
Theoretical Computer Science 265 (2001) 159–185
www.elsevier.com/locate/tcs

Lower bounds for random 3-SAT via di'erential equations

Dimitris Achlioptas
Microsoft Research, Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA

Abstract

It is widely believed that the probability of satis,ability for random k-SAT formulae exhibits
a sharp threshold as a function of their clauses-to-variables ratio. For the most studied case,
k = 3, there have been a number of results during the last decade providing upper and lower
bounds for the threshold’s potential location. All lower bounds in this vein have been algorithmic,
i.e., in each case a particular algorithm was shown to satisfy random instances of 3-SAT with
probability 1 − o(1) if the clauses-to-variables ratio is below a certain value. We show how
di'erential equations can serve as a generic tool for analyzing such algorithms by rederiving
most of the known lower bounds for random 3-SAT in a simple, uniform manner. c© 2001
Elsevier Science B.V. All rights reserved.

Keywords: Random 3-sat; Algorithms; Di'erential equations

1. Introduction

It is widely believed that the probability of satis,ability for random k-SAT formu-
lae exhibits a sharp threshold as the ratio of clauses to variables is increased. More
precisely, let Fk(n; m) denote a random formula in Conjunctive Normal Form with
m clauses over n Boolean variables, where the clauses are chosen uniformly, inde-
pendently and with replacement among all 2k

(n
k

)
non-trivial clauses of length k, i.e.,

clauses with k distinct, non-complementary literals. 1 Let

Sk(n; r)=Pr[Fk(n; rn) is satis,able]:

In [14], the following possibility was put forward and has since become a folklore
conjecture.

E-mail address: optas@microsoft.com (D. Achlioptas).
1 While we adopt the Fk (n; m) model throughout the paper, it is worth noting that all of the results we

discuss hold in all standard models for random k-SAT, e.g., when clause replacement is not allowed and=or
when each k-clause is formed by selecting k literals uniformly at random with replacement.

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00159 -1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81968133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

160 D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185

1.1. Satis.ability threshold conjecture

For every k ¿ 2; there exists a constant rk such that for all
¿0;

lim
n→∞ Sk(n; rk −
)= 1 and lim

n→∞ Sk(n; rk +
)= 0:

For k =2, ChvGatal and Reed [14], Goerdt [23] and Fernandez de la Vega [18] in-
dependently proved the conjecture and determined r2 = 1. Recall that 2-SAT being
solvable in polynomial time [15] means that we have a simple characterization of un-
satis,able 2-SAT formulae. Indeed, [14, 23] make full use of this characterization as
they proceed by focusing on the emergence of the “most likely” unsatis,able sub-
formulae in F2(n; rn). Also using this characterization, BollobGas et al. [10] recently
determined the “scaling window” for random 2-SAT, showing that the transition from
satis,ability to unsatis,ability occurs for m= n+ �n2=3 as � goes from −∞ to +∞.
For k ¿ 3, much less progress has been made. Not only is the location of the

threshold unknown, but even the existence of rk has not been established. A big step
towards the latter was made by Friedgut [21] who showed the existence of a sharp
threshold around some critical sequence of values.

Theorem 1 (Friedgut [21]). For every k ¿ 2; there exists a sequence rk(n) such that
for all
¿0;

lim
n→∞ Sk(n; rk(n)−
) = 1 and lim

n→∞ Sk(n; rk(n) +
) = 0:

While it is widely believed that the sequence rk(n) above converges, a proof remains
elusive. We will ,nd the following immediate corollary of Theorem 1 very useful.

Corollary 2. If r is such that lim inf n→∞ Sk(n; r)¿0 then for any
¿0;

lim
n→∞ Sk(n; r −
)= 1:

Let us say that a sequence of events En holds with high probability (w.h.p.)
if limn→∞ Pr[En] = 1. Let us say that En holds with positive probability if
lim inf n→∞ Pr[En]¿0. In the rest of the paper, to simplify notation, we will write
rk ¿ r∗ to denote that for r¡r∗, Fk(n; rn) is satis,able w.h.p. (analogously for rk 6
r∗). In these terms, we see that Corollary 2 above allows one to establish rk ¿ r by
only showing that Fk(n; rn) is satis,able with positive probability.
Even before the satis,ability threshold conjecture was stated, it was known that for all

k ¿ 3, c1(2k =k)6 rk 6 c22k , where c1; c2 are constants independent of k. The upper
bound follows by observing that the expected number of satisfying truth assignments
of Fk(n; rn) is o(1) for r¿2k [20]. The lower bound comes from analyzing the UNIT

CLAUSE algorithm [13] and we will elaborate on it in Section 4. Despite signi,cant
e'orts, these bounds remain the best known for general k, up to the value of c1; c2,
leaving a gap of order k. Closing this gap appears to be a challenging problem, closely

D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185 161

Fig. 1. Known lower and upper bounds for r3.

related to hypergraph 2-colorability (Property B) [17, 2]. For general algorithmic results
related to random formulae, see the paper by Franco [19] in this issue.
For the ,rst computationally non-trivial case, k =3, several upper and lower bounds

have allowed us to narrow somewhat the potential value of r3 (experimental evidence
suggests r3 ≈ 4:2). Fig. 1 summarizes the current state of the art. All upper bounds
have been proved via probabilistic counting arguments (see the survey by Dubois et al.
[16] in this volume). On the other hand, all lower bounds are algorithmic, i.e., in each
case a particular algorithm is shown to satisfy F3(n; rn) w.h.p. for r below a certain
value r∗. Note that in light of Corollary 2, showing positive probability of success for
r¡r∗ in fact suNces to establish r3 ¿ r∗.
The ,rst lower bound for r3 was given by Broder et al. [11] who considered the

pure literal heuristic on F3(n; rn). This heuristic satis,es a literal only if its complement
does not appear in the formula, thus making only “safe” steps. They showed that for
r 6 1:63, w.h.p. the pure literal heuristic eventually sets all the variables implying
r3 ¿ 1:63 (they also showed that for r¿1:7 w.h.p. the pure literal heuristic does not
set all the variables).
Before the pure literal heuristic gave the ,rst lower bound r3¿1:63, in [12] Chao

and Franco had shown that the UNIT CLAUSE (UC) algorithm has positive probability
of ,nding a satisfying truth assignment for r¡ 8

3 = 2:66 : : : : They also showed that
when UC is combined with a “majority” rule it succeeds with positive probability for
r¡2:9. Since each of these algorithms succeeds only with positive probability, instead
of w.h.p., these results did not imply r3 ¿ 2:9. Yet, by now, Corollary 2 allows us to
immediately convert each of these results to a lower bound for r3. Moreover, the style
of analysis in [12] inPuenced a number of later papers [13, 14, 22, 5, 3, 4, 1]. To improve
upon the bound provided by the pure literal heuristic, Frieze and Suen [22] considered
two generalizations of UC, called SC and GUC, respectively, and determined their exact
probability of success on F3(n; rn). In particular, they showed that both heuristics
succeed with positive probability for r¡3:003::: and fail w.h.p. for r¿3:003 : : : : They
further proved that a modi,ed version of GUC, which performs a very limited form of
backtracking, succeeds w.h.p. for r¡3:003 : : : thus yielding r3 ¿ 3:003 : : : :
In a recent paper, Achlioptas [1] showed that UC and all its variations discussed

above [12, 14, 22] can be expressed in a common framework and analyzed uniformly

162 D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185

by using di'erential equations. Speci,cally, it was shown that one can model each such
algorithm’s execution as a Markov chain and apply a theorem of Wormald [31] to yield
the following: the Markov chain corresponding to the execution of each algorithm on
F3(n; rn) w.h.p. stays “near” a (deterministic) trajectory that can be expressed as the
solution of a system of di'erential equations. At this powerful algebraic level, analyzing
a new algorithm reduces to calculating the expected, single-step conditional change of
a small number of parameters of the Markov chain. In [1], a new satis,ability heuristic
which sets two variables “at a time” was introduced. It was shown to fall within the
above framework and its analysis yielded r3¿3:145.
In this paper, we focus on presenting the framework and the techniques of [1] at a

level that conveys the key ideas and the intuition behind them, without being bogged
down by tedious technical details. We hope that, in the end, the reader will also feel
that indeed only such details have been omitted. The material is organized along the
lines of a lecture on the topic whose aim is to derive the known results in a simple and
uniform fashion. Rather than presenting a comprehensive (but unmotivated) framework
up front, we have chosen to introduce each new idea at the point where it ,rst becomes
useful in analyzing an algorithm.

