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a b s t r a c t

In general, weights of decision makers (DMs) play a very important role in multiple attri-
bute group decision-making (MAGDM), how to measure the weights of DMs is an interest-
ing research topic. This paper presents a new approach for determining weights of DMs in
group decision environment based on an extended TOPSIS (Technique for Order Preference
by Similarity to an Ideal Solution) method. We define the positive ideal solution as the
average of group decision. The negative ideal solution includes two parts: left and right
negative ideal solution, which are the minimum and maximum matrixes of group decision,
respectively. We give an example to illustrate the developed approach. Finally, the advan-
tages and disadvantages of this study are also compared.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Multiple attribute decision-making (MADM) is an important part of modern decision science. It always involves multiple
decision attributes and multiple decision alternatives. The purpose of the decision-making is finding the most desirable
alternative(s) from a discrete set of feasible alternatives with respect to a finite set of attributes. It has been extensively ap-
plied to various areas such as society, economics, military, management, etc. [1–6], and has been receiving more and more
attention over the last decades [7,8].

The increasing complexity of the socio-economic environment makes it less and less possible for single decision maker
(DM) to consider all relevant aspects of a problem. As a result, many decision-making processes, in the real world, take place
in group settings [9]. Moving from single DM’s setting to group members’ setting introduces a great deal of complexity into
the analysis. For example, consider that these DMs usually come from different specialty fields, and thus each DM has his/her
unique characteristics with regard to knowledge, skills, experience and personality, which implies that the DM usually has
different influence in overall decision result. That is, the weights of DMs are different. Therefore, how to determine the
weights of DMs will be an interesting and important research topic. At present, many methods have been proposed to deter-
mine the weights of DMs, for example, French [10] proposed a method to determine the relative importance of the groups
members by using the influence relations, which may exist between the members. Theil [11] proposed a method based on
the correlation concepts when the member’s inefficacy is measurable. Keeney and Kirkwood [12], and Keeney [13] suggested
the use of interpersonal comparisons to obtain the values of scaling constants in the weighted additive social choice function.
Bodily [14] derived the member weight as a result of designation of voting weights from a member to a delegation subcom-
mittee made up of other members of the group. By using the deviation measures between additive linguistic preference
. All rights reserved.
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relations, Xu [15] gave a straightforward method to determine the weights of DMs by Bodily’ method [14]. Mirkin and Fish-
burn [16] proposed two approaches which use the eigenvectors method to determine the relative importance of the group’s
members. Martel and Ben Khélifa [17] proposed a method to determine the relative importance of groups members by using
individual outranking indexes. Van den Honert [18] used the REMBRANDT system (multiplicative AHP and associated SMART
model) to quantify the decisional power vested in each member of a group, based on subjective assessments by the other
group members. Jabeur and Martel [19] proposed a procedure which exploits the idea of Zeleny [3] to determine the relative
importance coefficient of each member. Brock [20] used a Nash bargaining based approach to estimating the weights of
group members intrinsically. Ramanathan and Ganesh [21] proposed a simple and intuitively appealing eigenvector based
method to intrinsically determine the weights of group members using their own subjective opinions. Chen and Fan [22]
proposed a factor score method for obtaining a ranking of the assessment levels of experts in group-decision analysis.
Yue [23] developed a method for determining weights of DMs with interval numbers. In this article, we shall discuss the
weights of DMs based on the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS).

TOPSIS, the well-known classical MADM methods, was first developed by Hwang and Yoon [24]. It helps DMs organizing
the problems to be solved, and carry out analysis, comparing and rankings of the alternatives. Accordingly, the selection of a
suitable alternative(s) will be made.

The basic idea of TOPSIS is rather straightforward. It simultaneously considers the distances to both positive ideal solution
(PIS) and negative ideal solution (NIS), and a preference order is ranked according to their relative closeness, and a combina-
tion of these two distance measures [24–32]. That is, the best alternative has simultaneously the shortest distance from the
PIS and the farthest distance from the NIS. The PIS is identified with a ‘‘hypothetical alternative’’ that has the best values for all
considered attributes whereas the NIS is identified with a ‘‘hypothetical alternative’’ that has the worst attribute values.

