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We calculate ratios of higher-order susceptibilities quantifying fluctuations in the number of net-
protons and in the net-electric charge using the Hadron Resonance Gas (HRG) model. We take into 
account the effect of resonance decays, the kinematic acceptance cuts in rapidity, pseudo-rapidity and 
transverse momentum used in the experimental analysis, as well as a randomization of the isospin 
of nucleons in the hadronic phase. By comparing these results to the latest experimental data from 
the STAR Collaboration, we determine the freeze-out conditions from net-electric charge and net-proton 
distributions and discuss their consistency.
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1. Introduction

Significant theoretical activity, aimed at understanding the 
properties of matter under extreme conditions, has been triggered 
recently by the heavy-ion collision experiments conducted at RHIC 
and the LHC, in which the deconfined phase of QCD matter, the 
Quark–Gluon Plasma, is created. The transition from the hadronic 
to the deconfined, partonic phase is an analytic crossover at zero 
baryo-chemical potential μB [1] with a transition temperature Tc

determined in lattice QCD simulations [2]. This crossover feature 
also extends to small values of μB . The possibility that the tran-
sition becomes first-order for larger μB , which would imply the 
existence of a critical point, is currently investigated by the beam 
energy scan program at RHIC, soon to be followed by the CBM 
experiment at FAIR.

Event-by-event fluctuations of the net-electric charge and net-
baryon number, which are conserved charges of QCD, are expected 
to become large near a critical point [3,4]: for this reason, they 
have been proposed as ideal observables to verify its existence 
and to determine its position in the QCD phase diagram [5–8]. Ex-
perimental results for these measures were recently reported for 
several collision energies [9–12]. In addition, as a consequence of 
the increasing precision achieved in the numerical simulations, it 
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is becoming possible to extract the chemical freeze-out parameters 
(i.e. freeze-out temperature Tch and corresponding baryo-chemical 
potential μB,ch) from first principles, by comparing the measured 
fluctuation observables to corresponding susceptibility ratios cal-
culated in lattice QCD [13–17]. When compared to experimental 
data from heavy-ion collisions, present lattice simulations have, 
however, their limitations: they cannot take the experimental ac-
ceptance cuts into account and they are available only for small 
chemical potentials. As a consequence of the latter, only the low-
est order susceptibilities are available on the lattice at finite μB . 
Moreover, the experimental restriction of net-baryon to net-proton 
number measurements cannot be realized on the lattice.

Recently, fluctuation observables have been investigated in 
transport approaches [18,19] as well as in various baseline stud-
ies within the HRG model [20–24]. Calculations based on the HRG 
model in chemical equilibrium reproduce the equilibrium lattice 
QCD results for the susceptibilities and their ratios in the hadronic 
phase reasonably well [16,25]. Furthermore, the model allows to 
expand the range of μB -values and consequently to calculate ratios 
of higher order susceptibilities at finite μB , as well as to imple-
ment kinematic acceptance cuts in rapidity y, pseudo-rapidity η
and transverse momentum pT , thus, providing a valuable tool 
to extract the freeze-out conditions from the experimental data. 
In the past, statistical hadronization models (SHMs) have been 
used to analyze experimental data on particle production by com-
paring the data to thermal abundances calculated in HRG model 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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approaches for all collision energies ranging from AGS to the LHC, 
see e.g. [26–30] and references therein. The freeze-out tempera-
tures determined in this way lie, however, at the upper limit of 
the uncertainty band of the lattice QCD results for Tc [2], which is 
most pronounced for the highest collision energies.

In this paper, we calculate ratios of susceptibilities quantify-
ing fluctuations in the number of net-protons and in the net-
electric charge within the HRG model: our study includes the 
effects of resonance decays and isospin randomization for the nu-
cleons, as well as kinematic acceptance cuts in agreement with 
the experimental analysis. We extract new freeze-out points in the 
(T , μB )-plane of QCD matter and compare them with the freeze-
out curve determined in Ref. [28]. Finally, we discuss the issue of 
the consistency between the freeze-out parameters obtained from 
the analysis of net-electric charge and net-proton fluctuations. We 
find that it is possible to use a combined analysis of the lowest-
order cumulants of the net-electric charge and the net-proton dis-
tributions in order to extract common freeze-out conditions Tch
and μB,ch . Possible limitations of this method are addressed.

