therapies, neuroprotective strategies and trans-
plantation approaches [8].

MPTP is a potent and irreversible mitochondrial complex I
inhibitor whose toxic metabolite MPP+ is selectively transported by
the dopamine transporter DAT and whose administration results in
Parkinsonism. Although dopaminergic neurons in rats are relatively
resistant to MPTP-induced toxicity for reasons not clearly understood,
in mice susceptibility of the nigrostriatal pathway to neurodegenera-
tion is strain-dependent with C57BL6 mice being more sensitive and
Balb/c mice more resistant to MPTP neurotoxicity. Thanks to the
MPTP mouse model of PD an enormous body of work regarding the
elucidation of the mechanisms of dopaminergic neuron death and the
development of experimental neuroprotective therapies has been
achieved. Conversely, the monkey MPTP model remains the gold
standard for the assessment of novel strategies and agents for the
treatment of PD symptoms. It is well established that MPTP produces,
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in both humans andmonkeys, an irreversible and severe parkinsonian
syndrome, characterised by all of the cardinal features of PD, including
tremor, rigidity, slowness of movement, postural instability and even
freezing. However, as for 6-OHDA, Lewy bodies have thus far not been
convincingly observed in MPTP-induced Parkinsonism [8].

The herbicide paraquat is structurally similar toMPP+and is also a
mitochondrial complex I inhibitor. However, it is not a substrate or
inhibitor of the dopamine transporter DAT. Epidemiological studies
have suggested an increased risk for PD due to paraquat exposure,
raising the possibility that paraquat could be an environmental
parkinsonian toxin [11]. In contrast to 6-OHDA and MPTP, when
administered to mice, paraquat also leads to up-regulation and aggre-
gation of α-synuclein [12].

Rotenone is widely used as an insecticide and piscicide and, like
MPTP, is highly lipophilic and thus readily gains access to all organs
including the brain. In mitochondria, rotenone impairs oxidative
phosphorylation and it also inhibits the formation of microtubules
from tubulin. Chronic administration of rotenone in rodents can
produce a progressive model of Parkinsonism associated with α-
synuclein up-regulation and accumulation in Lewy-like pathology
[13]. However, despite the use of the exact same regimen of rotenone,
the severity of the striatal dopaminergic damage in rats within a given
experiment appears highly variable, ranging from none to near
complete impairing this model to be used in preclinical neuroprotec-
tion studies.

Systemic administration of the proteasomal inhibitor epoxomicin
to adult rats has been shown to produce many key features of PD like
progressive Parkinsonism which improves with apomorphine treat-
ment, striatal dopamine depletion and dopaminergic cell death with
apoptosis and inflammation in the substantia nigra and intracyto-
plasmic, eosinophilic, α-synuclein/ubiquitin-containing inclusions
resembling Lewy bodies [14]. This model promised to be one of the
most successful in recapitulating the progressive movement disorder
and pathology associated with PD but has proven very difficult to
reproduce. For a more detailed overview on toxin-induced animal
models see [8] and [7].

2.1.2.2. Genetic PD models. The recent discovery of specific gene
mutations causing familial forms of PD has contributed to the
development of novel genetic mouse models of PD that provide
new tools to implicate and understand the molecular pathways
affected in PD. The most common used genetic mouse models of PD
are α-synuclein mice, parkin knockout mice, DJ-1 knockout mice,
Nurr1 and PITX3-aphakia mice.

α-synuclein transgenic mouse lines include α-synuclein knockout
mice and mice overexpressing human wild-type, missense mutated
(A30P, A53T or A30P+A53T) or truncated α-synuclein under
different promoters to target the α-synuclein expression to cells
specifically affected by α-synucleinopathies such as the tyrosine
hydroxylase promoter for expression in catecholaminergic neurons,
the platelet-derived growth factor subunit β (PDGF-β) promoter for
pan-neuronal expression or the myelin proteolipid protein promoter
for oligodendrocyte expression [15]. These α-synuclein transgenic
mouse lines show variable neuropathological and behavioural phe-
notypes and can be used to study the role ofα-synucleinmodifications
in the course of α-synucleinopathies such as PD, dementia with Lewy
bodies and multiple system atrophy characterized by α-synuclein
fibrils deposited in neuronal inclusions (Lewy bodies) or in glial
cytoplasmic inclusions respectively.

Unlike α-synuclein that has only few identified mutations (A30P,
E46K, A53T), more than 100 mutations have been identified in the
Parkin gene at the PARK2 locus [16]. Several laboratories have
generated Parkin knockout mice by targeting different exons of the
Parkin gene. Overall, Parkin knockout mice fail to develop a
Parkinsonian phenotype, but the different knockout models may
provide a means to examine the role of Parkin in protein turnover,
oxidative stress and mitochondrial dysfunction as Parkin targets
proteins for degradation by the proteosome [16].

Also many mutations in the DJ-1 gene at the PARK7 locus have
been associated with early onset PD and DJ-1 knockout mice
demonstrate decreased motor functions and altered dopamine
function in the nigrostriatal pathway.

Both heterozygous Nurr1 and PITX3-aphakia mice are good
models for PD because they have the characteristic loss of nigrostriatal
DA neurons. However, these models are limited because they do not
reproduce the broad pathology seen in PD and only show pathology in
the nigrostriatal pathway. Although the DA phenotypes of the α-
synuclein, parkin knockout and DJ-1 knockout mice are not as
profound as the heterozygous Nurr1 and PITX3-aphakia mice, they
may provide insight into the early stages of the disease whereas the
heterozygous Nurr1 and PITX3-aphakia mice provide good models to
study the later stages of the disease and DA loss whichmay lead to the
development of better symptomatic treatments of PD.

Recent evidence suggests that mitochondrial dysfunctionmay play
a major role in PD. PD patients have an increased number of midbrain
DA neurons with respiratory chain deficits compared to non-PD
patients and studies of families with rare inherited forms of PD have
identified genes involved in regulating mitochondrial function.
Manipulation of mitochondrial respiratory genes (e.g. conditional
knockout of the gene mitochondrial transcription factor A) in
dopaminergic neurons of the midbrain also elicits a PD phenotype
in mice (MitoPark mice) with essential features of clinical PD [16]. For
a comprehensive overview on genetic mouse models see [9] and [7].

2.1.3. Non-invasive phenotyping
Neuroimaging in PD plays an important role in disease diagnosis

and differential diagnosis, in the assessment of disease extent and
progression and to determine response to therapy. In the clinical
setting, especially MRI and nuclear imaging techniques are applied for
the evaluation of PD.

2.1.3.1. MRI. MRI has been increasingly used to study anatomical or
morphological changes (mainly gray matter atrophy) in PD and other
neurodegenerative disorders [17,18]. Furthermore, MRI is being used to
map the neurobiological substrate of motor and cognitive symptoms in
PD by the use of functional BOLD MRI (blood-oxygen-level dependent
MR imaging) [19], and MR spectroscopy (MRS) has revealed decreased
N-acetyl-aspartate to creatinine ratios in the striatum of patients with
Parkinsonism compared with controls [20].

2.1.3.2. PET. Over the last decades, especially radionuclide imaging
has provided valuable insights into the mechanisms of nigrostriatal
degeneration in PD and into the in vivo assessment of disease
progression [21]. By using radiolabelled biological substrates involved
in DA processing, radionuclide imaging techniques can be applied to
assess the pre-synaptic nigrostriatal DA function and integrity [22] as
well as the levels and occupancy of the post-synaptic DA receptors by
the use of D2-receptor ligands such as [11C]-raclopride, [11C]- or
[18F]-labelled spiperone or [123I]-iodobenzamide (IBZM). Currently
there are three basic approaches tomonitor pre-synaptic DA function
with PET (Fig. 1):

1. 6-[18F]-fluoro-L-3,4-dihydroxyphenylalanine ([18F]-DOPA) PET,
regarded as the gold standard for the assessment of presynaptic
dopaminergic integrity in vivo. However, the interpretation of
[18F]-DOPA scans is not straightforward as the measured activity
reflects tracer uptake into presynaptic nerve terminals, aromatic
amino acid decarboxylase (AADC) activity (decarboxylation of
fluoro-dopa to fluoro-dopamine) and the subsequent storage of
fluoro-dopamine in synaptic vesicles.

2. DAT imaging using a variety of [18F], [123I] and [11C] labelled
antagonists to determine dopamine transporter (DAT) density, e.g.



Fig. 1. Schematic drawing of central dopamine processing at a synaptic terminal of a nigrostriatal dopamine (DA) neuron and its postsynaptic target, a striatal GABAergic projection
neuron. In the DA neuron, tyrosine is converted to DA in two steps: The first and rate-limiting step is the synthesis of L-3,4-dihydroxyphenylalanine (DOPA) by the enzyme tyrosine
hydroxylase (TH). The second step is catalysed by aromatic amino acid decarboxylase (AADC). Newly synthesised cytoplasmic DA is then captured in specialised vesicles by the
vesicular monoamine transporter-2 (VMAT2), stored and released into the synaptic cleft upon activation. On the post-synaptic side, DA binds to its specific receptors (D1 and D2
receptor families) to mediate its actions. DA is then either metabolised extraneuronally into homovanillic acid (HVA) by monoamine oxidase (MAO), or taken up by the presynaptic
terminals by the dopamine transporter (DAT) to be re-vesicularised or metabolised into 3,4-dihydoxyphenylacetic acid (DOPAC) by catechol-O-methyl-transferase (COMT). Also the
sites of action of four different PET ligands used for visualisation of the DA system are illustrated. First, radioactive fluorine substituted L-DOPA ([18F]DOPA) uptake represents striatal
uptake, AADC activity and presynaptic vesicular storage. A secondway to label the presynaptic neurons is to use a specific ligands for the DAT (e.g. 11C-D-threomethylphenidate, [11C]
MP or [123I]N-ω-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl)nortropane, [123I]FP-CIT) or the VMAT2 (e.g. 11C-dihydrotetrabenazine, [11C]DTBZ). Finally the post-synaptic DA
receptors can be labelled by using 11C-raclopride, 18F-spiperone or 123I-iodobenzamide (123I-IBZM).
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11C-D-threomethylphenidate ([11C]MP), [123I]N-ω-fluoropropyl-
2β-carbomethoxy-3β-(4-iodophenyl)nortropane ([123I]FP-CIT) or
2β-carbomethoxy-3β-(4-[18F]-fluorophenyl)tropane ([18F]CFT).
DAT is specific for dopaminergic neurons and is responsible for
the re-uptake of DA from the synaptic cleft into the pre-synaptic
nerve terminal.

