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A method for obtaining iterative formulas of order three
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Abstract

An improved method for the order of convergence of iterative formulas of order two is given. Using this method, new third-order
modifications of Newton’s method are derived. A comparison with other methods is given.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider iterative methods to find a simple root α, i.e., f (α) = 0 and f ′(α) 6= 0, of a nonlinear equation
f (x) = 0 that uses f and f ′ but not the higher derivatives of f .

The best known iterative method for the calculation of α is Newton’s method defined by

xn+1 = xn −
f (xn)

f ′(xn)
(1)

where x0 is an initial approximation sufficiently close to α. This method is quadratically convergent [1].
There exists a modification of Newton’s method with third-order convergence due to Potra and Pták [2] defined by

xn+1 = xn −
f (xn) + f ′(xn − f (xn)/ f ′(xn))

f ′(xn)
. (2)

Some Newton-type methods with third-order convergence that do not require the computation of second derivatives
have been developed [3–12]. To obtain some of those iterative methods the Adomian decomposition method was
applied in [3,4], He’s homotopy perturbation method [5,6] and Liao’s homotopy analysis method [7]. Some of the
other methods have been derived by considering different quadrature formulas for the computation of the integral
arising from Newton’s theorem

f (x) = f (xn) +

∫ x

xn

f ′(t)dt. (3)

Weerakoon and Fernando [8] applied the rectangular and trapezoidal rules to the integral of (3) to rederive the
Newton method and arrive at the cubically convergent method
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xn+1 = xn −
2 f (xn)

f ′(xn) + f ′(xn − f (xn)/ f ′(xn))
, (4)

while Frontini and Sormani [9] obtained the cubically convergent method

xn+1 = xn −
f (xn)

f ′(xn − f (xn)/(2 f ′(xn)))
(5)

by considering the midpoint rule.
In [10], Homeier derived the following cubically convergent iteration scheme

xn+1 = xn −
f (xn)

2

(
1

f ′(xn)
+

1
f ′(xn − f (xn)/ f ′(xn))

)
(6)

by considering Newton’s theorem for the inverse function x = f (y) instead of y = f (x). This scheme has also been
derived by Özban in [11] by using the arithmetic mean of f ′(xn) and f ′(xn − f (xn)/ f ′(xn)) instead of f ′(xn) in
Newton’s method (1).

Recently, Kou et al. in [12] considered Newton’s theorem on a new interval of integration and arrived at the
following cubically convergent iterative scheme

xn+1 = xn −
f (xn + f (xn)/ f ′(xn)) − f (xn)

f ′(xn)
. (7)

Observe that the above-mentioned methods have order of convergence three but per iteration, they require three
evaluations for the function f and its first derivatives f ′, and no evaluations of the second or higher derivatives.
Finding the iterative methods with third-order convergence which do not require the computation of second derivatives
is important and interesting from the practical point of view.

In this paper, we are also concerned with developing third-order modifications of Newton’s method which improve
the existing second-order methods. To that end we present a detailed description of how to construct iterative methods
of order three from iteration functions of order two, as well as some illustrations. Finally, a comparison with other
third-order methods is given.

2. Main result

We consider an iteration function of the form

Φ(x) = x − h(x)
f (x)

f ′(x)
, (8)

where h denotes a weight function. In the sequel, whenever we mention that an iteration function φ is of order p, it
means that the corresponding iterative method defined by xn+1 = φ(xn) is of convergence order p, that is, the error
|α − xn+1| is proportional to |α − xn|

p as n → ∞. We refer to [13] for further details about the order of an iteration
function.