2. The HRG in partial chemical equilibrium

The HRG model provides a suitable description of the bulk 
properties of hadronic matter in thermal and chemical equilib-
rium, see e.g. [31,32]. In the thermodynamic limit, the pressure as 
a function of temperature T and all hadron chemical potentials μk
is given by

p
(
T , {μk}

) =
∑

k

(−1)Bk+1 dk T

(2π)3

∫
d3 �p ln

[
1 +

(−1)Bk+1 exp
(−(√�p2 + m2

k − μk
)
/T

)]
, (1)

where the sum is taken over all hadronic states k, including res-
onances, in the model (baryons and anti-baryons being summed 
independently). In Eq. (1), dk and mk denote the degeneracy fac-
tor and the mass, respectively, and μk = BkμB + Q kμQ + SkμS is 
the chemical potential of the species k in chemical equilibrium. 
Bk , Q k and Sk are the respective quantum numbers of baryon 
charge, electric charge and strangeness, while μB , μQ and μS de-
note the chemical potentials associated with the net densities of 
baryon number, nB , electric charge, nQ , and strangeness, nS , re-
spectively. The particle number density nk = Nk/V of species k
follows from the thermodynamic identity nk = (∂ p/∂μk)T as

nk(T ,μk) = dk

(2π)3

∫
d3 �p

× 1

(−1)Bk+1 + exp((

√
�p2 + m2

k − μk)/T )

(2)

so that the above net densities are given by nX = ∑
k Xknk for X =

B, Q , S .
The actual conditions present in a heavy-ion collision are, how-

ever, more complex: first, the chemical potentials μB , μQ and μS

are not independent, but related to T as well as to each other via 
the conditions

nS(T ,μB ,μQ ,μS) = 0

nQ (T ,μB ,μQ ,μS) = 0.4 nB(T ,μB ,μQ ,μS). (3)

Here, the factor 0.4 in Eq. (3) accounts approximately for the ratio 
of protons to baryons in the colliding nuclei, while nS = 0 reflects 
the initial net-strangeness content.

Second, during its expansion the created matter does not main-
tain chemical equilibrium, since the time scales for the necessary 
inelastic scatterings among the hadrons are typically much longer 
than the duration of the hadronic stage [33]. While hadrons are 
assumed to be formed in chemical equilibrium at the transition 
temperature Tc , for not too small temperatures T ≤ Tch ≤ Tc only 
the particle-number preserving interactions mediated by hadronic 
resonance decay and regeneration (e.g. ππ → ρ → ππ , Kπ →
K ∗ → Kπ , pπ → � → pπ etc.) continue to occur with sufficient 
rate. The hadronic matter is, therefore, in a state of partial chemi-
cal equilibrium [34], because the resonances are still in chemical 
equilibrium with their decay products, whereas the multiplicity 
ratios of hadrons, which are stable against strong decay during 
the hadronic stage, are frozen out at Tch . The chemical poten-
tials of the resonances R become functions of the chemical po-
tentials of all stable hadrons h via μR = ∑

h μh〈nh〉R and, conse-
quently, the final particle number of a hadron species h is given 
by N̂h = Nh + ∑

R NR〈nh〉R , where the sum runs over all R decay-
ing into h, Nh and NR denote the primordial particle numbers of 
h and R , and 〈nh〉R gives the average number of h produced in the 
decay of R . As discussed in Ref. [24], this connection can easily be 
extended toward higher-order susceptibilities in order to study the 
average influence of resonance decays on the fluctuations in the 
final particle numbers.

In this paper we consider, in line with Ref. [35], an HRG model 
containing states up to a mass of 2 GeV as, for example, listed 
in the Particle Data Book [36]. We consider as stable particles the 
mesons π0, π+ , π− , K + , K − , K 0, K 0 and η and the baryons p, n, 
Λ0, Σ+ , Σ− , Ξ0, Ξ− and Ω− as well as their corresponding anti-
baryons. This implies that, as in the experimental analysis, feed-
down from weak decays is explicitly excluded in our approach.