2. The framework

All satis,ability algorithms that have been analyzed on random formulae share two
characteristics aimed at addressing the following issue: controlling the conditioning
imposed on future steps of the algorithm by the steps made up to the current point.
The ,rst such characteristic is that all algorithms are backtrack-free, i.e., once a vari-

able is set to TRUE (FALSE), its value is never later changed to FALSE (TRUE) in the course
of the algorithm. The backtracking present in the algorithm of Frieze and Suen [22]
escapes this paradigm only super,cially. In particular, w.h.p. no more than polylog(n)
value assignments are ever reversed and, moreover, any such reversal occurs for simple
“local” reasons. Thus, this backtracking is in no way similar to the “search space ex-
ploration” implicit in almost all satis,ability algorithms used in practice. Unfortunately,
the lack of a simple dependence structure between decisions in such algorithms makes
their analysis beyond the reach of current mathematical techniques.
The second shared characteristic of all the algorithms analyzed so far is that, in

order to preserve independence, they are limited to following relatively simple rules
in determining which variable(s) to set in each step and what value(s) to assign to
them. More precisely, these rules are such that they could be followed even if one had
a very limited form of access to the input formula, thus leading to a correspondingly
simple form of conditional independence. Perhaps the best way to make this last idea
concrete is by introducing a simple game.

2.1. The card game

All the algorithms that we will consider make n iterations, permanently setting one
variable in each iteration. As soon as a clause is satis,ed it is removed from the

D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185 163

Fig. 2. Evolution of clauses in card-game algorithms.

formula, never to be considered again (see Fig. 2). Similarly, as soon as a literal in an
i-clause c becomes dissatis,ed, that literal is removed from c which is now considered
an (i− 1)-clause (we will say that c “shrunk”). Thus, the question for each algorithm
becomes: which variable is set in each step, and how? For all algorithms, except for the
pure literal heuristic, these decisions can be made in the context of the following game
(Fig. 3).
Imagine representing a k-SAT formula by a column of k cards for each k-clause,

each card bearing the name of one literal. Assume, further, that originally all the
cards are “face-down”, i.e., the literal on each card is concealed (and we never had
an opportunity to see which literal is on each card). At the same time, assume that
an intermediary knows precisely which literal is on each card. To interact with the
intermediary we are allowed to either
• Point to a particular card, or,
• Name a variable that has not yet been assigned a value.
In response, if the card we point to carries literal ‘, the intermediary reveals (Pips) all
the cards carrying ‘; R‘. Similarly, if we name variable v, the intermediary reveals all the
cards carrying v; Rv. In either case, faced with all the occurrences of the chosen variable
we proceed to decide which value to assign to it. Having done so, we remove all the
cards corresponding to literals dissatis,ed by our setting and all the cards (some of
them still concealed) corresponding to satis,ed clauses. As a result, at the end of each
step only “face-down” cards remain, containing only literals corresponding to unset
variables.
This card-game representation immediately suggests a “uniform randomness” prop-

erty for the residual formula. We make this property precise in Lemma 3 below. To
state Lemma 3, we need to introduce some notation that we will use throughout the
paper.

164 D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185

Fig. 3. A typical con,guration of the card game.

Notation. For any literal ‘, var(‘) will denote its underlying variable. For any set V
of Boolean variables, L(V) will denote the set of 2|V | literals on the variables of V .
“At time t” will mean after t iterations of each algorithm have been performed, i.e.,
after t variables have been set.
V(t) will denote the random set of variables not assigned a truth value at time t.
Si(t) will denote the random set of i-clauses remaining at time t.
Ci(t)≡ |Si(t)| will denote the number of i-clauses remaining at time t.

Lemma 3 (uniform randomness). For every 06 t 6 n; each clause in Si(t) contains
a uniformly random set of i distinct; non-complementary literals from L(V(t)). Thus;
if V(t)=X and Ci(t)= qi; the set of i-clauses remaining at time t form a random
i-SAT formula Fi(|X |; qi) on the variables in X .

It is rather easy to see why the pure literal heuristic cannot be expressed via the card
game: unless only one clause remains, Fig. 3 does not convey appropriate information
for us to be able to “pick” a pure literal. On the other hand, clause-length information
is available and it can be exploited by pointing at certain cards. For example, since the
algorithms never backtrack, whenever there are clauses (columns) with only one literal
(card) left, it is prudent to point at any one of these cards right away and satisfy the
underlying literal. It is intuitively clear that postponing such action can only hurt the
probability of ,nding a satisfying truth assignment. (If a 0-clause is generated while
doing this, then clearly the algorithm fails; for the sake of the analysis, though, we
will assume that the algorithm continues una'ected until all variables are set.) We will
sometimes call clauses of length 1 unit clauses and the corresponding steps in which
we satisfy them forced.
From the above, we already see that we can make non-trivial choices only when

the residual formula contains no unit clauses. We will call such steps free. In terms
of which variable to set in a free step, it will turn out that each algorithm will either
completely ignore clause-length information (by naming a random unset variable) or it
will pick a variable at random among those appearing in clauses of a certain length (by
pointing at a random card appearing in a random column with the speci,ed number of

D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185 165

cards). In terms of how the chosen variable is set we will see much greater variation
between algorithms, giving rise to a number of interesting tradeo's.

3. The UNIT CLAUSE algorithm

Perhaps the simplest possible algorithm expressible via the card game is the UNIT

CLAUSE (UC) algorithm, introduced and analyzed by Chao and Franco [12].

Unit clause

1. If there are any 1-clauses (forced step)

Pick a 1-clause uniformly at random and satisfy it

2. Otherwise (free step)

Pick an unset variable uniformly at random and

assign it TRUE=FALSE uniformly at random

Clearly, at each step of type 1 UC might generate a clause of length 0 (contradiction)
and such a clause will never be removed. On the other hand, if this never happens
then UC ,nds a satisfying truth assignment, in which case we say that it succeeds. As
we mentioned earlier, for the sake of the analysis, it will be simpler to always let the
algorithm continue until all variables are set, even if a 0-clause was generated at some
point. This allows us to analyze each step without having to consider any conditioning
implied by the fact that the step actually takes place.
To analyze UC let us ,rst note that if A is any algorithm expressible in the card game

then A fails w.h.p. if at any point during its execution the density of the underlying
2-SAT subformula exceeds 1. That is, if for some �;
¿0 we have tb 6 (1 −
)n
and C2(tb)¿(1 + �)(n − tb), then w.h.p. the underlying 2-SAT subformula at time tb
is unsatis,able; in that case, since A never backtracks, a 0-clause will certainly be
generated at some t ¿ tb. What might be somewhat surprising at ,rst glance is that
this necessary condition is actually suNcient. Below we give an intuitive explanation
as to why this is true for UC. This will be followed by a precise statement of a general
suNcient condition (Lemma 4) that we will use in the analysis of all algorithms.

3.1. Intuition

As we will see shortly, for all t=0; : : : ; n− 1, the expected number of unit clauses
generated in step t of UC is C2(t)=(n−t), i.e., it is equal to the density of the underlying
2-SAT formula at the time. Since UC can satisfy (and thus remove) one unit clause
in each step, unit clauses will not accumulate as long as that density is bounded by
1− � for some �¿0. In fact, under this condition, C1(t) behaves very much like the
queue size in a stable server system. In particular, there exists a constant M =M (�)
such that w.h.p.

∑n−1
t=0 C1(t)¡Mn.

166 D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185

Observe now that if S1(t)= ∅, then the probability that a 0-clause is generated in
step t is 0 since every clause loses at most one literal in each step. Further, if S1(t) �= ∅
then in step t UC picks some ‘∈S1(t) at random and satis,es it. Clearly, if R‘ �∈S1(t)
then no 0-clause will be generated in step t. In the card game, picking ‘ corresponds
to picking randomly a column with one card and pointing to the unique card in it.
Moreover, after Pipping the card pointed at, we still have no information whatso-
ever regarding which literal is on any other card. Hence, by uniform randomness, we
see that conditional on C1(t)= a¿0, the probability that no 0-clause is generated in
step t is(

1− 1
2(n− t)

)a−1

: (1)

To complete the argument, let us ,x a small
¿0 and take te=
(1−
)n�. Assume
now that for a given r we can prove that there exists �¿0 such that w.h.p. C2(t)¡(1−
�)(n − t) for all 0 6 t 6 te. Using our discussion above, it is not hard to show that
in this case Pr[S0(te)= ∅]¿ exp(−M=
). In other words, if w.h.p. the density of the
2-clauses is uniformly bounded away from 1 during the ,rst te steps, then with positive
probability the algorithm does not fail during those te steps. The reason for introducing
te is to get a non-trivial lower bound, i.e., T(n), for the denominator appearing in (1).
As we will see, dealing with the last n − te variables will be straightforward since at
that point the remaining formula will be “very easy”. In particular, it can be dealt with
by using an argument that is much simpler than analyzing the last n− te steps of each
algorithm.

