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Let f and g be two elliptic elements in PU(2, 1). We prove that if the

distance δ(f , g) between the complex lines or points fixed by f and

g is large than a certain number, then the group 〈f , g〉 is discrete

non-elementary and isomorphic to the free product 〈f 〉 ∗ 〈g〉.
Crown copyright © 2010 Published by Elsevier Inc. All rights

reserved.

1. Introduction

A subgroup of Fuchsian groups or Kleinian groups generated by two elements was studied bymany

authors. An interesting question is to explore the conditions for two elements in Fuchsian groups or

Kleinian groups to generate discrete free group. In [8], Knapp foundnecessary and sufficient conditions

for two elliptic transformations to generate a discontinuous subgroup of Lf (2, R), the group of linear

fractional transformations. LyndonandUllman [15]gaveconditions for twohyperbolic transformations

whose fixed points separate each other to generate a discrete free group of rank 2. In general, Purzitsky

[12] found necessary and sufficient conditions for the subgroups generated by any pair A, B ∈ Lf (2, R)
to be the discrete free product of the cyclic groups 〈A〉 and 〈B〉.

The following theorem is well known in real hyperbolic geometry. It is essentially contained in [8].

Theorem A. Suppose that f and g are elliptic elements of PSL(2, R) of order m and n. Let δ(f , g) be the

distance between the fixed points of f and g. If
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cosh δ(f , g) >
cos π

m
cos π

n
+ 1

sin π
m

sin π
n

,

then 〈f , g〉 is discrete and isomorphic to the free product 〈f 〉 ∗ 〈g〉.
F.W. Gehring, C. Maclachlan and G.J. Martin proved a similar result in the case of Kleinian groups.

Theorem B ([2]). Suppose that f and g are elliptic elements of PSL(2, C) of order m and n. Let δ(f , g) be
the distance between the axes of f and g. If

cosh δ(f , g) >
cos π

m
cos π

n
+ 1

sin π
m

sin π
n

,

then 〈f , g〉 is discrete and isomorphic to the free product 〈f 〉 ∗ 〈g〉.
In this paper, The principal problem we wish to consider is that of giving condition in terms of

transformations in complex hyperbolic 2-space for the free product of two cyclic groups.

The pattern of our results are very similar to the analogous results in real hyperbolic space. A

possible applicationof our results is in the studyof complexhyperbolic triangle groups, see for example

Pratoussevitch [11] and Schwartz [14].

2. Complex hyperbolic space

First, we recall some terminology. More details can be found in [1,3,4,6,7]. Let C2,1 denote the com-

plex vector space of dimension 3, equipped with a non-degenerate Hermitian form of signature (2,1).

There are several standard Hermitian forms. We use the following form, called the second Hermitian

form

〈z,w〉 = w∗Jz
where z,w are column vectors in C2,1, the Hermitian transpose is denote by .∗ and J is the Hermitian

matrix

J =
⎡
⎣0 0 1

0 1 0

1 0 0

⎤
⎦ .

Consider the following subsets of C2,1

V+ = {v ∈ C2,1|〈v, v〉 > 0},
V− = {v ∈ C2,1|〈v, v〉 < 0},
V0 = {v ∈ C2,1|〈v, v〉 = 0}.

Let P : C2,1 − {0} → CP2,1 be the canonical projection onto complex projective space. Then H2
C =

P(V−) associated with the Bergmanmetric is complex hyperbolic space. The biholomorphic isometry

group of H2
C is PU(2, 1) acting by linear projective transformations. Here PU(2, 1) is the projective

unitary group with respect to the Hermitian form defining on C2,1. In other words, for all z and w in

C2,1 we have

w∗Jz = 〈z,w〉 = 〈Bz, Bw〉 = w∗B∗JBz.
Let z and w vary over a basis for C2,1, we see that B−1 = JB∗J. This means that the inverse of

B ∈ PU(2, 1) has the following form:

B =
⎡
⎣a b c

d e f

g h j
,

⎤
⎦ , B−1 =

⎡
⎢⎣ j f c

h e b

g d a

⎤
⎥⎦ . (1)