The existing approaches have significant contributions to solving the weights of DMs problems. Most of the literature men-
tioned above described the individual decision information by a multiplicative preference matrix. Until now there has been
little investigation of the weights of DMs based on individual decision information, in which the attribute values are given as
observations in nonnegative real numbers, and the DMs have their subjective preferences on alternatives. The aim of this pa-
per is to propose a novel approach to determining the weights of DMs. The extended TOPSIS technique is also called group
TOPSIS in this article. For the given individual decision matrixes, the PIS of group opinion is depicted by a matrix, in which
elements are expressed in average of all individual decisions. The NIS includes two parts: left and right negative ideal solu-
tions, which are also depicted by a matrix, respectively. Specifically, for the normalized group decision matrixes, the left neg-
ative ideal solution (L-NIS) is the minimum matrix of group decision matrixes, the right negative ideal solution (R-NIS) is the
maximum matrix of group decision matrixes, and both are expressed in maximum separation from the PIS.

The paper is organized as follows. In the next section, briefly introduces the traditional TOPSIS and multiple attribute
group decision-making (MAGDM) method. In Section 3, we present an algorithm to determine weights of DMs based on
an extended TOPSIS method. In Section 4, we illustrate our proposed algorithmic method with an example. In Section 5,
we compare the proposed method with other methods. The final section concludes.

2. TOPSIS method and MAGDM problems

In this section, we review the TOPSIS method and MAGDM problems.
For convenience, we first let M = {1,2, . . . ,m}, N = {1,2, . . . ,n} and T = {1,2, . . . ,t}; i 2M, j 2 N, k 2 T. Let A = {A1,A2, . . . ,Am}

(m P 2) be a discrete set of m feasible alternatives, U = {u1,u2, . . . ,un} be a finite set of attributes, and D = {d1,d2, . . . ,dt} be
a group of DMs, and k = (k1,k2, . . . ,kt)T is the weight vector of DMs, where kk P 0;

Pn
k¼1kk ¼ 1.

2.1. Representation of TOPSIS method

For a MADM problem, suppose each alternative is evaluated with respect to the n attributes, whose values constitute a
decision matrix denoted by
ð1Þ
The TOPSIS method (see Fig. 1) consists of the following steps [32,33]:

1. Normalize the decision matrix.
In general, there are benefit attributes and cost attributes in the MADM problems. In order to measure all attributes in
dimensionless units and facilitate inter-attribute comparisons, we introduce the following formulas to normalize each
attribute value xij in decision matrix X = (xij)m�n into a corresponding element rij in normalized decision matrix given
by Eq. (2).



Fig. 1. Hierarchical structure of the traditional TOPSIS.
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ð2Þ

where

rij ¼
xijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1ðxijÞ2

q ; for benefit attribute xij; i 2 M; j 2 N ð3Þ

and

rij ¼ 1� xijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1ðxijÞ2

q ; for cost attribute xij; i 2 M; j 2 N: ð4Þ

2. Calculate the weighted normalized decision matrix. Suppose that W = (w1,w2, . . . ,wn)T is the weight vector of the attri-
butes, where wj P 0;

Pn
j¼1wj ¼ 1, we can construct the weighted normalized decision matrix as
ð5Þ
3. Determine the positive and negative ideal solutions.
The PIS A+ and NIS A� are determined, respectively, as follows:
Aþ ¼ fyþ1 ; yþ2 ; . . . ; yþn g ð6Þ

and

A� ¼ fy�1 ; y�2 ; . . . ; y�n g; ð7Þ

where yþj ¼ max
16i6m

fyijgðj 2 NÞ and y�j ¼ min
16i6m

fyijgðj 2 NÞ.

4. Measure the distance from positive and negative ideal solutions.
The separation of each alternative form the PIS, Sþi , is given as
Sþi ¼
Xn

j¼1

ðyij � yþj Þ
2

 !1
2

; i 2 M: ð8Þ
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Similarly, the separation form the NIS, S�i , is given as

S�i ¼
Xn

j¼1

ðyij � y�j Þ
2

 !1
2

; i 2 M: ð9Þ

5. Calculate the closeness coefficient to the ideal solutions.
The closeness coefficient of the ith alternative Ai with respect to the ideal solutions is defined as
Ci ¼
S�i

Sþi þ S�i
; i 2 M: ð10Þ

Since Sþi P 0 ði 2 MÞ and S�i P 0 ði 2 MÞ, then, clearly, Ci 2 [0,1] (i 2M).
6. Rank the preference order.