3. VMAT2 imaging using [11C]-dihydrotetrabenazine (DTBZ) to
determine vesicular monoamine transporter type 2 (VMAT2)
density. VMAT2 is the protein responsible for pumping mono-
amines from the cytosol into synaptic vesicles. These synaptic
vesicles prevent catabolism of the neurotransmitters and store
them for subsequent exocytotic release into the synaptic cleft.

Furthermore, imagingwith appropriate radiotracers can also assess
cholinergic, serotonergic and opioid function in PD as well as the in
vivo distribution of activated microglia ([11C]-PK111959) related to
PD-associated inflammation. And by labelling ubiquitous molecules
such as water ([15O]H2O) or glucose ([18F]-FDG), the regional cerebral
blood flow or global brain metabolism can be assessed.

Mouse models of PD, either genetically modified or toxic, have not
been extensively studied with neuroimaging techniques, primarily
because of the small size of the mouse brain. Most imaging studies in
animal models of PD have been performed in non-human primates
(MPTP monkeys) or larger rodents (6-OHDA-lesioned rats). Because
the primary neurochemical change in these animal models is the loss
of DA-producing cell bodies in the substantia nigra, resulting in
greatly decreased levels of striatal DA, most of the imaging studies
performed in these animal models focused on investigating aspects of
the DA system [1]. In the MPTP model of non-human primates, PET
has been used to study the changes in DA metabolism using [18F]-
DOPA [23–25], the loss of presynaptic DA terminals using DAT tracers
such as cocaine analogues [26–28], changes in postsynaptic DA
receptors using D2 receptor probes [29–31] as well as general changes
in striatal blood flow or oxygen and glucose metabolism [29].

Some recent studies showed the feasibility of microPET to study
presynaptic DA function in several mouse models of PD. The tracer
most widely used to investigate DA function in PD patients and in
MPTP-treated nonhuman primates, [18F]-DOPA, can also be used for in
vivo imaging in genetic mice models of PD. Sharma and colleagues
have shown that striatal [18F]-DOPA uptake is reduced in the striatum
of homozygous weaver mutant mice compared to both heterozygous
and wild-type control mice [32]. In addition, homozygous weaver
mutant mice show an age-related decline in striatal [18F]-DOPA
uptake [33]. It has to be pointed out that [18F]-DOPA is an excellent
tracer to evaluate the in vivo DA function in humans, non-human
primates and mice but cannot be used for in vivo imaging in rats
because it does not accumulate significantly in rat striatum [34].

The compensatory changes in the DA system as a result of lost
striatal DA innervation, as has been observed in patients with PD, can
also be identified by PET in MPTP-lesioned monkeys. In a recent study
by Doudet et al. using [11C]DTBZ (which binds to VMAT2), [11C]
methylphenidate (which binds to the DAT) and [18F]-DOPA, the
authors could show that in the ventral striatum of monkeys that show
80% loss of caudate-putamen DA terminals, the reduction in binding
to the DAT (75%) is less severe than the reduction of binding to the
VMAT2 or [18F]-DOPA uptake (65%) [35]. This suggests that the DAT is
downregulated after the loss of DA innervation, presumably to reduce
reuptake and enhance synaptic levels of DA, and is consistent with
human PET studies in early PD patients [36]. Even in asymptomatic
monkeys, compensation appears to occur after MPTP treatment, since
normal levels of striatal [18F]-DOPA uptake are maintained in the face
of significant reductions in the number of tyrosine hydroxylase
positive (TH+) neurons in the SN [37]. Thus, the impressive capacity
of the nigrostriatal DA system for compensation, as suggested by the
observation that a loss of approximately half of nigral DA neurons is
required to observe symptoms of PD [2], is also reflected in the MPTP-
treated nonhuman primate model. Furthermore, the observation that
the dysfunction of the DA system can be measured in MPTP-treated
nonhuman primates that not yet show overt behavioural symptoms
(presymptomatic phase) suggests that PET could provide a method
to identify, measure, and follow disease biomarkers in preclinical
studies of neuroprotective interventions [26,30,38–40].

Similar to MPTP lesions in non-human primates, unilateral 6-
OHDA lesions of the nigrostriatal projections (medial forebrain
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bundle, MFB) in rats result in decreased [11C]CFT binding to the DAT
and decreased [11C]DTBZ binding to the VMAT2 as a result of de-
creased density of the transporter and loss of presynaptic DA
terminals [41] and an increased [11C]raclopride binding to D2
receptors due to upregulation of these receptors [42,43]. Furthermore,
it could be shown that there is a dose-dependent relationship
between the amount of 6-OHDA injected into the MFB and PET
measures of the integrity of the striatal DA system [1,41]. In contrast
to the traditionalMFB lesionmodel, which leads to near-complete loss
of DA innervations in the lesioned hemisphere, partial lesions can be
accomplished through the intrastriatal infusion of 6-OHDA. Unilateral
striatal infusion of 6-OHDA decreases striatal [11C]CFT binding and
increases [11C]PK11195 binding, a ligand of peripheral benzodiaze-
pine receptors and a surrogate marker of reactive microglia, in the
lesioned striatum, at three weeks post-lesion compared to baseline
[44]. In the same model, daily treatment with a COX-2 inhibitor has
been shown to prevent striatal microglial activation at 12 days
postlesion, without preventing DA terminal loss [45].

Also pharmacological MRI has been used to detect changes in the
6-OHDA rat model after amphetamine or apomorphine administra-
tion and gives insights into the physiological effects that underlie the
behavioural response [46,47]. Lauwers et al. [48] evaluated by
behavioural testing and non-invasive imaging of DAT activity the
phenotypic effects of local overexpression of α-synuclein in the
substantia nigra of rats. Lentiviral vector-induced overexpression of
the A30P clinical mutant of α-synuclein let to a dose-dependent
motor dysfunction (amphetamine-induced asymmetric rotation)
with considerable inter-individual variations. In those rats exhibiting
more than 100 ipsiversive rotations, the underlying deficits in
dopaminergic neurotransmission could also be monitored non-
invasively by means of [123I]FP-CIT ([123I]N-ω-fluoropropyl-2b-car-
bomethoxy-3b-(4-iodophenyl)nortropane) SPECT (DaTSCAN). LV-
SYN(A30P)-transduced rats showed up to 31% reduction in dopamine
transporter binding (mean 10±15%, pb0.05) compared to normal
rats, whereas in the positive control rats (6-OHDA rats) an average
loss of 94±13% dopamine transporter activity could be monitored.

2.1.4. Therapy
Therapy of PD is mainly based on pharmacological treatment with

symptom-reducing or neuroprotective drugs. Pharmacological dopa-
mine replacement using oral L-DOPA has been over many years the
treatment of choice. However, even if the symptomatic benefits of oral
L-DOPA are remarkable in the early stages of the disease, with time
the majority of PD patients develop motor complications such as
marked swings between immobility and mobility (on–off motor
fluctuations), involuntary movements (dyskinesia), and neuropsy-
chiatric complications [49]. Therefore, considerable efforts have been
made to develop novel treatment approaches that provide antipar-
kinsonian benefits without side effects and new forms of therapy are
emerging, including deep brain stimulation as well as gene- and cell-
based therapies. Evaluation of therapeutic efficacy has usually been
limited to clinical scores, such as the Unified Parkinson Disease Rating
Scale (UPDRS). However, over the last years the targets for potential
disease modifying treatments have been more and more approached
by in vivo neuroimaging techniques. Several preclinical and clinical
trials testing antiparkinsonian or neuroprotective drugs have utilised
PET or SPECT imaging to non-invasively assess disease progression in
PD [50–52].

2.1.4.1. Gene therapy. Gene therapy for PD was first developed in rat
models using transduction of a single gene encoding tyrosine
hydroxylase (TH), the enzyme that converts tyrosine into L-dopa. In
the past ten years, gene therapy approaches for PD have been further
developed into three directions: (i) transduction of multiple genes
essential in the production of dopamine and dopamine turnover in
nigro-striatal nerve terminals, (ii) transduction of genes encoding
growth and antiapoptotic factors for the prevention of further
degeneration of nigrostriatal neurons, (iii) vector and promoter
systems which are non-toxic and support long-lasting gene expres-
sion. For a comprehensive overview on gene therapy approaches in
neurodegenerative disorders see Jacobs et al. [53].