Lemma 4. Let A be any algorithm expressible in the card game with the property
that it always satis.es some unit clause whenever unit clauses exist. If �;
¿0 and te
are such that te 6 (1−
)n and

w:h:p: C2(t)¡(1− �)(n− t) for all 06 t 6 te;

then; there exists %= %(�;
)¿0 such that Pr[S0(te)∪S1(te)= ∅]¿%.

Note that Lemma 4 asserts that, in fact, no unit clauses will exist at time te either,
something which will come in handy in the analysis. If one accepts the analogy between
C1(t) and the size of the queue in a stable server system, this assertion parallels the
well-known fact that in any ,xed step the server is idle with constant probability.

4. Tracing the number of 2-clauses

In view of Lemma 4, we see that to analyze the performance of UC on F3(n; rn)
we need to trace the evolution of the number of 2-clauses (and hence of the 2-clause
density) during the algorithm’s execution. To do this, we are going to setup some
machinery which will allow us to approximate the evolution of 2-clauses and 3-clauses

D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185 167

via a system of di'erential equations. The idea of using di'erential equations to ap-
proximate discrete random processes goes back at least to Kurtz [26, 27]. It was ,rst
applied in the analysis of algorithms by Karp and Sipser [24]. The astute reader might
observe that using such machinery is perhaps overkill for an algorithm as simple as UC

where one can derive the desired results by more elementary combinatorial means. This
is indeed a valid point and the power of the machinery will become indispensable only
in the analysis of following algorithms. Nonetheless, since the machinery is somewhat
technical, we chose to introduce the machinery in this most straightforward setting to
simplify exposition.
Let Ũ (t)= 〈C2(t); C3(t)〉 be a vector describing the number of 2- and 3-clauses at

time t and let H(t)= 〈Ũ (0); : : : ; Ũ (t)〉 be a 2× (t + 1) matrix describing the entire
history of the number of 2-clauses and 3-clauses up to time t. For random variables
X; Y let us write X D=Y if for every value x in the domain of X , Pr[X = x] = Pr[Y = x].
Finally, let Bin(N; s) denote the Binomial random variable with N trials each having
probability of success s.

Lemma 5. Let UCi(t)=Ci(t+1)−Ci(t). For all 06 t 6 n−3; conditional on H(t);

UC3(t) = −X; (2)

UC2(t) = Y − Z; (3)

where

X D=Bin
(
C3(t);

3
n− t

)
; Y D=Bin

(
C3(t);

3
2(n− t)

)
;

Z D=Bin
(
C2(t);

2
n− t

)
: (4)

Proof. Intuitively, each negative term in (2), (3) represents the number of clauses
leaving Si(t) during step t, either as satis,ed or as shrunk, while the positive term
expresses the fact that the clauses leaving S3(t), with probability 1

2 move to S2(t+1).
To prove the lemma we ,rst claim that for every 0 6 t 6 n − 1 the literal satis,ed
during step t is chosen uniformly at random among the literals in L(V(t)). To prove
this, we simply note that when S1(t) �= ∅ the claim follows by Lemma 3 applied to
S1(t), while when S1(t)= ∅ it follows from the de,nition of the algorithm.
Now, let ‘ be the literal chosen to be satis,ed during step t. As ‘ is uniformly ran-

dom among the literals in L(V(t)), by Lemma 3, we know that every clause c∈Si(t),
i=2; 3, contains var(‘), independently of all other clauses and with the same prob-
ability. As there are n − t unset variables, if c has i literals then this probability is
i=(n− t). This yields the negative terms in (2), (3) as each clause containing var(‘) is
removed from the set to which it belonged at time t. To get the positive term we note
that as ‘ is uniformly random, by Lemma 3, if c∈S3(t) contains one of ‘; R‘ then it
contains R‘ with probability 1

2 .

168 D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185

The di'erence equations (2), (3) above, suggest a “mean path” for C3; C2, i.e., a
path corresponding to the trajectories these random variables would follow if in each
step their actual change was equal to its conditional expectation. Clearly, in general,
there is no reason to believe that arbitrary random variables remain anywhere close to
their mean path. Here, though, there are two reasons suggesting that w.h.p. this will
indeed be the case for all t 6 te=(1−
)n, where
¿0 is an arbitrarily small constant.
The ,rst reason is that the number of clauses involved in each “Pow” of Fig. 2

is the result of an experiment with O(n) trials (one for each clause in the originating
bucket), each having probability of success O(n−1) (the assumption t 6 te is important
here). As a result, the probability that more than s clauses enter or leave each Si in
a given step is no greater than e−.s, for some .¿0; in particular, there is /¿0, such
that w.h.p. for all t 6 tb, |Si(t + 1)\Si(t)|¡/ log n, for 06 i 6 3.
The second, and perhaps more subtle, reason is that for t 6 te, the expectation of

UCi(t), i=2; 3, is a “smooth” function, both with respect to t and with respect to Ci(t),
i=2; 3. That is, changing any of t; C2(t); C3(t) by o(n) a'ects each UCi(t) by o(1).
Hence, even if the process has deviated by o(n) from the mean path, its dynamics are
a'ected only by o(1). Note that C1(t) does not enjoy this property: knowing whether
S1(t) �= ∅ or not a'ects UC1(t) by 1.
In a nutshell, the two key properties enjoyed by the dynamics of Ci, i=2; 3 are:

(i) the conditional change in each step has constant expectation and strong tail bounds,
and (ii) knowing the parameters of the process, i.e., t; C2(t); C3(t), within o(n) suNces
to determine UCi(t) within o(1). It is precisely these two properties that allow us
to use a theorem of Wormald [31], Theorem 8 in the appendix, to approximate the
evolution of Ci(t), i=2; 3.
While the framework of Theorem 8 might appear rather technical at ,rst glance, the

spirit of the theorem is not hard to capture. We have k random variables, where k is
arbitrary but ,xed, that evolve jointly over a period of O(n) steps and each of which
is guaranteed to never exceed Bn for some constant B. Further, each of these ran-
dom variables has the following property: for any possible history of the joint process,
the conditional probability that the single-step change deviates signi,cantly from its
conditional expectation is small. Moreover, the conditional dynamics of each random
variable are “smooth”, a notion best captured in the continuous, deterministic setting.
To pass to that setting we consider a scaled version of the state-space of the pro-
cess, resulting by dividing each parameter by n. This de,nes a corresponding region
in Rk+1 (since time is also a parameter) within which smoothness will be consid-
ered. In particular, and this is the more technical part of the theorem, assume that
there exists a region in Rk+1 (the domain D in Theorem 8) inside which the (scaled
version of the) process is well-behaved. That is, there exist k “smooth” functions
(satisfying a Lipschitz condition) de,ned on D, which when given as arguments the
scaled parameters of the process, return the conditional expected change for each of
the k random variables within o(1). The theorem then asserts that treating these k
functions as derivatives and solving the corresponding system of di'erential equations
yields a set of k functions (trajectories) that w.h.p. approximate the (scaled) actual

D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185 169

random process well (within o(n)) for (at least) as long as these trajectories stay
inside D.
For C3; C2 the parallels between the probabilistic and the deterministic domain are

drawn below

E(UC3(t) |H(t)) = −3C3(t)
n− t

dc3
dx

= − 3c3(x)
(1− x)

[x ≡ t=n]

C3(0) = rn c3(0) = r

E(UC2(t) |H(t)) = 1
2
× 3C3(t)

n− t
− 2C2(t)

n− t
dc2
dx

=
3c3(x)
2(1− x)

− 2c2(x)
1− x

C2(0) = 0 c2(0) = 0

Solving the two di'erential equations above and taking into account the initial condi-
tions we get c3(x)= (1− x)3, c2(x)= 3

2 rx(1− x)2. Thus, applying Theorem 8 yields

Lemma 6. Fix
¿0 and let te=
(1 −
)n�. If UC is applied to F3(n; rn) then w.h.p.
for 06 t 6 te;

Ci(t) = ci(t=n) · n+ o(n); (5)

where c3(x)= r(1− x)3 and c2(x)= 3
2 rx(1− x)2.

Proof. By Lemma 5, we can apply the Cherno' bound to bound Pr[UCi(t)¿n1=5|H(t)],
for each i=2; 3. Thus, for any
¿0 the lemma follows by applying Theorem 8
with k =2, Yi(t)=Ci+1(t), B= r, m= n−3, f1(s; z1; z2)= (3z2=2(1− s))− (2z2=1− s),
f2(s; z1; z2)=−3z2=2(1− s) and D de,ned by −
¡s¡1, −
¡zi¡r, for i=1; 2.

Given Lemma 6, we are now ready to determine the values of r for which UC

succeeds. First, recall that the key quantity is the density of the 2-clauses C2(t)=(n− t)
which in the deterministic domain corresponds to c2(x)=(1 − x)= 3

2 rx(1 − x) 6 3r=8,
the inequality being tight for x=1=2. Therefore:
• For any �¿0, if r=(8=3)(1 + �) and tb=
n=2� then Lemma 6 yields that w.h.p.