A set of alternatives then can be ranked by preference according to the descending order of Ci; in other words, larger Ci

means better alternative.

2.2. Representation of MAGDM problem

A MAGDM problem can be described as follows:
Let
ð11Þ
be decision matrix of kth DM. First of all, we normalize Xk into Rk in Eq. (12) by Eqs. (3) and/or (4).
ð12Þ
For a given weight vector W = (w1,w2, . . . ,wn)T of the attributes, we can construct the weighted normalized decision ma-
trix as
ð13Þ
Then, we can obtain a group decision matrix Y = (yij)m�n by using following formula
Y ¼
Xt

k¼1

kkYk ¼ ðyijÞm�n; ð14Þ
where k = (k1,k2, . . . ,kt)T is the weight vector of DMs, where kk P 0;
Pn

k¼1kk ¼ 1, and yij ¼
Pt

k¼1kkyðkÞij .
Further, by using the aggregation operator
yi ¼
Xn

j¼1

yij; i 2 M; ð15Þ
to aggregate all the elements in the ith row of Y = (yij)m�n, and then get the overall attribute values yi(i 2M) of the alterna-
tives Ai(i 2M).

In view of this, the weight vector k = (k1,k2, . . . ,kt)T of DMs plays a very important role in MAGDM. The question is how to
determine the weight vector?
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3. Determining weights of DMs by an extended TOPSIS method

Based on the analysis above, this section will present an approach to determining the weighs of DMs. Firstly, we will ex-
plain why such a method is proposed. Then, an extended TOPSIS method is established. Finally, an algorithm for determining
the weighs of DMs is given.

3.1. Idea of the developed approach

The traditional TOPSIS method introduces two ‘‘reference’’ points: PIS and NIS in order to ranking of alternatives (see
Fig. 1). Moving from single DM’s setting to multiple DMs’ setting, a key issue is determination of ‘‘reference’’ points (or a
benchmark) of all individual decision matrixes in order to comparing the decision levels among DMs. We propose the
average matrix of group decision as the PIS of group TOPSIS. The reasons are that: (1) the PIS is the maximum compro-
mise (in mean sense) among all individual decisions of group; (2) the PIS is adopted as the final decision (outcome) of
group in most of the situations where a group decision must be taken. For example, for a teaching competition partic-
ipated in by young teachers in a university, if there are t DMs, the final score of each competitor is the average of t
scores given by the DMs; and (3) the NIS is the maximum individual regret (the farthest distance from PIS) for some
DMs.

TOPSIS method is suitable for cautious (risk avoider) DM(s), because the DM(s) might like to have a decision which not
only makes as much profit as possible, but also avoids as much risk as possible [29]. The developed approach in this paper
assigns high weights to those DMs if the DMs want to have maximum group utility (majority/group), and minimum individ-
ual risk (minority/individual) in mean sense.

In order to realize the idea above, in the following, we will establish an extended TOPSIS model in a group decision
environment.

3.2. An extended TOPSIS method

Let Yk ¼ ðyðkÞij Þm�n be weighted normalized decision matrix of kth (k 2 T) DM. As described in above section, in mean sense,
the best result of group decision making should be the average matrix of group decision:
ð16Þ
where Y� ¼ 1
t

Pt
k¼1Yk, and y�ij ¼ 1

t

Pt
k¼1yðkÞij ði 2 M; j 2 NÞ.

In other words, a DM is higher decision level because his/her opinion is closer to average. So we define Y� ¼ ðy�ijÞm�n as the
PIS of MAGDM. For the decision matrix Yk of kth DM, the closer the average matrix Y*, the more the weight of kth DM.

In order to measure decision level of each DM, we can calculate the distance between each individual decision matrix
Yk(k 2 T) and average matrix Y*. Consider that the Euclidean distance is the most widely used tool to measure the separation
of two objects in practical applications, we utilize it to measure the separation between Yk and Y*.