In a recent study, the correction of dopaminergic neurotransmis-
sion after gene therapy could be demonstrated with [11C]-raclopride
PET imaging and correlated to the behavioural recovery [54]. In this
study local delivery of an adeno-associated viral vector coexpressing
the tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1)
enzymes in the striatum of rats with a unilateral 6-OHDA lesion of the
nigrostriatal projection neurons resulted in reconstitution of the
DOPA synthesis capacity in the denervated striatum, and led to
recovery of motor functions in the treated animals. Furthermore, the
presence of endogenous DA at the striatal D2 receptor sites could be
monitored non-invasively with the [11C]raclopride tracer and micro-
PET imaging in vivo as evidenced by normalization of the increased
[11C]raclopride binding in the hemiparkinsonian rats. In the same
study the authors quantified separately D2 receptor density and
affinity in vivo and in vitro and confirmed that the changes in [11C]
raclopride binding observed are explained by a change in the
apparent affinity and not by a change in D2 receptor density.

Neuroprotective strategies may be especially useful in early PD
stages and neurotrophic factors have attracted considerable interest
as potential therapeutic agents in PD. It has been shown that glial cell-
derived neurotrophic factor (GDNF; [55]) and brain cell-derived
neurotrophic factor (BDNF; [56]), as well as other neurotrophic
factors related to GDNF, such as neurturin, can protect nigrostriatal
neurons from neurotoxic stress and can promote regeneration in rat
and primate models of PD [57–61]. In MPTP-treated baboons,
intracerebroventricular implantation of cells genetically engineered
to release GDNF attenuates the loss of [18F]-DOPA uptake within the
caudate (the region closest to the site of the cell transplant) [62],
whereas lentiviral delivery of GDNF into the lesioned striatum and
substantia nigra one week after unilateral MPTP treatment in non-
human primates reverses behavioural changes, enhances striatal
[18F]-DOPA uptake compared to controls and prevents nigrostriatal
degeneration [59]. In the unilateral 6-OHDAmodel of PD in rats, GDNF
infusion into the SN and lateral ventricle protects against loss of TH+
cells in the SN and prevents the 6-OHDA-induced reduction in DAT as
measured by [11C]RTI-121 [63,64].

2.1.4.2. Cell therapy. The loss of a specific type of dopaminergic cells
in PD makes the prospect of replacing the missing or damaged cells
very attractive. Several cell replacement strategies have been tested
under experimental and clinical conditions in parkinsonian animal
models and advanced PD patients [65]. In animal models cell types
used are mouse or non-human primate embryonic stem cells [66–68],
rodent or human embryonic/fetal/adult tissue-specific neural stem
cells [69,70]. Several clinical trials have been performed with retinal
pigmented epithelial cells on gelatine beads (Spheramine ) [71] or
primary human embryonic/fetal mesencephalic tissue [72,73] trans-
planted into the striatum of PD patients. To ensure the best clinical
outcome, cell transplantation therapies can easily be perfected in
preclinical animal models.

In recent years much progress has been encountered in non-
invasive detection of transplanted cell location and function with MRI
[74] but also PET imaging can be used to evaluate transplant function
[75]. Striatal transplantation of fetal DA neurons in unilateratl 6-
OHDA rats restores the rCBV response to amphetamine as measured
with phMRI as well as the [11C]CFT binding in the lesioned striatum
and behavioural recovery does not occur until [11C]CFT binding is
restored 75–85% of the intact side [76,77]. In the same animal model,
Bjorklund and colleagues have shown that mouse ES cells trans-
planted into the rat striatum differentiate into DA neurons and
decrease behavioural asymmetries (drug-induced rotation). In
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addition, [11C]CFT binding was increased in the grafted striatum and
correlated with the number of TH+ neurons in the graft, and
amphetamine-induced increases in rCBV in the corticostriatal path-
way were restored to control levels, as measured by MRI [66].

2.2. Alzheimer's disease

2.2.1. Pathophysiology
Alzheimers's disease (AD) is the most common form of dementia

in the elderly comprising more than 50% of all dementia cases and the
risk of developing AD doubles approximately every 5 years between
the ages of 65 and 85 years. AD is characterised by early memory
deficits, followed by the gradual erosion of other cognitive functions.
The hallmark pathological features of AD in the human brain comprise
intracellular neurofibrillary tangles (NFT), extracellular amyloid
depositions in the form of senile plaques and blood vessel deposits,
synapse dysfunction and synaptic loss, neuronal loss, increased
oxidative damage to lipids, proteins and nucleic acids and loss of
biometal homeostasis. These histopathological features presumably
all lead to another key pathological signature of AD: brain atrophy.
The major constituents of the amyloid plaques are insoluble fibrils of
the amyloid-beta (Aβ) peptides, generated by proteolytic processing
of the larger amyloid precursor protein (APP) that is found normally
in cell membranes and membranes of intracellular organelles by two
proteases, the β- and γ-secretases [78]. Aβ fragments of variable
lengths, in particular the 40- and 42-amino-acid subspecies (Aβ 40
and Aβ 42), are major constituents of amyloid plaques [78,79]. The
NFT represent insoluble polymers of hyperphosphorylated tau protein
that in its normal phosphorylated state stabilizes microtubules of
axonal cytoskeleton. The most severe neuropathological changes
occur in the hippocampus, followed by the association cortices and
subcortical structures, including the amygdala and the nucleus basilis
of Meynert. The progression of these pathological processes is
associated with the cognitive decline characteristic of AD and
probably develops many years before the clinical manifestations of
the disease become apparent.

The cause of AD remains controversial. Recently, the apolipopro-
tein E gene on chromosome 19 has emerged as a susceptibility gene
for sporadic AD (SAD) and a putative marker for AD with the apoE4
allele increasing and the apoE2 allele decreasing the risk of developing
AD. The apoE4 allele has a role in the accumulation of Aβ42 and its
binding properties to tau, and it operates as a risk modifier by
decreasing the age of onset in a dose-dependent manner [80]. And
although β-amyloid has been suggested as the primary cause of AD
[81], it is still under debate which specific form of Aβ is responsible for
the neuronal damage leading to the cognitive impairment in patients.
It is still an open question whether soluble or insoluble Aβ oligomers
or mature amyloid are most toxic [82]. These facts necessitate the
attempt for in vivo detection and quantification of amyloid in the
brain of patients during the course of the disease to understand the
natural history of the disease and to evaluate the effects of
antiamyloid therapies.

In families with early-onset AD (FAD) autosomal dominant
mutations have been identified in three genes, i.e. presenilin (PS-)
1 and 2 and amyloid precursor protein (APP) genes. FAD accounts
for less than 1% of the total number of AD cases. Mutations in these
genes alter normal processing of APP causing the extracellular
accumulation of amyloid plaques. Most FAD cases are caused by
mutations in the genes for PS-1 and PS-2, of which over 130 have
been identified. The presenilins are components of the proteolytic
γ-secretase complex that, together with β-secretase, generates Aβ.
Also more than 20 pathogenic mutations have been identified in
the gene for APP. Other than age of onset, the clinical and
pathophysiological features of early-onset FAD cannot be discrim-
inated from those of late-onset SAD. Although no mutations in the
gene encoding tau (MAPT) have been identified in AD patients,
both exonic and intronic mutations in MAPT have been found in
patients with other forms of dementia, such as frontotemporal
dementia and Parkinsonism [83,84].

2.2.2. Animal models
Mouse models of AD have become essential biosystems for

developing and defining optimal imaging approaches to visualise
AD pathology in vivo as well as for understanding the genotype-
phenotype interaction in this disease. Very few studies have attempted
tomodel AD in non-human primates and rats using excitotoxic lesions
in specific brain areas such as perirhinal and entorhinal cortices or
hippocampus and to monitor the induced pathological features with
[18F]-FDG PET (decreased cortical and hippocampal glucose metabo-
lism) [85,86] or MRI (decreased BOLD signal in hippocampus and
cortex or increased apparent diffusion coefficients (ADCs) in the CA1
region) [87,88].

The most common rodent model of AD is the transgenic mouse
model. The finding that, in familial forms of dementia, the genes that
encode the proteins that are deposited in plaques and NFT (Aβ and
tau, respectively) are mutated suggested a causal role for these
proteins in the disease process and led to the generation of transgenic
animal models. There exist multiple transgenic dementia mouse
models (tau models, Aβ models, secretase models, ApoE models and
axonal transport models) and some emphasize only one hallmark
pathological AD feature, while double or triple transgenic models
develop more clinically relevant pathology. Typical transgenic (tg)
mouse models of AD mimic various aspects of AD such as over-
expression of human amyloid precursor protein (hAPP), presenilin-1
or -2 or apo-lipoprotein E and several excellent recent reviews exist
[89,90]. Most of these murine models of AD typically show over-
expression of hAPP and sufficient Aβ levels to insure amyloid
deposition. Besides being useful tools in the analysis, understanding
and possible treatment of the disease based on findings in histology,
biochemistry, molecular biology and behavioural testing these mouse
models have been of help in characterisation of amyloid-imaging
agents and have been used for non-invasive phenotyping by multi-
tracer PET and MRI.

2.2.3. Non-invasive phenotyping
To date, there is no definitive pre-mortem diagnosis for AD in

patients. As the NFT and β-amyloid plaques are the neuropathological
hallmarks of AD that preclude the cognitive decline, the ability to
directly visualise these pathologies with in vivo diagnostic imaging
techniques might contribute to the early diagnosis and monitor the
success of treatments. Furthermore, imaging in animals may provide a
tool to non-invasively monitor pathological changes and correlate
these with behavioural changes.