C2(tb)¿(1 + �=2)(n− tb). Therefore, UC fails w.h.p. for such r.
• On the other hand, let us ,x
= 1

10 yielding te=
(9=10)n� and take r=(83)(1−�),
where �¿0 is any constant. By Lemma 6, we have that w.h.p. for all 0 6 t 6 te,
C2(t)¡(1−�=2)(n−t). Lemma 4 then implies that with positive probability there are no
empty clauses or unit clauses at time te, i.e., S0(te)∪S1(te)= ∅. Furthermore, Lemma 6
asserts that C3(te)= r(1 − 9=10)3n + o(n) and C2(te)= 3

2 r(9=10)(1 − 9=10)2n + o(n)
implying that w.h.p. C3(te) + C2(te)¡(3=4)(n − te). Now, to conclude the proof, we
argue as follows. Given a formula F3(n; rn) we will run UC for exactly te steps and
then remove one random literal from each remaining 3-clause. If r=(83)(1− �), with
positive probability we will be left with a random 2-SAT formula with n− te=T(n)
variables and fewer than (34)(n− te) clauses; such a formula is satis,able w.h.p. Thus,
our original formula was satis,able with positive probability and as �¿0 was arbitrary,
Corollary 2 implies r3 ¿ 8

3 .

170 D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185

Similarly, one can analyze UC for general k. The resulting di'erential equations are

dck
dx

=−kck(x)
1− x

; ck(0) = r;

...
dci
dx

=
1
2
× (i + 1)ci+i(x)

1− x
− ici(x)
1− x

; ci(0) = 0

...

yielding that for i ¿ 2,

ci(x)= r
(
k
i

)
2i−kxk−i(1− x)i :

Requiring c2(x)=(1 − x)¡1 now yields r¡22k =k, where 2= 1
2((k − 1)=(k − 2))k−2→

e=2. In fact, one can show that if c3(x)=(1−x)¡ 2
3 , then UC succeeds w.h.p. (yielding a

lower bound for rk without invoking Corollary 2). This indeed holds for all r¡2′2k =k,
where 2′ → e2=8.
The proof structure that we used in this section to establish r3 ¿ 8

3 actually works
for all the algorithms that we will see in the remaining sections. Thus, in each such
section we will mostly focus on analyzing the dynamics of C2(t); C3(t) in order to get
an analogue of Lemma 6. The corresponding lower bound for r3 will always follow
by (i) making sure c2(x)¡(1− x) for x∈ [0; 1], and (ii) providing an appropriate te at
which the remaining formula is “easy”.

5. UC with majority

As Lemma 4 suggests, for any algorithm expressible in the card game the key to
success lies in keeping the density of 2-clauses bounded away from 1. As a result, a
natural goal for any such algorithm is to keep the number of 2-clauses as small as
possible. While such a goal cannot be served during forced steps, one can improve over
UC by attempting to minimize the number of 3-clauses that become 2-clauses, whenever
possible. This is precisely what UC with majority (UCWM) does. This algorithm was
introduced and analyzed in [12] along with UC.

Unit clause with majority

1. If there are any 1-clauses

Pick a 1-clause uniformly at random and satisfy it

2. Otherwise

(a) Pick an unset variable x uniformly at random

(b) If x appears positively in at least half the remaining

3-clauses

Set x=TRUE

D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185 171

(c) Otherwise

Set x=FALSE

In terms of Fig. 2, UCWM amounts to the following. In UC each total Pow out of a
bucket was divided evenly (in expectation) between satis,ed and shrunk clauses. Here,
during free steps, the algorithm biases the Pow out of bucket 3 so that more clauses
end up satis,ed than in bucket 2 (all remaining Pows remain evenly split). This curtails
the rate of growth of C2(t), allowing the algorithm to handle denser formulae than UC.
(We will discuss the 2-clauses “right to vote” in Section 7.)
In terms of analyzing UCWM, the ,rst thing to note is that the dynamics of C3(t) are

identical to those under UC. In particular, similarly to UC, for every 0 6 t 6 n − 3
and for every c∈S3(t), the probability that the variable set in step t appears in c is
3=(n−t). This is because the choice of that variable is either random, in free steps, or is
mandated by a unit clause, in which case the claim follows from uniform randomness.
Hence, to analyze the performance of UCWM we simply need to analyze the dynamics
of C2(t).
Unfortunately, attempting to apply Wormald’s Theorem now we hit the following

snag: the dynamics of C2(t) under UCWM, unlike those under UC, depend on whether the
tth step is free or not, i.e., whether S1(t)= ∅. Note that in principle this is desirable
(a feature, not a bug) since the whole idea was to improve over UC by exploiting
free steps. However, keeping track of C1(t) in the context of Wormald’s theorem is
hopeless, as determining the expected change of C1(t) in step t cannot be done while
only knowing C1(t) within o(n).
One approach to dealing with this issue is to consider the entire process at a “mi-

croscopic” level, determining the joint evolution of Ci(t), i=1; 2; 3 at a much ,ner
resolution than what Theorem 8 requires. While this approach can be made to work
in certain cases [22], it leads to numerous signi,cant technical issues. Moreover, the
complexity of these issues tends to grow along with the complexity of the underly-
ing algorithm, imposing signi,cant limitations on the nature of algorithms that can be
analyzed in this manner. Luckily, somewhere between queuing theory and a cultural
observation lies a much easier way out.

5.1. The lazy-server lemma

In UCWM, similarly to UC, both the choice of which variable to set in step t and
the value assigned to that variable is independent of S2(t). As a result, the Pow from
bucket 2 to bucket 1 in step t, the (2→ 1)-Pow, is distributed as Bin(C2(t); 1=(n− t)).
Hence, the rate at which 1-clauses are generated is C2(t)=(n − t). Viewing C1(t) as
the queue of a server system, and assuming that C2(t) does not change too rapidly
with t, we know that if C2(t)=(n − t)¡1, then around time t the server is idle, i.e.,
S1(t)= ∅, a fraction 1 − C2(t)=(n − t) of the time. While this intuition is correct,
converting it to a probabilistic statement that we can use to determine the evolution
of C2(t) is problematic as the logic we used is circular: the rate at which unit clauses

172 D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185

are generated a'ects the probability that the algorithm takes a free step, which a'ects
the value of C2(t), which in turn a'ects the rate at which unit clauses are generated.
Perhaps the simplest way to present the “lazy-server” idea is by ,rst passing to the

continuous setting. Consider a server capable of handling w units of work per step,
where w is some positive real number and assume that work arrives at a rate of � units
per step from some distribution that does not have extreme variance. In this setting,
it is well known that if �¡w, then the server’s queue will remain bounded, which
in our setting corresponds to the event

∑n
t=0 C1(t)¡Mn, for some constant M . Thus,

if we only care that the queue remains bounded, then it is clear that we can replace
the server of capacity w with a server of capacity � + 3, for some arbitrarily small
3¿0; while the average queue size will indeed increase as 3→0, the queue will remain
bounded for any ,xed such 3¿0. Moreover, and this is the key idea, we claim that we
can implement this replacement in a randomized rather than a deterministic manner:
we will keep the server of capacity w, but in each step have it “go to sleep” with
probability p=(�+ 3)=w.
To see why this works note that the concentration of the Binomial random variable

implies that in every (not too short) period of t steps the server will attempt to serve
the queue very close to tp times. Also, precisely because the server is “lazy”, almost
every time (s)he attempts to serve the queue (s)he will ,nd work there waiting.
The main feature of the lazy-server approach is that it gives us a random process

which is completely independent of the input stream and which, as 3→0, tends to
capture all of the server’s idle time. That is, as 3→0, the probability that the server
attempts to serve the queue and ,nds it empty tends to 0. This “lazy-server” idea was
introduced in [1] and its precise statement can be found in the appendix (Lemma 9).
In our setting, the lazy-server idea will amount to the following. Rather than al-

ways satisfying some unit clause whenever such clauses exist, the algorithm will
rather attempt to satisfy some unit clause in every step with probability u= min{(1+
3)C2(t)=(n− t); 1}, for some small 3¿0. If in such an attempt the algorithm ,nds that
no unit clauses exist, then rather than doing something “clever” it will simply satisfy
a randomly chosen literal (the reason for this will become clear below).