We define the Siegel domain model of the complex hyperbolic 2-space, H2
C as follows. We iden-

tify points of H2
C with their horospherical coordinatess, z = (ξ , ν ,μ) ∈ C × R × R+ = H2

C. Similarly,
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points in ∂H2
C = C × R ∪ {∞} are either z = (ξ , ν , 0) ∈ C × R × {0} or a point at infinity, denoted

q∞. Define the mapψ : H2
C → PC2,1 by

ψ : (ξ , ν ,μ) 	→
⎡
⎢⎣−|ξ |2 − μ+ iν√

2ξ
1

⎤
⎥⎦ for (ξ , ν ,μ) ∈ H2

C − q∞,

and

ψ : q∞ 	→
⎡
⎣10
0

⎤
⎦ .

The mapψ is a homeomorphism from H2
C to the set of points z in PC2,1 with 〈z, z〉 < 0. Alsoψ is a

homeomorphism from ∂H2
C to the set of points z with 〈z, z〉 = 0. Let L be a complex line intersecting

H2
C. Then ψ(L) is a two-dimensional complex linear subspace of C2,1. The orthogonal complement of

this subspace is a one (complex)-dimensional subspace of C2,1 spanned by a vector pwith 〈p, p〉 > 0.

Without loss of generality, we take 〈p, p〉 = 1 and call p the polar vector corresponding to the complex

line L (see page 75 of [3]). The Bergman metric on H2
C is defined by the following formula for distance

ρ between points z and w of C2,1

cosh (ρ(z, w)/2) = 〈ψ(z),ψ(w)〉〈ψ(w),ψ(z)〉
〈ψ(z),ψ(z)〉〈ψ(w),ψ(w)〉 .

As in real hyperbolic geometry, A holomorphic complex hyperbolic isometry g is said to be:

(i) loxodromic if it fixes no point in H2
C but exactly two points of ∂H2

C;

(ii) parabolic if it fixes fixes no point in H2
C but exactly one point of ∂H2

C;

(iii) elliptic if it fixes at least one point of H2
C.

The matrices corresponding to a loxodromic element and a parabolic element can be found in [10].

Wewill only give somematrices corresponding to the elliptic elementswith respect to the secondHer-

mitian form in this paper. If A is an elliptic element, then there are now three cases. First, suppose that

A has a repeated eigenvalue with a two dimensional eigenspace containing both positive and negative

vectors. This eigenspace corresponds to a complex line L on which A acts as the identity. In particular,

there are points of ∂H2
C fixed by A and so A is called boundary elliptic. As A fixes L and rotatesH2

C around

L, it is complex reflection in the line L. IfA is notboundaryelliptic, then it has aneigenspace spannedbya

negativevectorw. This corresponds to afixedpointw ∈ H2
C. In this caseA is called regular elliptic. There

are two possibilities. Either A has a repeated eigenvalue with an eigenspace spanned by two positive

vectors. In this case A is complex reflection in the pointw. Otherwise, A has three distinct eigenvalues.

Proposition 2.1

(1) If A is a boundary elliptic element, then A is conjugate to⎡
⎢⎣u

−1/3 0 0

0 u2/3 0

0 0 u−1/3

⎤
⎥⎦ ,

where u = eiθ .
(2) If A is a regular elliptic element, then A is conjugate to⎡

⎣(u + w)/2 0 (u − w)/2
0 v 0

(u − w)/2 0 (u + w)/2

⎤
⎦ ,

where |u| = |v| = |w| = 1 and uvw = 1.
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Suppose that A ∈ SU(2, 1) is an elliptic element. We define the order of A as

order(A) = inf{m > 0, Am = I}.
As in the case of real hyperbolic geometry, a discrete subgroup of SU(2, 1) can not contain elliptic

elements of infinite order.

3. The Heisenberg group

Just as the boundary of real hyperbolic spacemay be identifiedwith the one point compactification

of Euclidean space, so the boundary of complex hyperbolic space may be identified with one point

compactification of theHeisenberg group.Wenowcollect someof the basic facts about theHeisenberg

group that will be used later.