2.2.3.1. PET. The development of PET amyloid ligands based on
radiolabelled analogues of Congo red and thioflavin startedmore than
10 years ago and went from in vitro binding studies in tissue
homogenates in mice or human autopsy brain tissues to imaging
studies in rodents, humans and non-human primates. Direct imaging
of β-amyloid plaques in transgenic mouse models has been mainly
performed using the compound N-methyl-[11C]2-(4′-methyl-amino-
phenyl)-6-hydroxybenzothiazole (or [11C]PIB for “Pittsburgh Com-
pound-B”) that binds fibrillary (but not amorphous) Aβ deposits at
low nanomolar affinity, readily passages the blood–brain barrier and
rapidly clears from normal brain tissue [91]. Toyama and colleagues
[92] used the Tg2576 mouse model of Alzheimer's disease to evaluate
the feasibility of microPET imaging using the radiolabeled compound
[11C]PIB to image and quantify Aβ plaques in vivo. Surprisingly, unlike
in humans and aged non-human primates, the tracer [11C]PIB does not
accumulate to a great extent in the APP transgenicmouse brain in vivo
[93] althoughmultiphoton imaging in transgenicmice overexpressing
APP has shown that PIB after peripheral administration enters the



Fig. 2. Unaltered brain glucose metabolism in NIRKO mice. Shown are representative
high-resolution magnetic resonance images (upper) and matched [18F]FDG microPET
images (lower) through the brain of a representative control mouse (upper) and a
representative NIRKO mouse (lower). ROIs were placed in a transaxial plane (arrow).
Distinction between brain and hypermetabolic harderian glands (arrowhead) is made
by coregistration with MRI (adapted from Schubert et al. PNAS 2004 with permission
[97]).
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brain quickly and labels Aβ deposits [94]. A possible reason for the
insensitivity of PET imaging in capturingmouse amyloid with [11C]PIB
may lie in the paucity of high-affinity binding sites for this radioligand
in APP Tgmouse brain compared with AD brains and can be overcome
by administering [11C]PIB synthesized with high specific radioactivity
[95].

Besides the direct measurement of β-amyloid plaques, microPET
imaging can help in the characterisation and phenotyping of animal
models of Alzheimer's disease by taking advantage of other radio-
tracers already implemented in the clinical application for diagnosis in
AD like e.g. [18F]FDG (glucose hypometabolism), [11C]N-methyl-4-
piperidyl-acetate ([11C]MP4A, attenuated cholinesterase activity) or
[11C]flumazenil ([11C]FMZ, neuronal integrity). Considering that [18F]
FDG PET is becoming one of the most widely used diagnostic tools for
clinical AD, the expectation that this technique would also be widely
used in examining transgenic mice has not been met [1]. This is most
likely a result of the limited resolution of PET, because whereas
autoradiographic studies show decreased cerebral glucose metabo-
lism in the posterior cingulate cortex, in vivo PET imaging does not
allow the identification of this change [96]. To combat the spatial
resolution limitations of PET, multimodal imaging approaches
combining highfield-strength MRI with microPET imaging are
increasingly being performed. In a knock-out mouse model for the
brain/neuron specific insulin receptor (NIRKO) Schubert et al. [97]
investigated the influence of neuronal insulin resistance in neurode-
generation and could demonstrate reduced Akt and GSK3β phos-
phorylation and hyperphosphorylation of Tau protein in NIRKO mice
as compared to controls. Speculations on the regulative role of
neuronal insulin receptors on cerebral glucose metabolism lead to the
performance of microPET analyses in NIRKO mice in vivo with [18F]
FDG in collaboration with our group. In this study, tg and control
animals underwent [18F]FDG PET as well as in vivo high-resolution
microMRI for co-registration aspects to differentiate distinct brain
regions and hypermetabolic active harderian glands and to ensure
proper region-of-interest (ROI) analysis. Brain-to-background ratios
for [18F]FDG uptake in NIRKO mice did not show any significant
difference as compared to control animals suggesting that in this
specific study insulin signalling did not have a substantial influence on
basal brain glucose metabolism detectable by microPET (Fig. 2). In a
subsequent study, including multi-tracer PET imaging, the effect of
locus ceruleus (LC) degeneration (induced by N-(2-chloroethyl)-N-
ethyl-bromo-benzylamine (dsp4) that specifically targets the norad-
renergic neurons of the LC) and its contribution to AD pathogenesis
was investigated in a Tg AD mouse model (APP23 transgenic mice)
[98]. In this study only transgenic mice who were also treated with
dsp4 showed decreased cortex/cerebellum ratios in [18F]FDG uptake,
[11C]FMZ binding, and [11C]MP4A trapping, indicating that locus
ceruleus degeneration and inflammatory reactions contribute signif-
icantly to AD pathogenesis (Fig. 3).

2.2.3.2. MRI. By far, the most commonly employed imaging
technique in Tg mouse models of AD is MRI. MRI has been used both
clinically and preclinically to provide secondary structural readouts
such as measures of brain atrophy or indicators of microstructural
changes of brain parenchyma [99]. Brain atrophy can be assessed by
measurements of total or partial brain volume (e.g. hippocampal
volume) or indirectly bymeasuring ventricular volumes. In 24-months
old hAPP23 mice ventricles are enlarged by 18±4% compared with
wild type littermates. Microstructural changes in brain parenchyma
can be measured by ADC, a sensitive indicator of alterations in cellular
volumes, and was evident only in 24-months old transgenic mice
[100]. And diffusion tensor imaging (DTI) may give more detailed
information about the type of diffusion abnormality based on the
directional compounds. For instance, DTI of the white matter tracts in
APPSWmice demonstrated that young APPSWmice were comparable
to control mice, whereas aged mice had a reduction in relative
anisotropy in all white matter tracts compared with age-matched
controls [101].

However, the prominent role of MRI in preclinical AD research
arises primarily from the fact that β-amyloid deposits contain iron
allowing them to be directly detectable byMRI in T2-weighted or T2*-
weighted images as hypointense areas in high-resolution
images [102–104]. Even individual amyloid plaques throughout the
cerebral cortex and hippocampus using T2-weighted pulse sequences
can be detected [105]. Nevertheless, T2*-weighted hypointensities
alone are not specific for AD and other sources of T2/T2*-weighted
hypointensities (such as blood vessels) or variability in plaque metal
content may lead to misidentification [103,104,106]. Therefore, the
more specific approach for the early detection of AD is the use of
targeted contrast agents [107]. A first approach uses an Aβ peptide
component that specifically binds to plaques and that can be labelled
with either gadolinium or dextran-coated ultrasmall superparamag-
netic iron oxide nanoparticles for direct amyloid plaque detection in
vivo by T1-weighted or T2-weighted MRI respectively [108,109]. A
second approach uses an anti-Aβ monoclonal antibody fragment
attached to a gadolinium chelator [110]. Also a fluorinated amyloi-
dophilic compound based on Congo-red, (E,E)-1-fluoro-2,5-bis(3-
hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB), and detectable
by both 1H and 19F MRI has recently been reported to target plaques
[111].

1H-MRS has been proposed as a sensitive tool to detect neurode-
generative processes, in particular AD. The analysis is primarily based
on two signals: myo-inositol (an indicator of membrane and second
messenger turnover) and N-acetylaspartate (NAA, a marker of neu-
ronal integrity). PatientswithMCI haveMRS spectrawith an increased
myo-inositol signal intensity whereas AD patients have an additional
significant decrease in the NAA peak [112]. However, in PS2APP



Fig. 3. Altered cerebral glucose metabolism, neuronal integrity, and cholinergic function detected in vivo after noradrenergic depletion of APP23 mice. (A) Representative high-
resolution magnetic resonance images (first row) and matched representative [18F]FDG, [11C]FMZ, and [11C]MP4A microPET images (second–fourth rows, coronar is left; transaxial,
middle; sagittal, right) through the brain of saline-treated (left panel) and dsp4-treated APP23 (right panel). (B) Quantification of [18F]FDG, [11C]FMZ, and [11C]MP4A uptake in
saline-treated wild-type (wt-con) and saline-treated APP23 (tg-con) mice at 13 months of age. No significant differences were detected. (C) Quantification of [18F]FDG, [11C]FMZ,
and [11C]MP4A uptake in saline-injected (tg-con) and dsp4-treated (tg-dsp4) APP23 transgenic mice at the same age revealed a decrease in all parameters after LC degeneration
(mean+SEM; n=4 animals per group; Student's t test; *pb0.05) (adapted from Heneka et al. J Neurosc 2006 with permission [98]).
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transgenic mice only in aged animals (24 months) significant de-
creases of the NAA and glutamate signals can be observed, at younger
age there are no differences between tg and wt littermates [113].

Functional MR imaging has also been used in AD models. The
cerebral haemodynamic response induced after pharmacological
stimulation with a GABA antagonist or after electrical forepaw stimu-
lation and measured with functional MRI could only reveal reduced
responsiveness in aged APP23 mice [114,115].

2.2.4. Therapy
To date, there is no cure for AD and the available clinical core

treatment is only symptomatic and based on pharmacological therapy
[116]. However, animal models are playing a central role in the
development of effective therapeutic strategies based on current
knowledge of the biological mechanisms underlying the disease and
several clinical trials are on their way.

2.2.4.1. Drug treatment. Several drugs have proven to be of use in the
stabilisation/reduction of the cognitive and functional decline during
various stages of the disease. Cholinesterase inhibitors (rivastigmine,
donepezil and galantamine) are the standard first-line therapy in
patients with mild-to-moderate AD. The N-methyl-D-aspartate
(NMDA) receptor antagonist memantine is used as mono-therapy or
in combination with a cholinesterase inhibitor for patients with
moderate AD, and asmono-therapy for patientswith severe AD. Those
drugs are the only drugs approved by the United States Food and Drug
Administration (FDA) for the treatment of AD and augment
cholinergic transmission or reduce glutamate-mediated neurotoxicity
associated with the disease.