The separation of each individual decision Yk form the Y�; Sþk , is given as:
Sþk ¼ kYk � Y�k ¼
Xm

i¼1

Xn

j¼1

ðyðkÞij � y�ijÞ
2

 !1
2

; k 2 T: ð17Þ
In this sense, the smaller distance Sþk , the better decision Yk of kth DM.
Considering that, in mean sense, for a DM, the maximum risk is the maximum separation from the average matrix of

group decision. And the average matrix of group decision is the distributing center of all matrixes of group decision, for this
reason, we define following left and right maximum separation from the average matrix of group decision. That is, we divide
the NISs into two parts: L-NIS Y�l and R-NIS Y�r , respectively, as follows:
ð18Þ
and
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ð19Þ
where yl
ij ¼ min

16k6t
yðkÞij jy

ðkÞ
ij 6 y�ij

n o
and yr

ij ¼max
16k6t

yðkÞij jy
ðkÞ
ij P y�ij

n o
.

In fact, Y�l and Y�r are the minimum and maximum matrixes of group decision, respectively (see Fig. 2).
Similarly, the separations of each individual decision form the NISs, Sl�

k and Sr�
k , are given respectively as
Sl�
k ¼ kYk � Y�l k ¼

Xm

i¼1

Xn

j¼1

yðkÞij � yl
ij

� �2
 !1

2

; k 2 T ð20Þ
and
Sr�
k ¼ kYk � Y�r k ¼

Xm

i¼1

Xn

j¼1

yðkÞij � yr
ij

� �2
 !1

2

; k 2 T: ð21Þ
Clearly, the larger the separations Sl�
k and Sr�

k , the better the decision Yk of kth DM. Therefore, similar to (10), a closeness coef-
ficient is defined to determine the ranking order of all DMs once the Sþk ; S

l�
k and Sr�

k have been calculated. The closeness coef-
ficient of the kth DM (weighted normalized decision matrix Yk) with respect to Y* is defined as:
Ck ¼
Sl�

k þ Sr�
k

Sþk þ Sl�
k þ Sr�

k

; k 2 T: ð22Þ
Since Sl�
k P 0; Sr�

k P 0 and Sþk P 0 ðk 2 TÞ, then, clearly, Ck 2 [0,1] (k 2 T).
Obviously, an individual decision matrix Yk is closer to the Y* and farther from Yl�

k as well as Yr
k
�, and as Ck approaches to

1. Therefore, according to the closeness coefficient, we can determine the order of all DMs.
In order to get the weight vector of DMs from the closeness coefficient, we can make the following transformation
kk ¼
CkPt
k¼1Ck

; k 2 T; ð23Þ
such that kk P 0;
Pt

k¼1kk ¼ 1:

3.3. The presented algorithm

In sum, an algorithm to determine the weight vector of DMs, based TOPSIS approach, can be shown as the following six
steps.
Fig. 2. Hierarchical structure of the extended TOPSIS.
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Step 1: Normalize the decision matrices Xk (k 2 T) in Eq. (11) into Rk (k 2 T) in Eq. (12) by Eqs. (3) and/or (4), where Xk(k 2 T)
is decision matrix of the kth (k 2 T) DM.

Step 2: Calculate the weighted normalized decision matrices Yk(k 2 T) by Eq. (13).
Step 3: Determine the PIS Y*, L-NIS Y�l and R-NIS Y�r for all individual decisions by Eqs. (16), (18) and (19), respectively.
Step 4: Calculate the separation measures from the PIS, L-NIS and R-NIS, Sþk ; S

l�
k and Sr�

k , by Eq. (17), Eqs. (20) and (21),
respectively.

Step 5: Calculate the closeness coefficient Ck to the ideal solutions by Eq. (22).
Step 6: Determine weight vector k = (k1,k2, . . . ,kt)T of DMs by Eq. (23).

4. Illustrative example

In the following, an instance (adapted from Shih et al. [34]) is provided to illustrate the proposed approach.
Example. A human resources selection example.
A local chemical company tries to recruit an on-line manager. The company’s human resources department provides

some relevant selection tests as the benefit attributes to be evaluated. These objective test include knowledge tests (lan-
guage test, professional test and safety rule test), skill tests (professional skills and computer skills). After these objective
tests, there are 17 qualified candidates (as alternatives marked by A1,A2, . . . ,A17, or briefly marked by 1,2, . . . ,17) on the list
for the selection. Then four DMs (marked by d1,d2,d3,d4) are responsible for the selection from among them based on sub-
jective tests. The basic data of subjective attributes, including panel interview and 1-on-1 interview tests (only quantitative
information here) for the decision, are listed in Table 1.