UCWM with lazy-server policy
(1) For t = 1; : : : ; n

(a) Determine U (t) [Set U (t) = 1 with probability u]
(b) If U (t) = 1

i. If there are any 1-clauses

Pick a 1-clause uniformly at random and satisfy it

ii. Otherwise

Pick an unset variable uniformly at random and

assign it TRUE=FALSE uniformly at random

(c) Otherwise

i. Pick an unset variable x uniformly at random

ii. If x appears positively in at least half the remaining

D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185 173

3-clauses

Set x=TRUE

iii. Otherwise

Set x=FALSE

Recall that, by uniform randomness, in every step t satisfying a unit clause or a
randomly chosen literal has exactly the same e'ect on the evolution of the 2-clauses.
Therefore, by avoiding to do something clever whenever U (t)= 1 and S1(t)= ∅, we
gain that the dynamics of the number of 2-clauses are completely independent of the
presence of 1-clauses, depending only on the random coin Pips that determine U (t).
Furthermore, the “wastefulness” of this approach (in terms of missed opportunities)
tends to 0 as 3→0. In particular, we can get the following analogue of Lemma 4.

Lemma 7. Let A be any algorithm expressible in the card game which in every step t
attempts to satisfy a unit clause with probability u= u(t; C2(t); C3(t)). If �;
¿0 and
te are such that te 6 (1−
)n and

w:h:p: C2(t) ¡ (1− �)(n− t)× u for all 06 t 6 te;

then; there exists %= %(�;
)¿0 such that Pr[S0(te)∪S1(te)= ∅]¿%.

Having dealt with the distinction between free and forced steps, we now need to
understand the distribution of the number of 3-clauses that become 2-clauses in step t.
In particular, as we saw earlier, if v is the variable set in step t then the number
of 3-clauses containing v; Rv is distributed as Bin(C3(t); 3=(n − t)). Further, each such
clause contains each of v; Rv with equal probability. Thus, if U (t)= 1 then each such
clause becomes a 2-clause with probability 1

2 . On the other hand, if U (t)= 0 it is
not hard to show that, asymptotically, the number of 3-clauses that becomes 2-clauses
is distributed like the minimum of two independent Poisson random variables each
with mean �=3C3(t)=2(n − t). Unfortunately, it is not possible to get a closed-form
expression for the expectation, M (�), of this last random variable. Nonetheless, if we
let P(�; i) ≡ Pr[Po(�)= i] then

Bq(�) ≡ �−
q∑

j=0

q∑
k=0

P(�; j)P(�; k)
(
min{j; k} − j + k

2

)
¿ M (�)

and the bound Bq gets better as q is increased. In particular, taking q=40 is man-
ageable computationally and gives an excellent bound for �6 5. In our setting, since
C3(t)= r(1 − t=n)3 + o(n) and �=3C3(t)=2(n − t) we see that if r¡ 10

3 then � 6 5
throughout the evolution of the process.
Since we only have a bound on the expected (3→2)-Pow during free steps, rather

than the exact expectation, we somehow need to argue that we can use this bound in
the context of Theorem 8 and still get a useful result for the number of 2-clauses. One
way to do this would be to manipulate the di'erential equations and show that using

174 D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185

an upper bound for M (�) yields an upper bound for the solution corresponding to the
actual process. While this is possible here, we are instead going to use a trick that
simpli,es matters a lot, without sacri,cing any sharpness in the analysis (other than the
sacri,ce inherent in that we are using just an upper bound). The trick is rather generic
and it will be most useful in Section 7.1 where arguing by direct manipulation of the
di'erential equations appears daunting. The idea is to “dumb down” our algorithm a
little bit so that in fact the expected number of 3-clauses that become 2-clauses in
a free step equals Bq(3C3(t)=2(n − t)). We do this as follows: whenever U (t)= 0
(free step) the algorithm tosses another coin, with appropriate probability, in order
to decide if it will actually set v “by majority” or “at random”. Since Bq(�) is an
upper bound for M (�) for all � such a choice of probability clearly exists. As a
result we can now apply Wormald’s Theorem for C3; C2 in this modi,ed algorithm
where we have exact expressions for the expected change in each step. Recalling that
Pr[U (t)= 1]= min{1; (1 + 3)C2(t)=n− t} we have

E(C2(t + 1)− C2(t) |H(t))

= Pr[U (t) = 1]×
(
3C3(t)
2(n− t)

− 2C2(t)
n− t

)
+ (1− Pr[U (t) = 1])

×
(
Bq

(
3C3(t)
2(n− t)

)
− 2C2(t)

n− t

)
:

Letting v(x; c2(x))= min{1; (1 + 3)c2(x)=(1 − x)} and recalling that c3(x)= r(1 − x)3

this corresponds to

dc2
dx

= v(x; c2(x))×
(

3c3(x)
2(1− x)

− 2c2(x)
1− x

)
+ (1− v(x; c2(x)))

×
(
Bq

(
3c3(x)
2(1− x)

)
− 2c2(x)

1− x

)

= v(x; c2(x))×
(
3r(1− x)2

2
− 2c2(x)

1− x

)
+ (1− v(x; c2(x)))

×
(
Bq

(
3r(1− x)2

2

)
− 2c2(x)

1− x

)
:

Solving 2 the above di'erential equation, with q=40, 3=10−5 and r=3:001 yields
that c2(x)¡(1− 10−6)(1− x) for all x∈ [0; 1]; moreover we get c2(0:9)¡4=100. Since
c3(0:9)= r(1=10)3¡1=100, an argument similar to the one used for UC yields r3 ¿
3:001. 3

2 We solved this di'erential equation using interval arithmetic, thus getting provably correct results.
3 The improvement over the analysis in [12] is due to the fact that we are using a sharper bound for

M (�).

D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185 175

6. Going on clause-length alone

In [22] two di'erent extensions of UC were considered. The ,rst one, GUC (GENER-
ALIZED UNIT CLAUSE), always picks a shortest remaining clause and satis,es a random
literal in it. In the card game, this corresponds to always picking at random a column
among those with fewest cards and then pointing at a random card in that column. The
other algorithm considered, SC (SHORT CLAUSE), is the same as GUC unless only 3-clauses
are present. In that case, rather than picking a random literal from a random clause
of length 3, the algorithm satis,es a random literal, i.e., it randomly picks an unset
variable and assigns it a random value.
Let 7=− 2

3W−1(−e−3)= 3:003 : : : be the unique solution of 3r=2− ln r=3+ ln(32)
greater than 2

3 . The performance of GUC and UC on random 3-SAT formulae is very
similar: both algorithms succeed with positive probability if r¡7 and both fail w.h.p.
if r¿7. The reason for this similarity is that in both algorithms for r ∈ (23 ; 7), w.h.p.
S2(t) �= ∅ for all t ∈ [n1=2; 2n], where 2= 2(r) is such that by time t= 2n the remaining
formula is “very easy”. In the following, for concreteness, we will focus on SC; yet,
the analysis does not really distinguish between the two algorithms and can be applied
to GUC as well.
In order to analyze SC, we ,rst observe that the evolution of 3-clauses is exactly the

same as for UC and UCWM since, again, the choice of which variable to set in each step
is completely independent of the remaining 3-clauses. To analyze the evolution of 2-
clauses let us ,rst focus on the most relevant case S2(t) �= ∅. In that case, if S1(t)= ∅
the algorithm picks a random 2-clause c and a random literal ‘∈ c. Note now that in
the context of the card game we have the following: after the algorithm has pointed to
the card containing the literal ‘ to be satis,ed, every clause in S2(t) (other than the
chosen one c) contains the underlying variable with probability 2=(n − t). Therefore,
we see that when S1(t)= ∅ and S2(t) �= ∅,

E(UC2(t) |H(t)) = 3C3(t)
2(n− t)

− 2(C2(t)− 1)
n− t

− 1

=
3C3(t)
2(n− t)

− 2C2(t)
n− t

− 1 + o(1); (6)

where the second equality assumes that n − t=T(n). Thus, we see that SC takes a
more “conservative” approach than UCWM: it trades the potential bene,t of picking the
smaller of the two possible (3→2)-Pows with the certainty of removing an “extra”
2-clause.
To remove the conditioning on S1(t)= ∅, similarly to the case for UCWM, we will

apply the “lazy-server” idea. That is, rather than always satisfying some unit clause
when unit clauses exists, the algorithm instead only attempts to satisfy unit clauses “at
the appropriate rate”. Thus, the only issue that remains to be addressed is determining
the conditions under which S2(t) �= ∅.