When applying the experimental acceptance cuts, we modify 
the HRG model integrals in the following way:

nk(T ,μk) = dk

4π2

ηMAX∫

−ηMAX

dη

pMAX
T∫

pMIN
T

dpT

× p2
T Cosh[η]

(−1)Bk+1 + exp((

√
p2

T Cosh[η]2 + m2
k − μk)/T )

(4)

in the case of cuts on the pseudo-rapidity η (for net-electric 
charge, i.e. for all charged particles) and

nk(T ,μk) = dk

4π2

yMAX∫

−yMAX

dy

pMAX
T∫

pMIN
T

dpT

×
pT

√
p2

T + m2
k Cosh[y]

(−1)Bk+1 + exp((Cosh[y]
√

p2
T + m2

k − μk)/T )

(5)

in the case of cuts on the rapidity y (for net-protons). Due to the 
setup of the HRG model, we can only apply cuts on the momenta 
of the primordial resonances and of the primordial stable hadrons, 
but not on those of the products of resonance decays. It has, how-
ever, been estimated that the effect of acceptance cuts in rapidity 
on the decay daughters should be in the percent range [37].

Furthermore the effect of radial flow on the measured parti-
cle species in a limited transverse momentum range, which might 
have been particularly important for the net-charge since there a 
composite of particle species with different mass is considered, has 
been estimated taking into account the blastwave parameters ex-
tracted by STAR, and found to be negligible due to the rather wide 
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pT -window of the measurement (0.2–2 GeV/c). This result is in 
agreement with a similar previous study [23].

3. Results

In the following, we compare our HRG model calculations with 
the efficiency corrected experimental results for the most central 
collisions (0–5%) published by the STAR Collaboration for net-
proton1 [9] and net-electric charge fluctuations [10]. The suscep-
tibilities of conserved charges are defined as

χBSQ
lmn = ∂ l+m+n(p/T 4)

∂(μB/T )l∂(μS/T )m∂(μQ /T )n
. (6)

Their relationship with the central moments of the conserved 
charge multiplicity distributions is

mean : M = 〈N〉 = V T 3χ1,

variance : σ 2 = 〈
(δN)2〉 = V T 3χ2,

skewness : S = 〈(δN)3〉
σ 3

= V T 3χ3

(V T 3χ2)3/2
,

kurtosis : κ = 〈(δN)4〉
σ 4

− 3 = V T 3χ4

(V T 3χ2)2
, (7)

where δN = N − 〈N〉. From the quantities in Eqs. (7) the following, 
to leading order volume-independent, ratios can be defined:

σ 2/M = χ2/χ1, Sσ = χ3/χ2,

κσ 2 = χ4/χ2, Sσ 3/M = χ3/χ1.

We calculate the net-proton fluctuations according to the 
method presented in Ref. [24], where besides kinematic accep-
tance cuts also resonance decays and regeneration below the 
chemical freeze-out are taken into account. While resonance de-
cays feed the distributions of the primordial protons and anti-
protons, the regeneration of resonances leads to a randomization 
of the nucleon isospin: the dominant process is the regeneration 
of �(1232)-resonances from the scatterings of nucleons with ther-
mal pions. Subsequently, these �-resonances decay into either the 
same or the opposite isospin state, where neutrons are, however, 
not detected experimentally. Consequently, additional fluctuations 
in the net-proton number arise, which we include based on the 
formalism by Kitazawa and Asakawa (KA) [38,39].

Net-electric charge fluctuations are calculated based on the 
most abundant charged particles, namely pions, kaons, and pro-
tons as well as their anti-particles. Also here, primordial distribu-
tions are fed by resonance decays, but corrections similar to the 
KA-corrections for the net-proton number are not needed, because 
processes via intermediate resonances conserve electric charge.