Following the suggested steps, each DM will construct a normalized decision matrix. Since all listed attributes are benefit
attributes, by Eq. (3), we first normalize Table 1 into Table 2 according to Step 1. Table 2 includes 4 normalized decision
matrixes.

In addition, the weights of attributes, elicited by DMs, are shown in Table 3.
By Step 2, the each column/attribute vector in Table 2 is respectively multiplied by the associated weight given by DM in

Table 3. Then, the weighted normalized decision results are obtained which are shown in Table 4.
The ideal solutions Y�; Y�l and Y�r , by Step 3, are summarized in Table 5.
By Step 4, We can respectively calculate the separations of each weighted normalized decision matrix from these ideal

solutions, which are summarized in Table 6.
Further, we can respectively calculate the closeness coefficients by Step 5, the weight vector of DMs by Step 6, and DMs’

ranking, which are organized in Table 6. The final DMs’ priority ranking produced by the extended TOPSIS in this paper is as
Table 1
Decisio

No. o
cand

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Note: (
d2 � d4 � d3 � d1:
The 6th column of Table 6 has illustrated that the vector (0.2350,0.2601,0.2485,0.2564)T is weight vector of DMs. We
utilize the Eq. (14) to aggregate all the individual decisions in Table 4 into the collective decisions in the columns 2 and 3
of Table 7. Then, summing all elements in each line of columns 2 and 3 of Table 7, the integrated assessment of 17 candidates
are obtained as illustrated in column 4 of Table 7. The ranking of 17 candidates are also shown in last column of Table 7. We
can see that the 16th candidate is ranked first, and the 12th candidate is ranked last.
n matrixes of example–subjective attributes.

f
idates

X1 X2 X3 X4

Panel
interview

1-on-1
interview

Panel
interview

1-on-1
interview

Panel
interview

1-on-1
interview

Panel
interview

1-on-1
interview

80 75 85 80 75 70 90 85
65 75 60 70 70 77 60 70
90 85 80 85 80 90 90 95
65 70 55 60 68 72 62 72
75 80 75 80 50 55 70 75
80 80 75 85 77 82 75 75
65 70 70 60 65 72 67 75
70 60 75 65 75 67 82 85
80 85 95 85 90 85 90 92
70 75 75 80 68 78 65 70
50 60 62 65 60 65 65 70
60 65 65 75 50 60 45 50
75 75 80 80 65 75 70 75
80 70 75 72 80 70 75 75
70 65 75 70 65 70 60 65
90 95 92 90 85 80 88 90
80 85 70 75 75 80 70 75

1) There are four DMs selected for the evaluation. (2) There are a total of 17 candidates for evaluation. (3) All listed attributes are benefit attributes.



Table 2
Normalized decision matrixes.

No. R1 R2 R3 R4

Panel
interview

1-on-1
interview

Panel
interview

1-on-1
interview

Panel
interview

1-on-1
interview

Panel
interview

1-on-1
interview

1 0.2624 0.2416 0.2747 0.2565 0.2552 0.2297 0.2988 0.2683
2 0.2132 0.2416 0.1939 0.2245 0.2382 0.2526 0.1992 0.2209
3 0.2952 0.2738 0.2585 0.2726 0.2722 0.2953 0.2988 0.2998
4 0.2132 0.2255 0.1777 0.1924 0.2314 0.2362 0.2058 0.2272
5 0.2460 0.2577 0.2424 0.2565 0.1702 0.1805 0.2324 0.2367
6 0.2624 0.2577 0.2424 0.2726 0.2620 0.2690 0.2490 0.2367
7 0.2132 0.2255 0.2262 0.1924 0.2212 0.2362 0.2224 0.2367
8 0.2296 0.1933 0.2424 0.2084 0.2552 0.2198 0.2722 0.2683
9 0.2624 0.2738 0.3070 0.2726 0.3063 0.2789 0.2988 0.2904

10 0.2296 0.2416 0.2424 0.2565 0.2314 0.2559 0.2158 0.2209
11 0.2296 0.2416 0.2004 0.2084 0.2042 0.2133 0.2158 0.2209
12 0.1968 0.2094 0.2101 0.2405 0.1702 0.1969 0.1494 0.1578
13 0.2460 0.2416 0.2585 0.2565 0.2212 0.2461 0.2324 0.2367
14 0.2624 0.2255 0.2424 0.2309 0.2722 0.2297 0.2490 0.2367
15 0.2296 0.2094 0.2424 0.2245 0.2212 0.2297 0.1992 0.2051
16 0.2952 0.3061 0.2973 0.2886 0.2893 0.2625 0.2922 0.2840
17 0.2624 0.2738 0.2262 0.2405 0.2552 0.2625 0.2324 0.2367

Note: (1) There are four DMs selected for the evaluation. (2) There are a total of 17 candidates for evaluation.