176 D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185

As we mentioned above, in a run of SC on F3(n; r n) for r ∈ (23 ; 7) we have S2(t) �= ∅
except, perhaps, when t=o(n) or t¿2n for certain 2. In fact, something stronger
is true: for every ,xed
¿0, there exist b
; e
 such that w.h.p. for all t ∈ [b
 n; e
 n],
C2(t)¿
n; rather naturally, lim
→0 b
=0. The reason for this is that in the beginning
of the execution, and for quite a while, the expected change in C2(t) is strictly positive,
e.g., initially it is at least 3r=2−1. As a result, C2(t) behaves like a random walk with
positive drift (and a rePecting barrier). In the beginning, it might “return to the origin”
(C2(t)= 0) a few times, but within o(n) steps it “takes o'” and does not return until
much later, well after the drift has become negative.
Recall now that Theorem 8 requires that we specify a domain D ⊂ Rk+1 (for the

normalized parameters of the process) inside which the process is “well behaved”.
For example, in our earlier applications of the theorem, the only requirement for the
process to be well behaved was that t 6 (1 −
)n for some constant
¿0, mandated
by the need for a Lipschitz condition on the functions describing the expected change
in each step (the derivatives). The theorem then asserts that if we start the process at
any con,guration inside the domain, the solutions of the di'erential equations with the
corresponding initial conditions give a good approximation of the (normalized) process
(for at least) as long as these solutions remain inside the domain. Here, good behavior
will also require that S2(t) �= ∅ since this is the typical=interesting case. Since good
behavior can only be cast in terms of normalized quantities, the additional requirement
will be that C2(t)¿�n, for some arbitrarily small �¿0. Consequently, to start the
process inside the domain we will add 2�n random 2-clauses to the input formula.
These will provide a “safety cushion” which will guarantee that w.h.p. the process does
not run out of 2-clauses “prematurely”. Moreover, since � can be chosen arbitrarily
small, these clauses only add an inconsequential burden to the algorithm.
It is also worth pointing out that to setup the domain we do not need to predict=

control when the process will run out of 2-clauses. It suNces for us to only specify
the properties de,ning the domain and make sure that the process initially satis,es
them; we can then read o' the point where each trajectory leaves the domain from the
solution of the corresponding di'erential equation.
Bringing these considerations together with (6) and the lazy-server idea we get

E(UC2(t) |H(t)) = 3C3(t)
2(n− t)

− 2C2(t)
n− t

− 1

(
1−min

{
1; (1 + 3)

C2(t)
n− t

})
+ o(1);

C2(0) =
2�n�:
Recalling that C3(t)= c3(t=n) · n+ o(n), where c3(x)= (1− x)3, yields

dc2
dx

=
3
2
r(1− x)2 − (1− 3)

c2(x)
1− x

− 1; (7)

c2(0) = 2�: (8)

D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185 177

To conclude the analysis we will solve the above di'erential equation and determine
r; xe such that (i) for all x in [0; xe]: c2(x)¿�, and c2(x)=(1− x)¡1, and (ii) c2(xe) +
c3(xe)¡(1−xe). To do this it will suNce to consider 3= �=0 and appeal to a standard
continuity argument. Letting c∗2 denote the specialization of c2 when 3= �=0 we have

dc∗2
dx

=
3
2
r(1− x)2 − c∗2 (x)

1− x
− 1;

c∗2 (0) = 0

which yields

c∗2 (x) =
1
4 (6rx − 3rx2 + 4 ln(1− x))(1− x):

For each r¿ 2
3 , there exists xe¿0 such that c2(x)¿0 for x∈ (0; xe). By considering

the derivative of c∗2 (x)=(1− x) we get that for x∈ [0; 1], c∗2 (x)=(1− x)6 8(r)= 3r=4−
1=2(1 + ln(32)). For r¿

2
3 , solving 8(r)= 1 gives r=7= − 2

3W−1(−e−3)= 3:003 : : : :
Moreover, for all r ∈ (3; 7) we have: (i) if x∈ (0; 0:89] then c2(x)¿0, and (ii) if
xe=0:85 then c∗2 (xe) + c3(xe)¡ 3

4 (1− xe). Finally, it’s not hard to show that for every
9¿0, we can have |c2(x)− c∗2 (x)|¡9 for all x∈ [0; 1] by taking �; 3 suNciently small.
Thus, an argument similar to the one used in previous sections implies r3 ¿ 7.

7. Should we care for the present or the future?

As we discussed in Section 3, UC fails w.h.p. if the rate at which unit clauses are
generated ever becomes greater than 1. Thus, it seems reasonable to consider reducing
the (2→1)-Pow as follows: when no 1-clauses exist, pick a variable at random and set
it so as to minimize the number of 2-clauses that become 1-clauses. This is the same
as UCWM except that now majority is considered among 2-clauses rather than among
3-clauses. Perhaps somewhat surprisingly, this extension of UC yields no improvement
at all: it fails w.h.p. for r¿ 8

3 , just like UC.
The reason for which biasing the (2→1)-Pow does not give any improvement is

rather simple: the evolution of 2-clauses under this algorithm is identical to their evo-
lution under UC. That is, in every step t (free or forced) if ‘ is the literal chosen to be
satis,ed, then each clause in S2(t) contains one of ‘; R‘ with probability 2=(n− t) and
each clause in S3(t) contains R‘ with probability 1

2 ×3=(n− t). Biasing the (2→1)-Pow
does not a'ect the total Pow out of bucket 2 (or in it). Thus, if r¿ 8

3 then at tb=
n=2�
the density of 2-clauses exceeds 1 and the algorithm fails w.h.p.
In spite of the above spectacular failure, biasing the (2→1)-Pow can actually be

very useful. In particular, note that in all the algorithms we considered so far, the
improvement over UC came from actions during free steps, since it is in those steps
that one can try to minimize the growth of 2-clauses. Reducing the (2→1)-Pow can
reduce the number of forced steps the algorithm takes, thus increasing the number of
free steps available. In fact, the only problem with our unsuccessful extension of UC

178 D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185

above was that while it “generated” many free steps, it did nothing “useful” with them,
i.e., nothing that would help reduce the number of 2-clauses.
Taking a further step along this path, suppose that in a free step we (somehow)

decided to set variable x5. If it turns out that, say, Rx5 occurs more often than x5 in both
3-clauses and 2-clauses then it is clearly a good idea to set x5 to FALSE: this minimizes
both the number of 2-clauses generated and the number of 1-clauses generated, the
latter yielding (in expectation) fewer forced steps. However, what should we do if,
say, x5 is more frequent in 3-clauses while Rx5 is more frequent in 2-clauses? Setting x5
to TRUE would then generate fewer 2-clauses while setting it to FALSE would generate
fewer 1-clauses. Hence the following tradeo':
• Minimizing the (3→2)-Pow is good now because this Pow determines the number
of newly generated 2-clauses and our overall goal is to minimize the number of
2-clauses.

• Minimizing the (2→1)-Pow is good for the future because this Pow equals the
number of newly generated 1-clauses and the fewer 1-clauses we have, the more
opportunity we will have to make good choices in future steps.

7.1. How much is freedom worth?

Motivated by the above discussion, we will consider an algorithm, formulated in
discussions with L. Kirousis which tries to generate free steps when doing so is not
detrimental to the objective of keeping the number of 2-clauses small. This will yield
r3 ¿ 3:165, in fact giving a small improvement over the “two at a time” algorithm of
[1]. The idea is the following. In free steps we will always pick to set a variable v
appearing in a 2-clause c (just like SC), yet we will set v so as to, mainly, minimize the
(3→2)-Pow. That is, we will always set v so as to minimize the (3→2)-Pow except for
when there is a tie in that minimization; in such a case we will set v so as to satisfy c.
Note that by picking a variable in a 2-clause and minimizing the (3→2)-Pow we are
doing something which is very good “now” since we combine the bene,ts of SC and
UCWM, i.e., we get both the guaranteed removal of an “extra” 2-clause and the mini-
mization of the (3→2)-Pow. Naturally, this combination comes at a price: whenever we
ignore the sign of v in c we bias the (2→1)-Pow to higher values. This is because, in
expectation, the chosen 2-clause becomes a unit clause with probability 1

2 while every
other 2-clause still becomes a unit clause with probability 1=2(n− t) (c was guaranteed
to be satis,ed under SC). Exploiting ties to satisfy c simply attempts to reduce this price.

Tiebreaker
1. For t = 1; : : : ; n

(a) If there are any 1-clauses

Pick a 1-clause uniformly at random and satisfy it

(b) Otherwise, if there are no 2-clauses

i. Pick an unset variable x uniformly at random

ii. If x appears positively in at least half the remaining

D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185 179

3-clauses

Set x= TRUE

iii. Otherwise

Set x= FALSE

(c) Otherwise

i. Pick a remaining 2-clause c = ‘1 ∨ ‘2 uniformly at random

ii. Pick ‘∈{‘1; ‘2} uniformly at random

iii. If ‘ appears fewer times than R‘ in the remaining 3-clauses

Set ‘= FALSE

vi. Otherwise, Set ‘= TRUE

It is clear that we could do a bit better in our algorithm if, in case of a tie in
the (3→2)-Pow, we set v so as to minimize the (2→1)-Pow rather than setting it
so as to satisfy c. However, our version is much simpler to analyze and not much
worse o'. To see this note that ideally we would be selecting the minimum of two
random variables X1+1 and X2 where, asymptotically, Xi are i.i.d. Poisson random
variables with mean �=C2(t)=(n− t) + o(1). Since we plan to keep �¡1 throughout
the algorithm’s execution, the strategy of always picking X2 is not much worse than
the optimal one. (For example, for �¡ 3

4 the probability we err is smaller than
1
10 .)