While the application of the experimental acceptance cuts is 
straightforward in the net-proton case (where 0.4 GeV/c < pT <

0.8 GeV/c and |y| < 0.5), it is more difficult in the case of 
net-electric charge. Here, the general cuts are 0.2 GeV/c < pT <

2 GeV/c and |η| < 0.5, but in order to suppress spallation protons, 
all protons (and anti-protons) with pT < 0.4 GeV/c are removed in 
the experimental analysis. Due to correlated resonance decay con-
tributions to (anti-)protons and pions or kaons, e.g. �++ → p +π+
or Λ0(1520) → p + K − , which are given by a single integral in 
the HRG model calculation, we cannot cut the resonance contri-
bution to the (anti-)protons in the same way without also affect-
ing the contributions to the pions and kaons. We thus apply the 

1 The efficiency-corrected data for the lowest cumulant ratio (χ2/χ1) for net-
protons can be found on the public STAR webpage.
Fig. 1. (Color online.) Comparison between HRG model results and experimental 
data for the most central collisions (0–5%) (from Refs. [9,10]) for σ 2/M of net-
electric charge (blue, upper symbols) and net-protons (red, lower symbols). The 
experimental data have been used in the HRG model in order to extract a freeze-out 
temperature and baryo-chemical potential for each collision energy.

lower pT -cut of 0.4 GeV/c only to the primordial protons and anti-
protons.

In order to extract the freeze-out temperature and baryo-
chemical potential for each collision energy, we have simultane-
ously analyzed two experimentally measured susceptibility ratios. 
With the resulting freeze-out conditions (Tch , μB,ch) we can cal-
culate the remaining susceptibility ratios, which gives us a cross-
check on the reliability of the determined freeze-out parameters. 
The large experimental uncertainties in the higher-order suscep-
tibility ratios of the net-electric charge χ3/χ2 and χ4/χ2 do 
not allow to meaningfully constrain the freeze-out temperature 
and baryo-chemical potential from net-electric charge fluctuations 
alone. Moreover, for the net-protons, as already noted in Ref. [24], 
it is not possible to simultaneously reproduce σ 2/M and Sσ for 
all beam energies: this might point at a limitation in our approach, 
for example, due to an overestimate of the KA-corrections, which 
maximize the impact of isospin randomization. Several other ef-
fects that might impact the higher order moments have also 
not yet been considered, such as volume fluctuations [40], ex-
act (local) charge conservation [18,41] or repulsive van-der-Walls 
forces among hadrons [22]. Finally, the discrepancy in particular at 
larger μB , could also hint at the onset of chiral critical fluctuations 
in the higher moments (skewness and above) [42,43].

We therefore perform, first, a combined analysis of the ratios 
with the smallest experimental uncertainty, namely σ 2/M for net-
electric charge and for net-protons. In addition, we consider an 
alternative analysis using higher-order cumulants, namely σ 2/M
for net-electric charge and Sσ for net-protons, and discuss the dif-
ference in the extracted freeze-out parameters between these two 
choices.

In Fig. 1, we show the experimental data as a function of col-
lision energy per nucleon pair 

√
s (from Refs. [9,10]) together 

with our results for the first choice of fluctuation observables, 
i.e. the combined σ 2/M datasets. We find that it is possible to 
extract, for each collision energy, a freeze-out temperature and 
baryo-chemical potential, which allow to simultaneously reproduce 
the ratios of the lowest-order susceptibilities for net-protons and 
net-electric charge. The smallest collision energy we consider is √

s = 11.5 GeV: below this energy we expect that the isospin ran-
domization is not realized [24,38,39]. We note that for the deter-
mination of these freeze-out parameters the inclusion of the KA-
corrections for σ 2/M of net-protons, in accordance with Ref. [24], 
is essential.

In Fig. 2, we show the freeze-out temperature (upper panel) 
and baryo-chemical potential (lower panel) corresponding to this 
set of analyzed cumulant ratios, as functions of 

√
s. The precision 

in the experimental results allows a rather precise determination 
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Fig. 2. Freeze-out temperature (upper panel) and baryo-chemical potential (lower 
panel) as functions of the collision energy, extracted from the data in Fig. 1. The 
corresponding values are listed in Table 1.

of these parameters. The error bars shown in Fig. 2 are based on 
HRG model calculations using the upper and lower uncertainty 
limits in the experimental data. Our values for Tch are lower than 
those found in Ref. [28]: even for the highest RHIC energies, our 
results are close to the lower bound for Tc determined in lattice 
QCD simulations [2]. This is evident in Fig. 3, where we show a 
comparison between the freeze-out points in the (T − μB ) plane 
obtained in the present analysis and the curve of Ref. [28].
Fig. 3. (Color online.) Freeze-out parameters in the (T − μB ) plane: comparison be-
tween the curve obtained in Ref. [28] (red band) and the values obtained from the 
combined analysis of σ 2/M for net-electric charge and net-protons (blue symbols) 
presented here.