If we let en = xn − α, then by the Talor expansion we have

h(xn) = h(α) + h′(α)en + O(e2
n), (9)

f (xn) = f ′(α)en +
1
2

f ′′(α)e2
n + O(e3

n), (10)

f ′(xn) = f ′(α) + f ′′(α)en + O(e2
n), (11)

so that

f (xn)

f ′(xn)
= en −

1
2

f ′′(α)

f ′(α)
e2

n + O(e3
n). (12)

It then easily follows from (9) and (12) that the error equation of the iterative method defined by xn+1 = Φ(xn) is
given by
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en+1 = (1 − h(α))en +
1
2

h(α) f ′′(α) − 2h′(α) f ′(α)

f ′(α)
e2

n + O(e3
n). (13)

Therefore, for the iteration function (8) to be at least third order, it should satisfy

h′(α) =
1
2

f ′′(α)

f ′(α)
, (14)

h(α) = 1. (15)

To find the function h we solve the following initial value problem for h

h′(x) =
1
2

f ′′(x)

f ′(x)
, (16)

h(α) = 1. (17)

The solution of (16) and (17) is easily found to be

h(x) = 1 +
1
2

ln
∣∣∣∣ f ′(x)

f ′(α)

∣∣∣∣ . (18)

Note that (18) contains the zero α, which is generally unknown, making it inappropriate to use as a weight function
for the iteration function (8). To overcome this difficulty we replace α in (18) with any iteration function φ(x) of order
2, that is, with φ(α) = α, φ′(α) = 0, φ′′(α) 6= 0. This results in a newly defined function

h(x) = 1 +
1
2

ln
∣∣∣∣ f ′(x)

f ′(φ(x))

∣∣∣∣ . (19)

It is easily verified that the function h defined by (19) satisfies both conditions (14) and (15). Hence it follows from
our construction that for any iteration function φ(x) of order two, the iterative method defined by

xn+1 = xn −

(
1 +

1
2

ln
∣∣∣∣ f ′(xn)

f ′(φ(xn))

∣∣∣∣) f (xn)

f ′(xn)
, (20)

has third order of convergence.
Thus, we have proved the following theorem:

Theorem 2.1. Assume that the function f is sufficiently smooth in a neighborhood of its root α, where f ′(α) 6= 0. Let
φ be an iteration function of order 2, such that φ′′ is continuous in a neighborhood of α. Then the iterative method
defined by (20) converges cubically to α in a neighborhood of α.

Before proceeding, we would like to mention that Gander [14] has also considered the iteration (8) and derived the
same conditions as (14) and (15) to obtain another, different, third-order iterative scheme which includes well-known
third-order methods such as Halley’s method [15,16]and Ostrowski’s square root iteration [17] as particular cases. For
further details, we refer to [14]. However, it should be pointed out that unlike the presented scheme (20), Gander’s
scheme requires the computation of the second derivative of f per iteration, which make its practical application
severely restricted.

We now consider some known iteration functions of order two, as follows:

φ1(x) = x − f (x)/ f ′(x − f (x)), (21)

φ2(x) = x − f (x)/ f ′(x), (22)

φ3(x) = x − f (x)/( f (x) + f ′(x)), (23)

φ4(x) = x − f (x) f ′(x)/( f 2(x) + f ′2(x)). (24)

(21) is Stirling’s iteration function, (22) Newton’s iteration function, (23) the iteration function derived in [18] and
(24) in [19].
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The application of Theorem 2.1 to iteration functions (21)–(24) yields the new third-order iterative methods

xn+1 = xn −

(
1 +

1
2

ln
∣∣∣∣ f ′(xn)

f ′(zn+1)

∣∣∣∣) f (xn)

f ′(xn)
, (25)

where

zn+1 = φ1(xn), (26)
zn+1 = φ2(xn), (27)
zn+1 = φ3(xn), (28)
zn+1 = φ4(xn), (29)

respectively. It should be observed that per iteration, the obtained methods use but one evaluation of f and two of f ′

to carry out iterations.

3. Numerical examples and conclusions

The order of convergence ρ can be approximated using the formula

ρ ≈
ln |(xn+1 − α)/(xn − α)|

ln |(xn − α)/(xn−1 − α)|
.