2.2.4.2. Experimental treatment. Other, more experimental treat-
ment approaches address the pathological mechanisms of the disease
(Aβ deposits, NFT, oxidative stress and neuronal loss). Vaccination
was the first treatment approach demonstrated to have a genuine
impact on amyloid plaque load and disease process, at least in animal
models of AD [117]. Several studies evaluated the therapeutic
potential of active immunisation by vaccination with Aβ homologous
peptides [118–120] or passive transfer of exogenous anti-Aβ
monoclonal serum [121,122] in Tg mice models of AD and the effects
of such anti-amyloid treatment on amyloid burden have been
monitored with non-invasive imaging techniques such as [11C]PIB
PET [95]. Although active immunisation with synthetic Aβ1–42 has
been shown to be effective in mouse models to significantly reduce
the Aβ burden accompanied by improved cognitive performance,
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clinical trials had to be stopped after enrolment of about 300 patients
due to the development of an extensive T-cell mediated aseptic
meningoencephalitis in 6% of treated patients [123,124]. Clinical trials
for passive immunisation are underway.

A number of proteins actively promote the conformational
transformation and stabilisation of soluble Aβ to fibrillary Aβ and
are called pathological chaperones. Such proteins in AD are apolipo-
protein E, especially its ε4 form, α1-antichymotrypsin (ACT) or C1q
complement factor. Other proteins or compounds such as Congo red,
anthracycline, rifampicin, anionic sulphonates or melatonin can
interact with Aβ and prevent its aggregation into fibrils or bind to
Aβ and break the formation of β-sheet structure (β-sheet breakers).
Due to their action these compounds have been tested in experimen-
tal approaches [125,126].

The progressive neuronal loss in AD has been the target of nerve
growth factor (NGF) therapy [127,128]. Neurotrophic factors support
neuronal survival, migration and neuritic outgrowth, support the fully
functional state of mature neurons and can exert direct effects on
synapse function influencing neurotransmitter release and synaptic
efficacy [129,130]. First animal studies showed that intracerebroven-
tricular infusion of NGF can prevent the degeneration of cholinergic
neurons in rodent and primate models of cholinergic neuronal
degeneration [131,132] but also causes numerous side effects like
weight loss [133], sympathetic axon sprouting [134] and Schwann cell
migration [135]. Similar adverse effects were encountered after
intracerebroventricular infusion of recombinant NGF in patients
with AD [136] and therefore other delivery approaches had to be
developed.

In recent years gene delivery has emerged as a potent technique
for chronic delivery of therapeutic proteins of interest in vivo. CNS
gene delivery can be achieved ex vivo (injection of autologous
cultured cells genetically modified to produce NGF in the region of
the cholinergic basal forebrain (experimental: [137–139], clinical:
[140]) or in vivo (direct injection of viral vectors carrying the NGF
gene into the basal forebrain region which then becomes genetically
modified to produce elevated levels of NGF, experimental: [141,142],
clinical: [143]).

Lately, also dietary strategies have gained increased recognition in
preventing AD. Not only intermittent fasting and caloric restriction
diets but also diets enriched in omega-3 polyunsaturated fatty acids or
the antioxidants resveratrol, Ginkgo biloba or the green tea
component epigallocatechin-3 and moderate consumption of red
wine have shown to reduce Aβ neuropathology and/or the memory
impairments in Tg mice [144–149].

Finally, biometals have been implicated in AD neuropathology and
a detailed review on the loss of metal homeostasis in AD and the
modulation of metal bio-availability as a therapeutic strategy for the
treatment of AD has been published by Crouch et al. [150].

3. Neurooncology

Normal brain is composed of a variety of cell types, including
neurons, glia (astrocytes, oligodendrocytes, microglia and ependymal
cells), vascular epithelium and meningeal cells. Intracranial tumours
arising from brain meninges (meningiomas) and tumour metastases
from systemic cancer (such as lung, breast, colon) are not considered
primary brain tumours. Primary brain tumours can be classified into
gliomas, occurring in the brain parenchyma above the tentorium, and
medulloblastomas, child or young adult cerebellar tumours occurring
below the tentorium. Here we will focus on gliomas.

3.1. Pathophysiology

Diffuse infiltrative gliomas are the most common primary adult
brain tumour, accounting for 40% of all primary and 78% of all
malignant central nervous system tumours. The term glioma includes
several heterogeneous entities, which have in common a presumed
glial cell of origin. Subcategories of gliomas include astrocytomas,
oligodendrogliomas, oligo-astrocytomas, ependymomas and glioblas-
tomas. According to the World Health Organisation (WHO) classifi-
cation, gliomas receive a histopathologic grade on the basis of the
presence of nuclear changes, mitotic activity, presence of endothelial
proliferation and necrosis [151]. Low grade gliomas (WHO II) are
defined as diffusely infiltrative astrocytotic tumours with cytological
atypia (diffuse astrocytomas, juvenile pilocytic astrocytomas, oligo-
dendrogliomas, gangliogliomas and mixed gliomas); tumours pre-
senting anaplastic cell types and high mitotic activity are classified as
WHO III (anaplastic forms of astrocytoma, oligodendroglioma and
oligastrocytoma); gliomas with additional microvascular proliferation
and/or necrosis as WHO grade IV (glioblastoma and its variants). The
histological grading is highly relevant to predict prognosis. The
median survival of patients with WHO grade II glioma is usually more
than 5 years whereas the median survival of patients with high grade
gliomas remain modest (b15 months) despite recent advances in
microsurgical techniques, radiation and chemotherapy [152]. Surgical
resection and radiotherapy have been themainstay of treatment [153]
and only recently have the benefits of chemotherapy been unequiv-
ocally shown in a randomized trial [154]. Yet, even under such
therapies, recurrence is the norm, and disease will follow a fatal
course in virtually all patients with malignant glioma. This inability to
successfully treat brain tumours mostly is due to the lack of
understanding the underlying complex brain tumour biology and
treatment outcome is hardly predictable because of high genetic
heterogeneity and individually different molecular tumour pheno-
types that are responsible for tumour growth.

Glioblastoma may arise through 2 distinct pathways of neoplastic
progression. Tumours that progress from lower grade (II or III)
astrocytic tumours are termed secondary or type 1 GBM; tumours that
arise de novo without any evidence of a lower-grade precursor are
termed primary or type 2 GBM. Secondary GBM develop in younger
patients (fifth to sixth decade) with time to progression from low-
grade lesions ranging from months to decades. Primary GBM develop
in older individuals (sixth to seventh decade) and have short clinical
histories (less than 3 months).

Over the past two decades a complex series of molecular changes
leading to glioma development have been identified. Investigations
into glioma pathogenesis have revealed several disturbances in key
biological pathways resulting in de-regulation of the cell cycle,
alterations of apoptosis and cell differentiation, in neovascularization
as well as tumour cell migration and invasion into brain parenchyma.
These highly complex signal transduction cascades, which are
differentially activated and silenced, involve signalling between
multiple parallel and interrelated pathways (Fig. 4). Growth factors
and their receptors, such as epidermal growth factor receptor (EGFR),
vascular endothelial growth factor (VEGF), platelet-derived growth
factor receptor (PDGFR) and transforming growth factor-β, primarily
acting through receptor tyrosine kinases (RTK), have been implicated
in the initiation and progression of gliomas [155,156]. EGFR
amplification occurs in ∼40% of GBM and a constitutively active
deletion mutant, EGFRvIII, is found in 20–30% of GBM.

Also disruptions of a set of tumour suppressor pathwayswith direct
effects on cell cycle control are involved in glioma pathogenesis. These
genetic alterations include a loss, mutation or hypermethylation of
tumour suppressor genes (such as TP53) and other genes involved in
the regulation of the cell cycle (such as cyclin-dependent kinase
inhibitor 2A CDKN2A (also known as INK4a/ARF locus), p16INK4a,
p14ARF and phosphatase and tensin homology (PTEN)) as well as
activation or amplification of oncogenes (such as MDM2, cyclin-
dependent kinase 4 CDK4 and cyclin D1 and D3), inactivation of the
retinoblastoma (Rb) tumour suppressor pathway, loss of heterozy-
gosity (LOH) on chromosome 9p, 17p, 22q, 13q, 19q or 10q and O6-
methylguanine-DNA-methyltransferase (MGMT) promoter



Fig. 4. Schematic representation of relevant signal transduction pathways and cell cycle control pathways known to be dysregulated and involved in glioma initiation and growth.
GF, growth factor; GFR, growth factor receptor; RTK, receptor tyrosine kinase; EGF, epidermal growth factor; VEGF, vascular endothelial growth factor; PDGF, platelet-derived
growth factor and their respective receptors EGFR, VEGFR and PDGR; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; MEK, MAPK/ERK kinase;
PLC, phospholipase C; PKC, protein kinase C; PI3K, phosphatidylinositol-3-kinase; PTEN, phosphatase and tensin homology deleted on chromosome 10; Akt, protein kinase
B; mTOR, mammalian target of rapamycin; HIF-1, hypoxia-inducible factor-1; INK4a/ARF, Inhibitor of Kinase 4/Alternative Reading Frame tumour suppressor genes; CDK4, cyclin
dependent kinase 4; MDM2, murine double minute 2 oncogene; p53, protein 53 transcription factor; Rb, retinoblastoma tumour suppressor protein; E2F1, transcription factor
(activator) from E2F family of transcription factors.
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methylation [156,157]. During progression from low-grade astrocy-
toma (WHOgrade II) to anaplastic astrocytoma (WHOgrade III) and to
glioblastomamultiforme (WHO grade IV) a step-wise accumulation of
these genetic alterations occurs and distinct molecular genetic
alterations have been identified in primary and secondary GBM
[158,159]. Primary GBM are characterised by relative high frequencies
of EGFR amplification, PTEN deletion, CDKN2A/p16 loss, pRb alter-
ation and LOH 10p and 10q, whereas secondary GBMs often contain
TP53 mutations or G:C→A:T mutations at CpG sites. Furthermore,
molecular alterations have been identified, which indicate therapeutic
response of patients and, thus, have prognostic relevance [160–163].