Using these freeze-out conditions, we now proceed to calculate 
the higher-order susceptibility ratios χ3/χ2 and χ4/χ2 for net-
protons and net-electric charge. The results are shown in the dif-
ferent panels of Fig. 4 in comparison with the experimental data. 
It is evident that, with the obtained freeze-out conditions, one 
can reproduce all experimental results for the net-electric charge 
fluctuations (left panels). As already mentioned, the agreement be-
tween our results and the experimental data for the net-proton 
Sσ becomes less accurate with decreasing collision energy (up-
per right panel). For κσ 2, our HRG model cannot reproduce the 
anomalous depletion at the lower collision energies (lower right 
panel), but is in good agreement with the data for the very low 
and very high 

√
s (notice that this depletion disappears in more 

peripheral collisions and can be described in central collisions by 
uncorrelated, i.e. independent, particle production when the ex-
perimentally determined proton and anti-proton distributions from 
STAR are used [9]).

In order to determine by how much the freeze-out condi-
tions need to be modified to reproduce the higher-order cumu-
lants for the net-protons, we perform, as second choice, a si-
multaneous analysis of σ 2/M for the net-electric charge and Sσ
for the net-protons. The result improves the agreement with the 
Fig. 4. (Color online.) Comparison between HRG model results for χ X
3 /χ X

2 and χ X
4 /χ X

2 , with X = Q (left) and X = B (right) as functions of √s (blue crosses), and experimen-
tal data for the most central collisions (0–5%) from the STAR Collaboration [9,10] (red diamonds). The HRG model results are calculated for our new freeze-out conditions, 
listed in Table 1. In all panels, acceptance cuts in the kinematics have been introduced, following the experimental analysis.
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Fig. 5. (Color online.) Freeze-out parameters in the (T − μB ) plane: comparison be-
tween the values obtained by a combined analysis of σ 2/M for net-electric charge 
and net-protons (blue circles), and the values obtained from σ 2/M for net-electric 
charge and Sσ for net-protons (red squares).

Table 1
In this table we list the values of μB,ch and Tch at chemical 
freeze-out, corresponding to the relative collision energies. These 
values are based on our combined analysis of the data in Fig. 1.

√
s [GeV] μB,ch [MeV] Tch [MeV]

11.5 326.7 ±25.9 135.5 ± 8.3
19.6 192.5 ±3.9 148.4 ± 1.6
27 140.4±1.4 148.5 ± 0.7
39 99.9 ±1.4 151.2 ± 0.8
62.4 66.4 ±0.6 149.9 ± 0.5

200 24.3 ±0.6 146.8 ± 1.2

measured Sσ , the values for σ 2/M of the net-proton distributions 
are, however, not described particularly well. For the net-electric 
charge fluctuation data the uncertainties are such that the alter-
nate analysis is still within experimental error bars.

The comparison between the freeze-out parameters resulting 
from our two different calculations is shown in Fig. 5. While for 
high collision energies the two parameter sets are very similar, 
differences arise for smaller 

√
s. In order to be able to repro-

duce the higher-order cumulants, the curvature of the freeze-out 
curve turns up for larger baryo-chemical potential, which is oppo-
site to lattice expectations. This points at an inconsistency between 
the HRG model description of the lower- and higher-order cumu-
lants in the net-proton distributions, which might signal the on-
set of chiral critical fluctuations in the higher order cumulants at 
large μB [42,43]. In order to test whether, in the net-proton analy-
sis, already the second order cumulant could be affected, we have 
determined the σ 2/(〈Np〉 + 〈Np̄〉) ratio and found it to be con-
sistent with unity for both, the HRG model and the data, for all 
measured collision energies. In addition, since the gross features of 
the particle distributions are given by their lower-order cumulants, 
while higher-order cumulants are more sensitive to finer details, 
such as excluded volume effects or volume fluctuations, as well 
as to interactions in the late hadronic stage, obtaining chemical 
freeze-out parameters from the analysis of σ 2/M for net-electric 
charge and net-proton number is more reliable than using Sσ for 
the net-proton number. The corresponding values for the freeze-
out temperature and baryo-chemical potential for the different col-
lision energies are given in Table 1.