We will present the analysis of TIEBREAKER in an informal, “back of the envelope”
style. Relying on experience from previous sections the interested reader might want
to verify that our calculations indeed form the skeleton of a complete analysis.
As a ,rst step let us determine the probability that we get a tie in the (3→2)-Pow.

Letting 3C3(t)=2(n − t)= � and recalling that P(�; i) ≡ Pr[Po(�)= i], asymptotically,
this probability is equal to

Tie(�) =
∞∑
i=0

P(�; i)2

¿
s∑

i=0

P(�; i)2

≡ Ts(�);

where the bound given by Ts gets better as s is increased. (The Tie function has a
closed form expression only in terms of the modi,ed Bessel function of the ,rst kind.)
Similarly to the analysis of UCWM, we will marginally “dumb down” the algorithm to
deal with the fact that we only have a bound on the probability of a tie. In particular,
when a tie occurs we will have the algorithm toss a coin to decide if it will act on this
fact (setting the chosen variable the way it appears in the 2-clause from which it was
chosen) or it will assign the variable a random value. By performing the latter step
with appropriate probability (that depends on s) the 2-clause dynamics then behave as
if the probability of a tie was exactly Ts.

180 D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185

Now, using the lazy-server idea and our bound for Tie we can proceed to determine
the rate at which the algorithm should attempt to satisfy unit clauses by “matching”
it with the rate at which such clauses will be generated. (We will focus on the most
relevant case S2(t) �= ∅.) Note, of course, that this is a rather cyclical calculation since
the rate at which 1-clauses are generated depends on the rate with which the algorithm
attempts to satisfy 1-clauses (since this last rate a'ects C2(t)). Nonetheless, if we
arbitrarily set the rate for attempting to satisfy 1-clauses to U , then the expected
number of 1-clauses generated per step is

C2(t)
n− t

+ (1− U)×
(
1− Ts

(
3C3(t)
2(n− t)

))
× 1
2
+ o(1):

This is because in every step, every 2-clause (except perhaps for one) becomes a unit
clause with probability 1=(n − t), giving the C2(t)=(n − t) + o(1) term; moreover, if
the step is free and there is no tie, the chosen clause c becomes a unit clause with
probability 1

2 . Now, since U must be “barely greater” than the rate at which 1-clauses
are generated, we require that U is 1 + 3 times the above quantity, yielding

U (t; C2(t); C3(t)) = (1 + 3′)× 2C2(t)=n− t − Ts(3C3(t)=2(n− t)) + 1
3− Ts(3C3(t)=2(n− t))

;

for some arbitrarily small constant 3′¿0.
We will also need to use a few old tricks. Just like we did for UCWM, we are going

to “dumb down” the algorithm in terms of its minimization of the (3→2)-Pow, so that
in free steps the expected value of that Pow is equal to Bq(3C3(t)=2(n− t)). Moreover,
just like we did for SC, we are going to add 2�n random 2-clauses to the original
formula to guarantee that w.h.p. the algorithm does not run out of 2-clauses before
the residual formula becomes “very easy”. Finally, we will use that (just like in every
other algorithm) w.h.p. C3(t)= (1− t=n)3 · n+ o(n). Thus, letting

u(x; c2(x)) ≡ (1 + 3′)× 2c2(x)=1− x − Ts((3=2)r(1− x)2) + 1
3− Ts((3=2)r(1− x)2)

we get that the di'erential equation corresponding to C2(t) under TIEBREAKER is

dc2
dx

= u(x; c2(x))×
(
3
2
r(1− x)2 − 2c2(x)

1− x

)

+(1− u(x; c2(x)))×
(
Bq

(
3
2
r(1− x)2

)
− 2c2(x)

1− x
− 1
)
;

c2(0) = 2�:

Solving the above di'erential equation numerically with �= 3′=10−6 and s=20; q
=40 yields that for r¡3:165, c2(x)=(1− x)¡1− 10−5. Moreover, c2(x)¿(12)10

−6 for
all x∈ [0; 0:88] and ,nally, c2(45) + c3(45)¡(34)(1− 4

5). Thus, arguing similarly to the
previous sections, we get r3 ¿ 3:165.

D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185 181

8. Discussion

Two questions naturally arise at this point. How far can we take the approach de-
scribed here? Are there other algorithmic approaches that might succeed?
Very recently, Achlioptas and Sorkin [6] in fact determined the optimal algorithms

expressible via the card game, among algorithms that set one or two variables in each
step. That is, among algorithms where in each round we start with all cards face
down, the algorithm picks one or two variables to set, the cards corresponding to
these variables are Pipped, and ,nally the algorithm decides how to set the chosen
variables based on that information. It turns out that the best thing to do, in terms
of variable picking in free steps, is to always point at a random card in a randomly
chosen 2-clause (they “always” exist) and, depending on that variable’s appearances
in 3- and 2-clauses, sometimes also point at the other variable in the chosen 2-clause.
With respect to variable setting the algorithm has a continuously changing policy based
on determining the optimal tradeo' between the bene,t in (3→2)-Pow and the bene,t
in (2→1)-Pow as a function of the current 3- and 2-clause density, i.e., based on the
current “price of freedom”. The analysis is based on the framework presented here
and the constantly changing nature of the algorithm brings to bear the great Pexibility
a'orded by modeling the execution via di'erential equations.
Given the analysis in [6] it is not clear how much further the card game framework

can go. Naturally, one can attempt to consider setting more variables “at a time”, but
at the price of greatly increased complexity. Moreover, the algorithms already analyzed
in the card game seem to hint at its main weakness: the very limited availability of
variable-degree information. Note, for example, that card-pointing in free steps is a
rather feeble attempt to capture this information: by pointing at a card we are guaran-
teed that the underlying variable has a degree of at least one, thus somewhat biasing
our choice towards variables of higher degree. This of course is very far from the fol-
lowing rule, known as Johnson’s heuristic, that appears to behave quite well on random
formulas. Let the weight of a literal ‘ be equal to

∑
{c: ‘∈c} 2

−|c|, where |c| denotes
the length of clause c. Now, at every free step choose a literal of maximum weight
and satisfy it. Clearly, this heuristic falls far outside of the card-game strategy because
nearly all the cards must be uncovered to ,nd the weights on any round. Considering
random formulas conditional on their degree distribution, by analogy to the case for
random graphs [7, 9, 28], might be useful here.
A related algorithmic question is the following. Using the non-rigorous replica

method of statistical mechanics, Monasson et al. [29, 30] made the following rather
surprising claim: for any
¿0 and 3¡0:71, a random formula on n variables with
(1−
)n random 2-clauses and 3n random 3-clauses is satis,able w.h.p. Achlioptas et
al. [3] proved this assertion for 36 2

3 . Using the framework presented here, it can be
shown that 2

3 is tight for all algorithms expressible via the card game. For example,
both for UC and SC the reader can readily verify that when the 2-clause density equals
1, the 3-clause density equals 2

3 (this is true for all algorithms considered but we only
got analytical solutions for UC and SC). In fact, some later analysis using the replica

182 D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185

method by Biroli et al. [8], under certain “natural” assumptions, suggests that 2
3 might

be tight. Determining whether 2
3 is indeed tight is an interesting problem in itself and

could provide some direction in terms of going beyond the card game representation
of algorithms.

Acknowledgements

I want to thank John Franco, Claire Kenyon, Danny Krizanc, Frank McSherry,
Michael Molloy, Dana Randall and Ashish Sabharwal for reading earlier drafts of
this paper and o'ering numerous helpful suggestions.

Appendix

In the statement of Theorem 8, below, asymptotics denoted by o and O, are for
n→∞ but uniform over all other variables. In particular, “uniformly” refers to the
convergence implicit in the o() terms. For a random variable X , we say X =o(f(n))
always if max{x | Pr[X = x] �= 0}=o(f(n)). We say that a function f satis,es a
Lipschitz condition on D ⊆ Rj if there exists a constant L¿0 such that |f(u1; : : : ; uj)−
f(v1; : : : ; vj)|6 L

∑j
i= 1 |ui − vi|, for all (u1; : : : ; uj) and (v1; : : : ; vj) in D.

Theorem 8 (Wormald [31]). Let Yi(t) be a sequence of real-valued random variables;
16 i 6 k for some .xed k; such that for all i; all t and all n; |Yi(t)|6 Bn for some
constant B. Let H(t) be the history of the sequence; i.e.; the matrix 〈Ỹ (0); : : : ; Ỹ (t)〉;
where Ỹ (t)= (Y1(t); : : : ; Yk(t)).