All computations were done using MAPLE using 64 digit floating point arithmetics (Digits := 64). We accept an
approximate solution rather than the exact root, depending on the precision (ε) of the computer. We use the following
stopping criteria for computer programs: (i) |xn+1 − xn| < ε, (ii) | f (xn+1)| < ε, and so, when the stopping criterion
is satisfied, xn+1 is taken as the exact root α computed. For numerical illustrations in this section we used the fixed
stopping criterion ε = 10−15.

We present some numerical test results for various cubically convergent iterative schemes in Table 1. The Newton
method (NM), the method of Weerakoon and Fernando (4) (WF), the method derived from midpoint rule (5) (MP),
the method of Homeier (6) (HM), the method of Kou et al. (7) (KM), and the methods (25) with (27) (CM1) and (28)
(CM2), respectively, introduced in the present contribution, were compared. Only the methods which do not require
the computation of second or higher derivatives of the function to carry out iterations were chosen for comparison.
We used the following test functions:

f1(x) = x3
+ 4x2

− 10,

f2(x) = sin2 x − x2
+ 1,

f3(x) = x2
− ex

− 3x + 2,

f4(x) = cos x − x,

f5(x) = (x − 1)3
− 1,

f6(x) = sin x − x/2,

f7(x) = xex2
− sin2 x + 3 cos x + 5.

As a convergence criterion, it was required that the distance of two consecutive approximations δ for the zero was
less than 10−15. Also displayed are the number of iterations to approximate the zero (IT), the computational order of
convergence (COC), the approximate zero x∗, and the value f (x∗). Note that the approximate zeroes were displayed
only up to the 28th decimal place, so all may look the same though they may in fact differ.

The test results in Table 1 show that the computed order of convergence of the presented iterative methods is three,
which agrees with the theoretical result developed in this paper. It is well known that convergence of iteration formula
is guaranteed only when the initial approximation is sufficiently near root. In general, it may be divergent when the
initial approximation is far from root as this can be observed in Table 1. However, we can see from these numerical
experiments that in almost all of the cases, the presented methods appear to be more robust, so that these methods are
more competitive than other methods compared. It can be also observed that for most of the functions we tested, the
methods introduced in the present presentation have performance equal to, or better than, the other known methods of
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Table 1
Comparison of various cubically convergent iterative methods and the Newton method

IT COC x∗ f (x∗) δ

f1, x0 = 1.27

NM 5 2 1.3652300134140968457608068290 2.70e−41 1.83e−21
WF 4 3 1.3652300134140968457608068290 0.0e−01 3.0e−35
MP 4 3 1.3652300134140968457608068290 0.0e−01 2.60e−36
HM 3 2.96 1.3652300134140968457608068290 −4.45e−48 2.07e−16
KM 4 3 1.3652300134140968457608068290 0.0e−01 1.77e−33
CM1 4 3 1.3652300134140968457608068290 0.0e−01 3.47e−35
CM2 4 3 1.3652300134140968457608068290 0.0e−01 4.87e

−29
f2, x0 = 1

NM 7 2 1.4044916482153412260350868178 −1.04e−50 7.33e−26
WF 5 3 1.4044916482153412260350868178 −2.0e−63 3.79e

−30
MP 5 3 1.4044916482153412260350868178 1.3e−63 7.7e−33
HM 4 3.01 1.4044916482153412260350868178 −5.4e−62 7.92e−21
KM 5 3 1.4044916482153412260350868178 1.3e−63 2.32e−22
CM1 5 3 1.4044916482153412260350868178 −2.0e−63 9.16e−26
CM2 6 3 1.4044916482153412260350868178 2.44e−57 8.81e−20