4. Conclusions

In conclusion, our study shows that we can simultaneously de-
scribe the net-electric charge fluctuations and the lower-order cu-
mulants of the net-proton multiplicity distributions measured at 
RHIC for collision energies spanning over more than an order of 
magnitude (

√
s = (11.5–200) GeV). We calculated these fluctua-
Fig. 6. (Color online.) Comparison between STAR particle ratio data for central events 
at √s = 200 GeV [47] and HRG model results for the specified chemical freeze-out 
parameters.

tion observables within the HRG model including the experimental 
acceptance cuts and the effects of resonance decays and regenera-
tion.

From a combined analysis of σ 2/M for net-electric charge 
and net-proton number, we obtain the freeze-out conditions sum-
marized in Table 1. Given the impressively small uncertainties 
presently reported in the measured fluctuation observables by the 
STAR Collaboration, we find that it is possible to constrain the re-
sulting freeze-out temperatures to better than 5 MeV for 

√
s >

11.5 GeV. The sensitivity of the fluctuations of conserved charges 
to the freeze-out parameters will be the subject of a forthcom-
ing publication [44]. With these freeze-out values, the higher-order 
susceptibility ratios for net-electric charge and net-proton num-
ber are reasonably well reproduced. If one takes the experimen-
tally given particle samples as approximate representatives for the 
quantum numbers of electric and baryon charge, similar studies in 
lattice QCD yield a remarkable agreement for the collision energy 
dependence of Tch and μB,ch [17].

We note that a useful cross-check of our extracted chemical 
freeze-out parameters can be provided through the independent 
determination of the same parameters via a common fit of stan-
dard SHMs to experimental particle yields or ratios [27,28,45]. Pre-
liminary results of measured particle ratios from the RHIC beam 
energy scan [46] for all μB values analyzed here, yield, based 
on those standard SHM fits, freeze-out temperatures ranging from 
(140–160) MeV for 

√
s = (7.7–200) GeV collisions when using a 

common fit for all particles (including strange particles). At first 
glance, our parameters are below those extracted from the particle 
ratio fits as is also evident from Fig. 3. In order to quantify this dif-
ference we show in Fig. 6 a comparison of particle ratios obtained 
with our parameters and the SHM parameters from Ref. [28], to 
the properly feed-down corrected particle ratios measured by STAR 
at the highest RHIC collision energy [47].

The overall agreement with the data is roughly equivalent for 
both parameter sets: we find χ2 = 0.63 for the higher tempera-
ture and χ2 = 0.71 for the lower one. These values are consistent 
with the ones reported in Ref. [45] for the highest RHIC energy. 
A fit to the particle yields directly (instead of ratios) could be more 
sensitive to the freeze-out parameters and a first attempt yields 
a slightly lower temperature than the Cleymans parametrization 
(162 MeV) [47], but it involves an additional free parameter (vol-
ume factor) which cannot be determined in our approach. Our cal-
culation significantly improves on the (anti-)proton yield, but falls 
short for the strange baryons. We note that the cumulant ratios of 
net-charge and net-protons are pion and proton dominated, which 
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could be the reason that in our analysis the particle and fluctuation 
ratios yield consistently lower temperatures for the light quark sec-
tor. Recent LHC data [48,51] might suggest a separation of chemical 
freeze-out parameters according to particle flavor, which is also 
supported by the latest lattice QCD simulations [49] and sequen-
tial SHMs [50]. A fit to the strange baryon over pion ratios alone 
yields chemical freeze-out temperatures that are consistent with 
the standard SHM fits [51]. In order to determine the freeze-out 
parameters from fluctuation ratios in the strange sector we antic-
ipate that at least efficiency corrected strange meson cumulants 
from the experiments will be available soon.
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