Let I = {(y1; : : : ; yk): Pr[Ỹ (0)= (y1n; : : : ; ykn)] �=0 for some n}. Let D be some
bounded connected open set containing the intersection of {(s; y1; : : : ; yk): s¿ 0} with
a neighborhood of {(0; y1; : : : ; yk): (y1; : : : ; yk)∈ I}. 4

Let fi : Rk+1→R; 16 i 6 k; and suppose that for some m=m(n);
(i) for all i and uniformly over all t¡m;

E(Yi(t + 1)− Yi(t) |H(t)) = fi(t=n; Y0(t)=n; : : : ; Yk(t)=n) + o(1); always;

(ii) for all i and uniformly over all t¡m;

Pr[|Yi(t + 1)− Yi(t)|¿n1=5 |H(t)] = o(n−3); always;

(iii) for each i; the function fi is continuous and satis.es a Lipschitz condition
on D.
Then

4 That is, after taking a ball around the set I , we require D to contain the part of the ball in the halfspace
corresponding to s= t=n¿ 0.

D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185 183

(a) for (0; ẑ(0); : : : ; ẑ(k))∈D the system of di=erential equations

dzi
ds

= fi(s; z0; : : : ; zk); 16 i 6 k

has a unique solution in D for zi : R→R passing through zi(0)= ẑ(i); 1 6 i 6 k;
and which extends to points arbitrarily close to the boundary of D;
(b) almost surely

Yi(t) = zi(t=n) · n+ o(n);

uniformly for 0 6 t 6 min{=n; m} and for each i; where zi(s) is the solution in (a)
with ẑ (i) =Yi(0)=n; and == =(n) is the supremum of those s to which the solution can
be extended.

Note. The theorem remains valid if the reference to “always” in (i), (ii) is replaced
by the restriction to the event (t=n; Y0(t)=n; : : : ; Yk(t)=n)∈D.

Lemma 9 (lazy-server lemma). Let F(0); F(1); : : : be a sequence of random variables
and denote f(t)=E(F(t)). Let W (0); W (1); : : : be a sequence of independent Bernoulli
random variables with density w(t); i.e. W (t)= 1 with probability w(t) and 0 other-
wise. For a given integer s¿0, let Q(0); Q(1); : : : be the sequence of random variables
de.ned by Q(0)= 0 and Q(t + 1)= max(Q(t)− sW (t); 0) + F(t).

Assume that there exist constants a; b; c¿0 such that for any .xed j ¿ i ¿ 0 and
any �¿0;

Pr

[j∑
t=i

F(t)¿(1 + �)
j∑
t=i

f(t)

]
¡ exp

−a�b

(j∑
t=i

f(t)

)c :

Then; if for some
; �¿0 and all t ¿ 0; we have

(1−
)sw(t)¿f(t)¿�;

there exist constants C and k depending on a; b; c; s;
; � such that for every m¿ 1;

Pr
[
max
06t¡m

Q(t) ¿ logk m
]
= O(m−2);

Pr

[
m−1∑
t=0

Q(t) ¿ Cm

]
= O(m−2):

References

[1] D. Achlioptas, Setting two variables at a time yields a new lower bound for random 3-SAT, in: 32nd
Annual ACM Symp. on Theory of Computing, Portland, OR, 2000, ACM, New York, 2000, pp. 28–37.

184 D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185

[2] D. Achlioptas, J.H. Kim, M. Krivelevich, P. Tetali, Two-coloring random hypergraphs, in: RANDOM’00
Geneva, 2000, Proc. Inform., Vol. 8, Carleton Scienti,c, Waterloo, 2000, pp. 85–96.

[3] D. Achlioptas, L.M. Kirousis, E. Kranakis, D. Krizanc, Rigorous results for random (2 + p)-SAT, in:
RALCOM ’97, Santorini, 1997, 1–13, 1997, pp.

[4] D. Achlioptas, L. M. Kirousis, E. Kranakis, D. Krizanc, M. Molloy, Y. Stamatiou, Random constraint
satisfaction: a more accurate picture, Constraints, to appear.

[5] D. Achlioptas, M. Molloy, The analysis of a list-coloring algorithm on a random graph, in: 38th
Annual Symp. on Foundations of Computer Science, Miami, FL, 1997, IEEE Computer Society Press,
Los Alamitos, CA, 1997, pp. 204–212.

[6] D. Achlioptas, G.B. Sorkin, Optimal policies for greedy 3-SAT algorithms, in: 41st Annual Symp. on
Foundations of Computer Science, Rodondo Beach, CA, 2000, pp. 590–600.

[7] E.A. Bender, E.R. Can,eld, The asymptotic number of labeled graphs with given degree sequences, J.
Combin. Theory Ser. A 24 (3) (1978) 296–307.

[8] G. Biroli, R. Monasson, M. Weigt, A variational description of the ground state structure in random
satis,ability problems, European Phys. J. B 14 (2000) 551–568.

[9] B. BollobGas, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs,
European J. Combin. 1 (4) (1980) 311–316.

[10] B. BollobGas, C. Borgs, J. Chayes, J.H. Kim, D.B. Wilson, The scaling window of the 2-SAT transition,
1999, Manuscript.

[11] A.Z. Broder, A.M. Frieze, E. Upfal, On the satis,ability and maximum satis,ability of random
3-CNF formulas. in: 4th Annual ACM-SIAM Symp. on Discrete Algorithms, Austin, TX, 1993, ACM,
New York, 1993, pp. 322–330.

[12] M.-T. Chao, J. Franco, Probabilistic analysis of two heuristics for the 3-satis,ability problem, SIAM
J. Comput. 15 (4) (1986) 1106–1118.

[13] M.-T. Chao, J. Franco, Probabilistic analysis of a generalization of the unit-clause literal selection
heuristics for the k-satis,ability problem, Inform. Sci. 51 (3) (1990) 289–314.

[14] V. ChvGatal, B. Reed, Mick gets some (the odds are on his side). in: 33th Annual Symp. on Foundations
of Computer Science, Pittsburgh, PA, 1992, IEEE Computer Society Press, Los Alamitos, CA, 1992,
pp. 620–627.

[15] S.A. Cook, The complexity of theorem-proving procedures, in: 3rd Annual ACM Symp. on Theory of
Computing, Shaker Heights, OH, 1971, ACM, New York, 1971, pp. 151–158.

[16] O. Dubois, L. M. Kirousis, Y. C. Stamatiou, Upper bounds to the unsatis,ability threshold of random
3-SAT formulas: results and techniques, Theoret. Comput. Sci., in press.

[17] P. Erdős, L. LovGasz, Problems and results on 3-chromatic hypergraphs and some related questions, Vol.
10, Colloq. Mathematical Society JGanos Bolyai, 1975, pp. 609–627.

[18] W. Fernandez de la Vega, On random 2-SAT, 1992, Manuscript.
[19] J. Franco, Results related to threshold phenomena research in satis,ability: lower bounds, Theoret.

Comput. Sci. 265 (this Vol.) (2001) 147–157.
[20] J. Franco, M. Paull, Probabilistic analysis of the Davis–Putnam procedure for solving the satis,ability

problem, Discrete Appl. Math. 5 (1) (1983) 77–87.
[21] E. Friedgut, Sharp thresholds of graph properties, and the k-SAT problem, J. Amer. Math. Soc. 12

(1999) 1017–1054.
[22] A.M. Frieze, S. Suen, Analysis of two simple heuristics on a random instance of k-SAT, J. Algorithms

20 (2) (1996) 312–355.
[23] A. Goerdt, A threshold for unsatis,ability, J. Comput. System Sci. 53 (3) (1996) 469–486.
[24] R. Karp, M. Sipser, Maximum matchings in sparse random graphs, in: 22nd Annual Symp. on

Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1981, pp.
364–375.

[25] L.M. Kirousis, Personal communication.
[26] T.G. Kurtz, solutions of ordinary di'erential equations as limits of pure jump Markov processes,

J. Appl. Probability 7 (1970) 49–58.
[27] T.G. Kurtz, Approximation of Population Processes, Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, 1981.
[28] M. Molloy, B. Reed, A critical point for random graphs with a given degree sequence, Random Struct.

Algorithms 6 (2–3) (1995) 161–179.

D. Achlioptas / Theoretical Computer Science 265 (2001) 159–185 185

[29] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, L. Troyansky, Phase transition and search cost
in the (2 + p)-SAT problem, in: 4th Workshop on Physics and Computation, Boston, MA, 1996.

[30] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, L. Troyansky, Determining computational
complexity from characteristic “phase transitions”, Nature 400 (6740) (1999) 133–137.

[31] N.C. Wormald, Di'erential equations for random processes and random graphs, Ann. Appl. Probab. 5
(4) (1995) 1217–1235.