Consider the 3-dimensional Heisenberg group R which is the set C × R (with coordinatess (ξ , ν)
endowed with the multiplication law

(ξ1, ν1) � (ξ2, ν2) = (ξ1 + ξ2, ν1 + ν2 + 2�〈〈ξ1, ξ2〉〉),
where 〈〈·, ·〉〉 is the standard positive definite Hermitian form on C. The Heisenberg norm assigns to

(ξ , ν) the non-negative real number

|(ξ , ν)|0 = (‖ξ‖4 + ν2)
1
4 = |‖ξ‖2 − iν| 1

2

where ‖ξ‖2 = 〈〈ξ , ξ〉〉 = ∑ |ξi|2. This enables us to define the Cyganmetric on the Heisenberg group:

ρ0((ξ1, ν1), (ξ2, ν2)) = |(ξ1 − ξ2, ν1 − ν2 + 2�〈〈ξ1, ξ2〉〉)|0 = |(ξ1, ν1)−1 � (ξ2, ν2)|0.
The Heisenberg group acts on itself by Heisenberg translation. For (ξ0, ν0) ∈ R, this is

Tξ0 ,ν0 : (ξ , ν) 	−→ (ξ + ξ0, ν + ν0 + 2�〈〈ξ0, ξ〉〉) = (ξ0, ν0) � (ξ , ν).
Heisenberg group translation by (0′, ν0) where 0′ is origin in C and ν0 ∈ R are called vertical

translations.

4. The Ford isometric spheres

In [3] Goldman extended the definition of isometric spheres of Möbius transformations acting

on the upper half space to the Ford isometric spheres of complex hyperbolic transformations of the

Siegel domain. These spheres and their associated geometric properties have been extensively used in

[3,5,9,10].

Let q∞ = (1, 0, 0) ∈ C2,1.

Definition 4.1 ([9]). Let X ∈ PU(2, 1). Suppose that X does not fix q∞. Then the isometric sphere of X

is the hypersurface

IX = {z ∈ H2
C : |〈Z, q∞〉| = |〈Z, X−1(q∞)〉|}.

for any Z ∈ C3 which maps onto z projectively.

As in real case, X maps IX to IX−1 and X maps the component of H2
C \ IX containing q∞ to the

component of H2
C \ IX−1 not containing q∞.

Proposition 4.1 ([9]). If X ∈ PU(2, 1) has the form (1) and X(q∞) /= q∞, then the isometric sphere is the

sphere for Cygan metric ρ0 with center at X−1(q∞) and radius rX =
√

1
|g| .
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5. Main results

In this section, we prove our results. The basic structure of this proof resembles the original proof

of [2].

Theorem 1. Let f , g ∈ PU(2, 1) be elliptic elements with repeat eigenvalue. That is, f and g be in one of

the following cases:

(1) f and g are reflections in complex lines;
(2) f is reflection in a complex line and g is reflection in a point;
(3) f and g are reflections in points.

Suppose that f and g can be conjugate to the form in Proposition 2.1 (i) with u1 = e
2iπ
m and u2 = e

2iπ
n

respectively. Let δ(f , g) be the distance between the complex lines or points fixed by f and g. Then

cosh δ(f , g) >
cos π

m
cos π

n
+ 1

sin π
m

sin π
n

will imply that 〈f , g〉 is discrete and isomorphic to the free product 〈f 〉 ∗ 〈g〉.
Proof. Suppose that boundary elliptic element A ∈ PU(2, 1) fixes 0 and ∞. This meas that complex

line LA fixed by A is spanned by 0 and ∞. In other words

pA =
⎡
⎣01
0

⎤
⎦ .

Let f and g be boundary elliptic elements in PU(2, 1), that is, f and g are reflections in complex lines

and set

δ = δ(f , g)

and ω2 = eδ+iφ , where δ and φ are the distance and angle between the complex lines fixed by f and

g, respectively. The definition of the angle between two complex lines can be found in [16]. If the fixed

set of f or g is a point, then φ = 0.

The statement is invariant with respect to conjugation by elements in PU(2, 1). Thus by means

of conjugation we may choose some matrix representatives of f and g for the convenience of our

calculations.