3.2. Animal models

Many in vitro and in vivo models of brain tumours have been
developed and they increased our understanding of brain tumour
initiation, formation, progression and metastasis and provided an
experimental system to discover novel therapeutic targets and test
various therapeutic agents. Many tumour-derived cell lines have been
established and they are often employed for screening of novel drugs
in cell culture or xenograft experiments because of their ready
availability and ease of use [164]. Xenograft models, induced either by
subcutaneous or by orthotopic (into native tumour sites) injection of
primary tumour cells or tumour cell lines, represent themost frequent
used in vivo cancer modelling system. However, both cell culture and
xenograft model systems lack the stepwise genetic alterations
thought to occur during tumour progression and do not recapitulate
the genetic and cellular heterogeneity of primary tumours and the
complex tumour–stroma interaction. In contrast, genetically engi-
neered mouse models recapitulate more accurately the causal genetic
events and subsequent molecular evolution in situ and give rise to
tumour–stroma interactions resembling those of the native tumours
and also harbour cellular subpopulations like cancer stem cells
thought to be of central importance to the development, maintenance
and drug resistance of brain cancer [164]. In recent years, several such
mousemodels have been developed using combinations of the above-
mentioned glioma-associated genetic alterations. For review see
[165–167].

Most of the cell lines used in xenograft cancer models are
transgenic cell lines that exhibits overexpression, underexpression
or complete inactivation of a gene of interest to provide insights in the
molecular and functional characteristics of cancer. Moreover, in
addition to this gene of interest often a second reporter gene is
introduced and allows for non-invasive phenotyping of the effects of
inducedmolecular alterations bymolecular imaging techniques [168].

3.3. Non-invasive phenotyping

The imaging techniques that are used clinically to evaluate pa-
tients with primary and metastatic brain tumours are also commonly
employed in mouse brain tumour models and allow the early
identification of morphological, pathophysiological, functional and
metabolic changes associated with tumour growth.

3.3.1. MRI
Conventional MRI techniques, such as T1- and T2-weighted

imaging, contrast-enhanced T1-weighted imaging, dynamic contrast
enhanced (DCE) imaging and diffusion-weighted imaging (DWI)
provide information on tumour localisation and extent, local blood–
brain barrier (BBB) damage and brain invasiveness, regional blood
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flow and blood volume and tumour cellularity which, in the clinical
setting, are known to be associated with glioma grade and prognosis.
Also secondary changes associated with tumour growth, such as
oedema, brain shift or hydrocephalus can be determined on two- or
tri-dimensional MR images. Recently, McConville et al. demonstrated
that MRI can be used to predict tumour grade and survival in a
genetically engineered mouse model of glioma [169]. In the Ntv-a
model, approximately 100% of mice spontaneously develop gliomas
by 3 weeks of age, with 30% of these tumours displaying high-grade
histologic features. T2-weighted and T1-weighted, gadolinium-en-
hanced MRI could distinguish between high- and low-grade tumours
on the basis of their growth rate and contrast enhancement.

However, care should be taken when interpreting contrast leakage
as an indicator of BBB breakdown due tomalignant degeneration as this
sign can be absent in diffuse infiltrative tumour regions, non-specific or
induced by therapeutic intervention [170]. Especially the treatment
with antiangiogenic compounds can restore the BBB in angiogenic
regions without concomitant tumour regression and underlines the
need for alternatives to gadolinium-based contrast-enhanced MRI to
detect progressing tumour portions that are not associated with
angiogenesis and thus BBB disruption but are based on an angiogen-
esis-independent tumour growth, for instance via cooption of preexis-
tent vasculature [171]. Although these infiltrative lesions cannot be
detected with gadolinium-based contrast enhanced MRI, the relatively
low vascular volume in these tumours, as compared to the surrounding
tissue, can be exploited to detect these lesions using blood pool contrast
agents such as ultrasmall particles of iron oxide (USPIO) [172] and to
evaluate the response to antiangiogenic therapy [173].

Another technique to follow in vivo tumour angiogenesis as a
necessary component of tumour expansion, invasion and possible
metastasis is DCE MRI that enables the longitudinal investigation of
changes in tumour vascular permeability, vascular density and vessel
morphology. Recently, Veeravagu et al. [174] demonstrated in an
orthotopic murine (GL26) glioblastoma model that in vivo changes in
blood vessel permeability, as shown by DCE MRI, correlates with
histologic quantification of vascular density and vessel caliber as well
as with the molecular expression of angiogenic factors such as VEGF
and angiopoietins (ANG-1 and ANG-2).

DWI can also be used in cancer imaging to assess tumour
cellularity and infiltration and to monitor response to therapy [175].
The apparent diffusion coefficient (ADC) of water has been found to
increase in the early phase of anticancer therapies. Treatment-
induced killing of tumour cells in a 9 L brain glioma model, leading
to a decrease of cell density in tumour tissue, results in an increase of
the ADC that may be explained by destruction of tumour cells,
widening of the extracellular space and a consequent increase in
extracellular, relatively mobile water [176]. Moreover, the treatment-
induced increase in ADC values occurs as early as 4–5 days after
therapy onset and precedes volumetric tumour changes [169].

Although metabolic changes associated with intracranial tumour
growth can be monitored with MRS [177] and can be used for brain
tumour phenotyping [178] and to evaluate cell damage as early as 2–
4 days after ganciclovir treatment in gene therapy of experimental
gliomas [179], most information on the metabolic state of intracranial
gliomas can be gained by PET imaging.

3.3.2. PET
Dependent on the radiotracer used, PET can reveal highly specific

quantitative information on various processes, most of them related
to the increased cell metabolic rate within gliomas [180]. The most
commonly used radiotracers in brain tumour imaging are radiola-
belled 2-18F-fluoro-2-deoxy-D-glucose ([18F]FDG), methyl-11C-L-me-
thionine ([11C]MET), O-(2-18F-fluoroethyl)-L-tyrosine ([18F]FET) and
3′-deoxy-3′-18F-fluoro-thymidine ([18F]-FLT). These radiotracers are
incorporated into proliferating gliomas depending on their tumour
grade, as a reflection of the increased activity of membrane
transporters for glucose ([18F]FDG), amino acids ([11C]MET and [18F]
FET) and nucleosides ([18F]FLT) as well as the increased expression of
cellular hexokinase ([18F]FDG) and thymidine kinase ([18F]FLT) and
give information on energy metabolism ([18F]FDG), protein synthesis
([18F]FET) and DNA synthesis ([18F]FLT) [181]. Furthermore, hypoxic
tumour cells can be selectively labelled with radiolabelled derivatives
of misonidazole (e.g. 18F-fluoromisonidazole, 18F-MISO) to evaluate
tumour tissue oxygenation rate [182]. As tumour hypoxia is an in-
dependent predictor of outcome and is associated with chemo- and
radioresistance, 18F-MISO PET imaging not only has the potential for
defining the biological microenvironment of a tumour, but also can
help in selecting and directing the appropriate treatment.

3.3.3. Reporter-transgene imaging
Many recent advances associated with imaging tumours in small

animals have arisen from the application of reporter transgenes. Such
transgene-based approaches have enabled the non-invasive mea-
surement of a wide range of biological parameters with excellent
tumour specificity [183]. The detection andmeasurement of luciferase
activity (bioluminescence imaging), fluorescent protein excitation
(fluorescence imaging) and herpes simplex type 1 thymidine kinase
(HSV-1-tk) activity (PET) are among the most commonly applied
transgene-based approaches for imaging in mice. Many different
xenograft tumour cell lines constitutively express an optical imaging
reporter gene. In small animal research, optical imaging is especially
useful for rapid and accurate studies of tumour biology. It has been
shown that there is a tight correlation between photon emission and
gadolinium-enhanced MRI for intracranial tumour growth surveil-
lance [184–186], and the growth dynamics of tumours or metastases
can be accurately determined by quantification of the relative changes
in light emission intensity over time. OI has also proved to be a
particularly useful tool for measuring the efficacy of cancer thera-
peutics. For instance, bioluminescence imaging (BLI) has been used to
monitor intracranial 9 L gliosarcoma tumour cell kill following 1,3-bis
(2-chloroethyl)-1-nitrosourea (BCNU) treatment [184] or to evaluate
the response of intracranial glioblastoma xenografts to primary and
salvage temozolomide therapy [187]. Also spatially restricted (tissue-
specific) and temporally restricted (inducible) reporter transgene
expression strategies have been employed extensively to image
tumour dynamics in mice [188–190].

3.3.4. Targeted ligand imaging
The development of targeted imaging ligands has further enabled

the non-invasive evaluation of diverse other aspects of in vivo tumour
biology, such as tumour cell apoptosis, angiogenic blood vessels or
expression of specific tumour antigens or signalling pathwayswith OI,
PET and to a lesser extent also MRI and have been used to evaluate the
efficiency of therapies that target these specificmolecular entities (see
there).

3.4. Therapy

Over the last years, notably within the field of tumour research,
crucial improvements in the knowledge of genetic and molecular
alterations at the basis of tumour development were made and
allowed the development and use of a new generation of drugs that
target specific molecular entities [191]. The development of such
novel rationally targeted cancer therapies benefits significantly from
efficient screening in biologically relevant systems as well as from the
advances in targetedmolecular imaging, not only in the assessment of
drug targets (which could be used for patient selection) but also of
early treatment response.