f3, x0 = 0

NM 5 2 0.25753028543986076045536730494 1.56e −49 6.64e−25
WF 4 3 0.25753028543986076045536730494 1.0e−63 1.77e−35
MP 3 2.8 0.25753028543986076045536730494 2.07e −55 2.15e−18
HM 4 3 0.25753028543986076045536730494 1.0e−63 1.58e−37
KM 4 3 0.25753028543986076045536730494 1.0e −63 3.22e−32
CM1 4 3 0.25753028543986076045536730494 1.0e−63 1.72e−35
CM2 4 3 0.25753028543986076045536730494 1.0e −63 6.91e−32

f4, x0 = 1.2

NM 5 2 0.73908513321516064165531208767 −1.90e−35 7.16e−18
WF 4 3 0.73908513321516064165531208767 0.0e −01 1.97e−34
MP 4 3 0.73908513321516064165531208767 0.0e−01 2.72e−27
HM 4 3 0.73908513321516064165531208767 0.0e−01 4.0e−29
KM 4 2.99 0.73908513321516064165531208767 −6.07e−57 2.50e−19
CM1 4 3 0.73908513321516064165531208767 1.0e −64 2.71e−34
CM2 4 2.99 0.73908513321516064165531208767 −6.1e−63 2.48e−21

f4, x0 = 5

NM 29 2 0.73908513321516064165531208767 −4.89e−33 1.15e−16
WF 6 3 0.73908513321516064165531208767 0.0e −01 3.55e−38
MP 82 2.99 0.73908513321516064165531208767 1.0e−64 3.06e

−25
HM Divergent
KM Divergent
CM1 8 3 0.73908513321516064165531208767 6.65e−59 1.38e

−19
CM2 10 3 0.73908513321516064165531208767 3.0e−64 8.69e−22

f5, x0 = 1.8

NM 6 2 2 2.87e−41 3.09e−21
WF 4 3 2 −4.01e−49 4.86e−17
MP 4 3 2 −7.98e−54 1.43e−18
HM 4 3 2 0.0e−01 6.52e−36
KM 4 3 2 −1.56e−45 7.30e−16
CM1 4 3.01 2 −9.53e−48 1.40e−16
CM2 5 3 2 0.0e−01 7.07e−35

(continued on next page)
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Table 1 (continued)

IT COC x∗ f (x∗) δ

f6, x0 = 2.3

NM 6 2 1.8954942670339809471440357381 −2.45e−48 2.28e−24
WF 4 2.99 1.8954942670339809471440357381 −3.0e−64 1.13e−21
MP 4 2.99 1.8954942670339809471440357381 −1.39e−59 3.64e

−20
HM 4 3 1.8954942670339809471440357381 −3.0e−64 2.22e−38
KM 4 2.99 1.8954942670339809471440357381 −3.7e−46 8.27e

−16
CM1 4 2.99 1.8954942670339809471440357381 −3.0e−64 7.56e

−22
CM2 4 2.99 1.8954942670339809471440357381 −6.1e−46 9.46e

−16
f6, x0 = 13

NM Divergent
WF 6 3 1.8954942670339809471440357381 1.63e−60 1.87e−20
MP 5 3 1.8954942670339809471440357381 −3.0e−64 2.93e−28
HM Divergent
KM Divergent
CM1 13 2.99 1.8954942670339809471440357381 −3.0e−64 1.86e

−22
CM2 11 3 1.8954942670339809471440357381 −3.0e−64 4.76e−30

f7, x0 = 5

NM Divergent
WF Divergent
MP 23 3 −1.2076478271309189270094167584 −4.0e −63 1.51e−24
HM 318 3 −1.2076478271309189270094167584 −3.58e−49 2.60e−17
KM Divergent
CM1 23 3 −1.2076478271309189270094167584 2.95e−56 7.64e−20
CM2 43 3 −1.2076478271309189270094167584 −4.0e−63 7.42e−31

the same order. The most important characteristic of the proposed scheme is that it is not necessary to compute second
or higher derivatives of the function to carry out iterations.
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