We begin with the following two elements in SU(2, 1)

U1 =

⎡
⎢⎢⎢⎣
u
− 1

3

1 0 0

0 u
2
3

1 0

0 0 u
− 1

3

1

⎤
⎥⎥⎥⎦

and

U2 =

⎡
⎢⎢⎢⎣
u
− 1

3

2 0 0

0 u
2
3

2 0

0 0 u
− 1

3

2

⎤
⎥⎥⎥⎦

where u1 = e
2π i
m , u2 = e

2π i
n .

U1 and U2 fix the same complex line with polar vector

p =
⎡
⎣01
0

⎤
⎦ .
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Now suppose that A and B in SU(2, 1) have the following forms

A =
⎡
⎢⎢⎣
−√

ω/2
√
ω/2

√
ω/2

1/
√

2 0 1/
√

2

1/2
√
ω 1/

√
2ω −1/2

√
ω

⎤
⎥⎥⎦

and

B =
⎡
⎢⎣−1/2

√
ω 1/

√
2ω 1/2

√
ω

1/
√

2 0 1/
√

2√
ω/2

√
ω/2 −√

ω/2

⎤
⎥⎦ .

We define the matrix representatives F and G of f and g as follows

F = AU1A
−1, G = BU2B

−1.

Elementary calculations show that

F =

⎡
⎢⎢⎢⎢⎢⎣

1
2

(
u
− 1

3

1 + u
2
3

1

)
0

|ω|
2

(
u

2
3

1 − u
− 1

3

1

)

0 u
− 1

3

1 0

1
2|ω|

(
u

2
3

1 − u
− 1

3

1

)
0 1

2

(
u
− 1

3

1 + u
2
3

1

)

⎤
⎥⎥⎥⎥⎥⎦

and

G =

⎡
⎢⎢⎢⎢⎢⎣

1
2

(
u
− 1

3

2 + u
2
3

2

)
0 1

2|ω|
(
u

2
3

2 − u
− 1

3

2

)

0 u
− 1

3

2 0

|ω|
2

(
u

2
3

2 − u
− 1

3

2

)
0 1

2

(
u
− 1

3

2 + u
2
3

2

)

⎤
⎥⎥⎥⎥⎥⎦ .

Wecan see that f and g are boundary elliptic elements. The complex linefixedby f has thepolar vec-

torpf = (
√
ω/2, 0, 1/

√
2ω)T andthecomplex linefixedbyg haspolarvectorpg = (1/

√
2ω, 0,

√
ω/2)T .

�

Proposition 5.1. Let f and g be boundary elliptic elements in PU(2, 1) having the matrices of above. Then
the complex lines fixed by f and g with polar vectors pf and pg has distance δ.

Proof. Let the complex line Cf fixed by f with polar vector pf and the complex line Cg fixed by g with

polar vector pg . Then by distance formulas in [13] we have

dist(Cf , Cg)= 2 cosh−1(|〈pf , pg〉|)
= 2 cosh−1

(∣∣∣∣∣
√
ω√
2

∗
√
ω√
2

+ 1√
2ω

∗ 1√
2ω

∣∣∣∣∣
)

= 2 cosh−1

(∣∣∣∣1
2
(ω + 1

ω
)

∣∣∣∣
)

= δ. �

Suppose that A ∈ SU(2, 1) does not fix q∞, which is equivalent to requiring that g be non-zero

when A has the form (1). Then the isometric sphere of A is the sphere in the Cygan metric with center

A−1(∞) and radius rA = 1√|g| . In Heisenberg coordinates

A−1(∞) =
(

h√
2g

,−� j

g

)
.
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Similarly the isometric sphere of A−1 is the Cygan sphere of radius 1√|g| with center

A(∞) =
(

d√
2g

,� a

g

)
.

The isometric spheres of f and g are easily calculated from theirmatrix representatives F and G. Us-

ing u1 = e2π i/m we have u
2/3
1 − u

−1/3
1 = 2ieπ i/3m sin(π/m) and u

2/3
1 + u

−1/3
1 = 2eπ i/3m cos(π/m).