3.4.1. Gene therapy
Triggered by our experience in clinical gene therapy for

patients with glioblastoma [192,193], imaging-guided gene
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therapy paradigms for glioma models have been studied exten-
sively by our group, where biological active target tissue for gene
therapy vectors have been imaged by [11C]MET- or [18F]FLT-PET
(Fig. 5A), where transduction efficiency has been studied by OI or
[18F]FHBG-PET (Fig. 5A), and where therapeutic efficiency of the
gene therapy paradigm has been correlated to transduction
efficiency (Fig 5B, C) and evaluated by [11C]MET- or [18F]FLT-PET
(Fig. 6) [194,195]. Furthermore, we have shown that the
quantification of transduced gene expression, which can be
transcriptionally regulated is possible by PET and OI (Fig. 7)
[189]. These imaging paradigms have important applications when
designing protocols for transplantation of genes into diseased
tissue in clinical application.
Fig. 5. Imaging-guided gene therapy paradigm. (A) Experimental protocol for identification
mouse model with three subcutaneous gliomas. Row 1: localization of tumours is displayed
necrosis in the lateral portion of the left-sided tumour (arrow). Rows 3+4: following vect
vector-mediated gene expression is quantified by [18F]FHBG-PET. Row 3 shows an image acq
image with specific tracer accumulation in the tumour that is used for quantification (ada
correlates to therapeutic gene expression. The intensity of cdIREStk39gfp expression, which
gene expression, is measured by [18F]FHBG-PET (in %ID/g), and the induced therapeutic ef
calculated as the difference between [18F]FLT accumulation after and before therapy (adap
volumetry and [18F]FLT uptake. Changes in tumour volume and [18F]FLT uptake were plotted
change in FLT uptake (R=0.83) for those tumours responding to therapy (complete respon
(non-responders). No correlation was found for those tumours where focal alterations of
(partial responders; adapted from Jacobs, Rueger et al., with permission [194]).
3.4.2. Anti-angiogenic therapy
A variety of genetic anomalies that trigger glioma-associated

angiogenesis, such as overexpression of the growth factors VEGF, EGF,
PDGF and their receptors or chronic activation of the hypoxia-
inducible transcription factor-1 (HIF-1) have been identified and can
be measured directly or indirectly by non-invasive imaging techni-
ques and used as read-outs for targeted tumour treatment. Conven-
tional imaging techniques likeMRI and PET focus on themeasurement
of physiologic parameters, such as blood flow, blood volume, vascular
perfusion, permeability and/or structure and represent the radio-
graphic tools in current clinical trials of anti-angiogenic therapy [196].
During the last years, intense research focused on VEGF/VEGFR–
targeted molecular imaging and a wide variety of targeting molecules
of viable target tissue and assessment of vector-mediated gene expression in vivo in a
by MRI. Row 2: the viable target tissue is displayed by [18F]FDG-PET; note the signs of
or-application into the medial viable portion of the tumour (arrow) the tissue dose of
uired early after tracer injection, which is used for coregistration; row 4 displays a late
pted from Jacobs, Rueger et al., with permission [194]). (B) Response to gene therapy
is equivalent to transduction efficiency and tissue-dose of vector mediated therapeutic
fect is measured by [18F]FLT-PET (R=0.73, pb0.01). Therapeutic effect ([18F]FLT) was
ted from Jacobs, Rueger et al., with permission [194]). C. Relation between changes in
for tumors grown in 11 nude mice. There is a strong correlation between volumetry and
ders) and a weaker correlation (R=0.57) for those tumors not responding to therapy
[18F]FLT uptake occurred which did not lead to a reduction in overall tumour volume



Fig. 6. Multimodal imaging of response to vector-mediated gene therapy. Shown are representative three-dimensional MR images (T1-weighted FLASH; echo time, 5 ms;
repetition time, 70 ms; 60j pulse; resolution, 121×121×242 μm after administration of gadoliniumdiethylenetriaminepentaacetic acid; A1–A3, E1–E3 and G), [18C]MET
PET (B1-B3, D1-D3 and F) and [18F]FHBG PET scans (C1–C3). A1, B1, C1, D1, E1, F and G: 9LDsRed tumour-bearing rats that had received LCMV-tk-GFP injection with
ganciclovi treatment. A2, B2, C2, D2 and E2: 9LDsRed tumour-bearing rats that had received LCMV-tk-GFP injection without ganciclovir treatment. A3, B3, C3, D3 and E3:
9LDsRed tumour-bearing rats that received only ganciclovir treatment. Time points after tumour implantation: 6 d, MRI before ganciclovir treatment (A1-A3); 7 to 8 d,
[18C]MET PET before ganciclovir treatment (B1-B3); 9 d, [18F]FHBG PET before ganciclovir treatment (C1-C3); 14 d, [18C]MET PET during ganciclovir treatment (D1-D3); 15
d, MRI during ganciclovir treatment (E1-E3); 20 d, [18C]MET PET after ganciclovir treatment (F); and 22 d, MRI after ganciclovir treatment (G) (adapted from Miletic et al.,
with permission [195]).
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(peptides, proteins, antibodies and nanoparticles) have been labelled
with various imaging labels (such as radioisotopes, fluorescent dyes,
and microbubbles) for PET, SPECT, optical imaging or contrast-
enhanced ultrasound imaging of tumour angiogenesis [197,198].
Hsu et al. [186] used multi-modality (BLI, MRI and PET) molecular
imaging to determine the antiangiogenic and antitumour efficacies of
a vasculature-targeting fusion toxin (VEGF(121)/rGel) composed of
the VEGF-A isoform VEGF(121) linked with a G(4)S-tether to
recombinant plant toxin gelonin (rGel) in an orthotopic glioblastoma
mouse model. In this study, the level of target expression was
monitored before therapy by [64Cu]-1,4,7,10-tetraazacyclododedane-
N,N′,N ,N‴-tetraacetic acid (DOTA)-VEGF(121)/rGel PET, whereas
[18F]FLT scans were obtained before and after treatment to evaluate
VEGF(121)/rGel therapeutic efficacy. In VEGF(121)/rGel-treated
mice a significant decrease in [18F]FLT uptake and peak BLI tumour
signal intensities could be observed as compared to non-treated mice
and these results were validated by histologic analysis.

Also expression of cell adhesion molecules, such as integrins, is
significantly up-regulated during tumour growth and angiogenesis
andαvβ3 expression has been correlated with tumour aggressiveness
[199]. αvβ3 integrin expression can be measured by targeted
radiolabelled [200,201], paramagnetic [202] and fluorescent [203]
molecules (cyclic arginine-glycine-aspartic acid RGD peptides) and
this method can be used to selectively target suicide gene therapy
[204] or drug delivery [205]. Serganova et al. [206] developed a dual
reporter gene cassette to monitor non-invasively the dynamics and



Fig. 7. In vivo bioluminescence imaging of exogenous gene regulation (induced luciferase (LUC) expression) and image validation by histology. (A) Temporal analysis of up- and
down-regulation of LUC expression. HET-6C injection was performed intratumourally at day 0. Days where bioluminescent images were obtained are indicated at the upper right
corner, days of doxycycline treatment at the top. (B) Quantitative analysis of luciferase signal (OFF-ON-OFF) in response to doxycycline. (C) Temporal analysis of up- and down-
regulation of LUC expression in the intracranial glioma model (OFF-ON-OFF-ON). Indicated are the days of tumor growth. (D) Image validation by histology. BLI of a mouse bearing a
subcutaneous glioma stably expressing LUC on its left shoulder after in vivo transduction with HET6C-luc in the tumour on the right shoulder. Representative histological sections
taken from the in vivo transduced tumour showing co-localization of eGFP, expressed constitutively from the herpes viral immediate early 4/5 promoter, and RFP, expressed from
the bi-directional regulated promoter (Unit for all colour scales as well as the histogram on temporal analysis was defined as photons/second/cm2/steradian (p/s/cm2/sr), scale bar
overlay: 150 mm, exposure time: 0.5 s)(adapted from Winkeler et al. Plos One 2007 with permission [189]).
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spatial heterogeneity of HIF-1-specific transcriptional activity in
tumours and showed that HIF-1-mediated activation of TKGFP
(thymidine kinase green fluorescent protein; [207]) reporter gene
expression in hypoxic tumour tissue can be non-invasively and
repeatedly visualised in living mice using PET imaging with [18F]-2′-
fluoro-2′-deoxy-1β-D-arabionofuranosyl-5-ethyl-uracil (FEAU).

Nanoparticle technology has been shown to be a versatile tool for
drug delivery. Nanoparticles can be used as vehicles for the delivery of
imaging contrast agents and therapeutics in a targeted manner [208].
Reddy et al. [209] selectively targeted angiogenic endothelial cells
within brain tumour vasculature with a nanoparticle formulation
consisting of an encapsulated imaging agent (iron oxide or fluores-
cent) and a photosensitizer (Photofrin). The authors could show the
feasibility of this method to detect significant MRI contrast enhance-
ment in intracranial gliomas following i.v. nanoparticle administra-
tion and to specifically treat the gliomas after photodynamic therapy.
The same technology can be used to target annexin conjugated
nanoparticles composed of a fluorescent and paramagnetic label to
apoptosis [210,211].
3.4.3. Apoptosis
Aberrations of apoptotic signalling have been considered to be one

of the hallmarks of cancer pathology [212] and therefore, the
development of a quantitative technique to detect apoptosis non-
invasively could provide immense advantages for evaluating thera-
peutic strategies in vivo (Lee, Clin Cancer Res 2007). Modulating the
apoptotic pathway by caspase inhibitors or activators represents
special opportunities for therapeutic intervention and underline the
need for non-invasive monitoring of early drug response at the
molecular level. This can be achieved by direct imaging of caspase
activity (e.g. caspase peptide substrates containing either a nuclear or
a bioluminescence label [213–216] or a near-infrared optical
fluorochrome [217]) or by imaging the downstream effects on surface
phosphatidylserine (PS) expression (e.g. radionuclide [218,219],
paramagnetic [220] or fluorochrome labelled Annexin V [221]). By
means of such imaging paradigms the effect of apoptotic pathway
regulating drugs can been identified [214,216,222]. This is particularly
important, as there is already evidence, both from the laboratory and
the clinic, that an early apoptotic response to therapy is a good
prognostic indicator for treatment outcome [223]. It should be
pointed out that E2F-1 mediated transcriptional regulation with
E2F-1 being an important “decision marker” for uncontrolled
proliferation or initiation of apoptosis can be non-invasively assessed
by placing molecular imaging marker genes under transcriptional
control of E2F-1 responsive promoter elements (Fig. 8) [190].
3.4.4. Cell therapy
The use of neural stem cells (NSCs) for the treatment of brain

tumours has attracted much interest in recent years [224]. The
characteristics of NSCs that make them attractive vehicles for targeted
delivery are their tropic behaviour towards neoplasms. Aboody and
colleagues [225] first documented that modified exogenous NSCs
injected into the contralateral hemispheres migrate over long
distances to sites of gliomas in mice. Recently, several groups have



Fig. 8. Noninvasive imaging of E2F-1 mediated transcriptional regulation. (A) E2F-regulated cells and negative and positive control cells were implanted as a set of four tumours in
the back of different groups of experimental mice. Mice were followed over time by bioluminescence imaging until tumours could be clearly visualised. Mice were then subjected to
BCNU treatment (50%) or control treatment (50%), and repeat imaging was performed 24 h later. An increased luciferase signal was observed only in mice bearing E2F-1-regulated
cells and not in mice bearing negative and positive control cells. Color scale, luminescent signal intensity; blue, least intense signal; red, most intense signal. (B) Mean of the total
bioluminescent signals emitted from E2F-1-regulated tumours and negative and positive control tumours in response to BCNU administration. Columns, mean of three independent
experiments with n=6 animals per group; bars, SD. Significant differences are indicated by * (pb0.05) and ** (pb0.05) (modified from Monfared et al. with permission [190]).
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reported promising results with extended survival [226,227] or
reduced tumour growth [225,228–230] after neural stem cell-based
gene therapy in animal models of high-grade gliomas. An intrinsic
tumour-inhibition effect of neural stem cells has been observed after
co-inoculation of NSCs with glioma cells [231] or grafting into
established gliomas [226]. Also, due to the pluripotency of neural
stem cells, a potential role of NSCsmay be to repair the damage caused
by the brain tumours themselves and the neurological impairment
that is frequently associated with traditional cancer treatment
approaches [232].

Until recently, the in vivo study of particular populations of cells,
such as NSCs, was mainly based on snapshot images from ex vivo
histology. Thus, imaging techniques for in vivo longitudinal detection
of the dynamics of these cells became desirable. Over the past years,
the tumour targeting abilities of implanted neural stem and
progenitor cells have been monitored non-invasively with various
imaging modalities and most extensive information has been gained
with optical imaging. Also cellular MR imaging techniques have been
used increasingly and even PET imaging has been applied to detect
stem cell migration and therapy in intracranial glioma models. By use
of bioluminescence imaging systems, Shah and co-workers simulta-
neously monitored both the migration of NSCs toward gliomas and
the efficacy of tumour necrosis factor-related apoptosis-inducing
ligand (S-TRAIL) on the glioma burden in real time by dual enzyme
substrate (Rluc/Fluc) imaging [230]. However, in general, BLI offers
poor tissue penetration and poor spatial resolution. Miletic et al. [233]
together with our group used a multimodal imaging protocol
combining multi-tracer PET and MRI to demonstrate that a subpop-
ulation of bone marrow derived mesenchymal stem cells can be used
as tumour-infiltrating therapeutic cells against malignant glioma. The
stem cells genetically engineered to express HSV-1 thymidine kinase
(TK) were injected into rat intracranial 9 L gliomas. After transplan-
tation, stem cell localization and distribution could bemonitored non-
invasively by means of the HSV-1 TK-specific PET radioligand 9-(4-
fluoro-3-hydroxymethylbutyl)-guanine ([18F]FHBG). In addition, the
therapeutic effect of ganciclovir treatment could be monitored
sequentially by MRI and [11C]MET-PET and strongly correlated with
histological analysis (Fig. 9). Cellular imaging by MRI (cellular MRI)
provides another non-invasive dynamic method for evaluating the
seeding, migration and homing of magnetically labelled NSCs
[234,235], as well as an excellent soft tissue differentiation with a
high spatial resolution. This led Zhang and co-workers [236] to
successfully monitor neural progenitor cells labelled with super-
paramagnetic particles (SPIO) in a rat gliosarcomamodel using in vivo



Fig. 9. Multimodal imaging of cell-based glioma therapy. Representative three-dimensional MRI (T1-weighted FLASH, echo time=5 ms, repetition time=70 ms, 60° pulse,
resolution 121×121×242 μm, post-administration of gadopentetic acid (Gd-DTPA)), [11C]MET PET and [18F]FHBG PET scans. Time points after tumour implantation: (a–c) 6 days,
MRI before ganciclovir (GC) treatment; (d–f) 7–8 days, [11C]MET PET before GC treatment; (g–i) 12 days, [18F]FHBG PET during GC treatment; (j–l) 13 days, MRI during GC
treatment; (m–o) 14 days, [11C]MET PET during GC treatment; (p) 21 days, MRI after GC treatment; (q) 22 days, [11C]MET PET after GC treatment. The three different groups were
treated as following: (a, d, g, j, m, p, q) bone-marrow derived tumour infiltrating cells expressing thymidine kinase and green fluorescent protein (BM-TIC-tk-GFP) injection with GC
treatment; (b, e, h, k, n) BM-TIC-tk-GFP injection without GC treatment; (c, f, i, l, o) 9LDsRed gliomas only with GC treatment (adapted from Miletic et al. Mol Ther 2007 with
permission [233]).
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MRI as they infiltrated the tumour mass or as they tracked down
invading tumour cells. Also, migration and incorporation of magnet-
ically labelled NSCs into the angiogenic vasculature of brain tumours
has been studied [237,238]. Brekke and colleagues [224] investigated
the potential of cellular MR imaging to monitor in vivo the migration
and infiltration of GRID-labelled murine NSCs (MHP36) from the
seeding site to the tumour region in a rat glioma model using
longitudinal multiparametric MRI. In addition, the authors were able
to demonstrate the therapeutic potential of the mere injection of
neural stem cells through an MRI-based measurement of tumour
growth and development of vasogenic oedema. Fulci et al. [239] used
cellular MRI to non-invasively monitor innate immune response
(MION-loaded macrophages) after glioma virotherapy in a syngeneic
rat glioma model. Furthermore, the applied image protocol enabled
the authors to image the increased efficiency of oncolytic virotherapy
after preadministration of cyclophosphamide. This increased ef-
ficiency was credited to the immunosuppressive action of cyclophos-
phamide. However, it should be pointed out, that transplantation
of mouse NPCs into the intact mouse brain can reveal signs of
uncontrolled proliferation and migration even to distant areas (e.g.
spinal cord) after various time points (Fig. 10), indicating that
molecular imaging should be used and implemented in the clinical
applications of therapeutic stem cell technology to reveal signs of
uncontrolled stem cell behaviour in vivo [240].

4. Conclusion

Continuous refinements in available mouse models together with
improvements in small animal imaging techniques have recently
led to a rapid progress in the variety of ways disease biology can be



Fig. 10. Bioluminescence imaging of aberrant stem cell migration. Murine neural progenitor cells genetically engineered to express luciferase, HSV-1-tk and GFP (C17.2-LITG cells)
were injected into the left striatum of a non-glioma-bearing mouse and their behaviour over time was monitored with optical imaging. NPC migration in the direction of the
cerebellar hemispheres (red arrow) could be demonstrated 13 days after injection (red arrow); at 3 weeks, NPCs also localized at the level of the thoracolumbar spine (green arrow)
(adapted from Waerzeggers et al. 2008 with permission [240]).
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monitored non-invasively in living animals. Insights into the patho-
physiological processes related to disease initiation and progression
resulted in the identification of new molecular targets or treatment
strategies and functional imaging probes directed to disease-specific
alterations have been developed and optimized. These advances in-
creased our knowledge of disease dynamics and refined the design of
effective therapeutic interventions in a true translational manner.

5. Future challenges

The ability of non-invasive imaging techniques to assess neuro-
logical disease states is beyond dispute.

In the near future, a careful validation of the applied imaging
probes and imaging readouts need to be addressed. The establishment
of effective molecular biomarkers or end-points capable of defining
critical parameters, such as genetic signatures or metabolic and
signalling states of specific disorders, will provide faster, more
effective and less expensive ways to diagnose disorders, to evaluate
drug efficacy and to define patient sub-groups more likely to have
therapeutic benefit. Furthermore, the applied imaging protocols for
disease diagnosis and therapy guidance need to be standardised in
order to compare experimental results between research groups.

Ultimately, application of non-invasive imaging of neurological
disorders will result in improved patient care and lead to patient-
specific therapies with greater efficacies and fewer side effects.
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