The Cygan isometric sphere If of f has radius

rf = 1√
| 1
2|ω| (u

2
3

1 − u
− 1

3

1 )|
=
√ |ω|
sin(π/m)

and center⎛
⎜⎜⎝0,−�

1
2
(u

− 1
3

1 + u
2
3

1 )

1
2|ω| (u

2
3

1 − u
− 1

3

1 )

⎞
⎟⎟⎠ =

(
0,

|ω| cos(π/m)
sin(π/m)

)
.

Similarly the Cygan isometric sphere If−1 of f−1 has radius rf−1 = rf and center(
0,−|ω| cos(π/m)

sin(π/m)

)
.

The Cygan isometric spheres Ig and Ig−1 of g have radius

rg = rg−1 = 1√
|ω|
2
(u

2
3

2 − u
− 1

3

2 )

=
√

1

|ω| sin(π/n) .

and the centers of Ig and Ig−1 are(
0,

cos(π/n)

|ω| sin(π/n)
)
,

(
0,− cos(π/n)

|ω| sin(π/n)
)

respectively.

The fundamental domain for the action of f on the Heisenberg group is the exterior of these two

spheres If and If−1 together with the region bounded by their intersection.

We observe that the fundamental domain of f contains the Heisenberg sphere S∗
f with center (0, 0)

and radius

r∗f =
√ |ω|
sin(π/m)

(1 − cos(π/m)).

The Cygan isometric spheres Ig and Ig−1 of g are contained in the Heisenberg sphere S∗
g with center

(0, 0) and radius

r∗g =
√

1

|ω| sin(π/n) (1 + cos(π/n)).

The interiors of Ig and Ig−1 are contained in the interiors of If and If−1 if r∗g � r∗f . That is

|ω|2 = eδ �
sin(π/m)

1 − cos(π/m)

1 + cos(π/n)

sin(π/n)
.

Using

sin θ

1 − cos θ
= 1 + cos θ

sin θ
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This translates into

cosh(δ) = |ω|2 + |ω|−2

2
�

cos π
m

cos π
n

+ 1

sin π
m

sin
pi

n

.

We have therefore seen that the exterior of a fundamental domain for 〈g〉 lies inside a fundamental

domain for 〈f 〉. It follows from the simplest version of Kleinian–Maskit combination theorem that the

group 〈f , g〉 is discrete and isomorphic to the free product of cyclic groups,

〈f , g〉∼=〈f 〉 ∗ 〈g〉.
It is straightforward to extend themain result to the casewhere either or both of f and g are complex

reflection in a point. If f and g are complex reflections in a point then the expressions for F and G on

the above become

F =

⎡
⎢⎢⎢⎢⎢⎣

1
2

(
u
− 1

3

1 + u
2
3

1

)
0

|ω|
2

(
u
− 1

3

1 − u
− 2

3

1

)

0 u
− 1

3

1 0

1
2|ω|

(
u
− 1

3

1 − u
2
3

1

)
0 1

2

(
u
− 1

3

1 + u
2
3

1

)

⎤
⎥⎥⎥⎥⎥⎦

which fixes pf = (
√
ω/2, 0, 1/

√
2ω)T and

G =

⎡
⎢⎢⎢⎢⎢⎣

1
2

(
u
− 1

3

2 + u
2
3

2

)
0 1

2|ω|
(
u

2
3

2 − u
− 1

3

2

)

0 u
− 1

3

2 0

|ω|
2

(
u

2
3

2 − u
− 1

3

2

)
0 1

2

(
u
− 1

3

2 + u
2
3

2

)

⎤
⎥⎥⎥⎥⎥⎦ .

which fixes pg = (−1/
√

2ω, 0,
√
ω/2)T .

The distance between the fixed points or lines may be calculated as in [13]. Namely, when one of

pf and pg is in V+ and the other in V−(that is one of f and g is complex reflection in a point and the

other is complex reflection in a complex line) then the distance between this point and complex line

is δ(f , g)where

sinh2

(
δ(f , g)

2

)
= 〈pf , pg〉〈pg, pf 〉

−〈pf , pf 〉〈pg, pg〉 = |ω/2 − 1/2ω|2.
Similarly, when pf and pg are both in V−, so f and g each are complex reflection in a point then the

distance between these points is δ(f , g)where

cosh2

(
δ(f , g)

2

)
= 〈pf , pg〉〈pg, pf 〉

〈pf , pf 〉〈pg, pg〉 = |ω/2 + 1/2ω|2.
In either case

cosh2

(
δ(f , g)

2

)
= |ω|2 + |ω|−2

2
.

The same identity holds in the casewhere f and g fix complex lines and δ(f , g) denotes the distance
between these complex lines.

In each case the isometric spheres and fundamental domains are the same and so the other

calculations go through with no changes.

Remark 5.1. The group generated by f and g preserves a (unique) complex line L. The restriction of

the Bergman metric to L is just the Poincaré metric and both f and g act on L as elliptic hyperbolic

isometries. Theorem 1 is a natural generalization of the result for real hyperbolic space of dimensions

2 and 3.
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Next, we prove our second theorem when the three eigenvalues of elliptic elements are distinct.

Theorem 2. Let f , g ∈ PU(2, 1) be regular elliptic elements. f has three distinct eigenvalues u1, v1, w1 and

g has three distinct eigenvalues u2, v2, w2. Let δ(f , g) be the distance between the points fixed by f and g.
Then

cosh(δ(f , g))�
2

|u2−w2| + � u2+w2

u2−w2

2
|u1−w1| + � u1+w1

u1−w1

+
2

|u1−w1| + � u1+w1

u1−w1

2
|u2−w2| + � u2+w2

u2−w2

will imply that 〈f , g〉 is discrete and isomorphic to the free product 〈f 〉 ∗ 〈g〉.
Proof. By Proposition 2.1, we assume that f and g have the following matrix representatives

F =

⎡
⎢⎢⎢⎣

u1+w1

2
0

u1−w1

2

0 v 0

u1−w1

2
0

u1+w1

2

⎤
⎥⎥⎥⎦

which fixes pf =
(

1√
2
, 0, −1√

2

)T

and

G =

⎡
⎢⎢⎢⎣

u2+w2

2
0 e−d u2−w2

2

0 v 0

ed
u2−w2

2
0

u2+w2

2

⎤
⎥⎥⎥⎦ .

which fixes pg =
(

−e
d
2√
2
, 0, e

d
2√
2

)T

. d is the distance between the fixed points of f and g.

The Cygan isometric sphere If and If−1 of f has radius

rf =
√

2

|u1 − w1|
and center of If and If−1 are(

0,�u1 + w1

u1 − w1

)
,

(
0,−�u1 + w1

u1 − w1

)
.

Similarly the Cygan isometric spheres Ig and Ig−1 of g have radius

rg = rg−1 =
√

2

ed|u2 − w2| .
and the centers of Ig and Ig−1 are(

0,−ed�u2 + w2

u2 − w2

)
,

(
0, ed�u2 + w2

u2 − w2

)

respectively.

The fundamental domain for the action of f on the Heisenberg group is the exterior of these two

spheres If and If−1 together with the region bounded by their intersection.

We observe that the fundamental domain of f contains the Heisenberg sphere S∗
f with center (0, 0)

and radius

r∗f =
√

2

|u1 − w1| + �u1 + w1

u1 − w1
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The Cygan isometric spheres Ig and Ig−1 of g are contained in the Heisenberg sphere S∗
g with center

(0, 0) and radius

r∗g =
√

2

ed|u2 − w2| + ed�u2 + w2

u2 − w2

.

The interiors of Ig and Ig−1 are contained in the interiors of If and If−1 if r∗g � r∗f . That is
2

ed|u2 − w2| + e−d�u2 + w2

u2 − w2

�
2

|u1 − w1| + �u1 + w1

u1 − w1

.

This translates into

cosh(δ) = ed + e−d

2
�

2
|u2−w2| + � u2+w2

u2−w2

2
|u1−w1| + � u1+w1

u1−w1

+
2

|u1−w1| + � u1+w1

u1−w1

2
|u2−w2| + � u2+w2

u2−w2

.

So the exterior of a fundamental domain for 〈g〉 lies inside a fundamental domain for 〈f 〉. By
Kleinian–Maskit combination theorem, the group 〈f , g〉 is discrete and isomorphic to the free product

of cyclic groups,

〈f , g〉∼=〈f 〉 ∗ 〈g〉. �
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