Table 3
Weights on attributes of example.

No. Attributes The weights of the group

d1 d2 d3 d4

1 Panel interview 0.5243 0.4574 0.4160 0.4503
2 1-on-1 interview 0.4757 0.5426 0.5840 0.5497

Note: There are four DMs selected for the evaluation.

Table 4
Weighted normalized decision matrixes.

No. Y1 Y2 Y3 Y4

Panel
interview

1-on-1
interview

Panel
interview

1-on-1
interview

Panel
interview

1-on-1
interview

Panel
interview

1-on-1
interview

1 0.1376 0.1149 0.1256 0.1392 0.1062 0.1341 0.1345 0.1475
2 0.1118 0.1149 0.0887 0.1218 0.0991 0.1475 0.0897 0.1214
3 0.1548 0.1303 0.1182 0.1479 0.1133 0.1724 0.1345 0.1648
4 0.1118 0.1073 0.0813 0.1044 0.0963 0.1380 0.0927 0.1249
5 0.1290 0.1226 0.1109 0.1392 0.0708 0.1054 0.1046 0.1301
6 0.1376 0.1226 0.1109 0.1479 0.1090 0.1571 0.1121 0.1301
7 0.1118 0.1073 0.1035 0.1044 0.0920 0.1380 0.1002 0.1301
8 0.1204 0.0920 0.1109 0.1131 0.1062 0.1284 0.1226 0.1475
9 0.1376 0.1303 0.1404 0.1479 0.1274 0.1629 0.1345 0.1596

10 0.1204 0.1149 0.1109 0.1392 0.0963 0.1495 0.0972 0.1214
11 0.0860 0.0920 0.0916 0.1131 0.0849 0.1245 0.0972 0.1214
12 0.1032 0.0996 0.0961 0.1305 0.0708 0.1150 0.0673 0.0867
13 0.1290 0.1149 0.1182 0.1392 0.0920 0.1437 0.1046 0.1301
14 0.1376 0.1073 0.1109 0.1253 0.1133 0.1341 0.1121 0.1301
15 0.1204 0.0996 0.1109 0.1218 0.0920 0.1341 0.0897 0.1128
16 0.1548 0.1456 0.1360 0.1566 0.1203 0.1533 0.1316 0.1561
17 0.1376 0.1303 0.1035 0.1305 0.1062 0.1533 0.1046 0.1301

Note: (1) There are four DMs selected for the evaluation. (2) There are a total of 17 candidates for evaluation.
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5. Comparisons the extended TOPSIS with other methods

In this section we compare the extended TOPSIS method with other methods. The methods to be compared here are the
traditional TOPSIS method [24] and the another extended TOPSIS method proposed by Shih et al. [34].



Table 5
Ideal solutions.

No. PIS Y* L-NIS Y�l R-NIS Y�r

Panel interview 1-on-1 interview Panel interview 1-on-1 interview Panel interview 1-on-1 interview

1 0.1260 0.1339 0.1062 0.1149 0.1376 0.1475
2 0.0973 0.1264 0.0887 0.1149 0.1118 0.1475
3 0.1302 0.1539 0.1133 0.1303 0.1548 0.1724
4 0.0955 0.1186 0.0813 0.1044 0.1118 0.1380
5 0.1038 0.1243 0.0708 0.1054 0.1290 0.1392
6 0.1174 0.1394 0.1090 0.1226 0.1376 0.1571
7 0.1019 0.1199 0.0920 0.1044 0.1118 0.1380
8 0.1150 0.1202 0.1062 0.0920 0.1226 0.1475
9 0.1350 0.1502 0.1274 0.1303 0.1404 0.1629

10 0.1062 0.1313 0.0963 0.1149 0.1204 0.1495
11 0.0899 0.1128 0.0849 0.0920 0.0972 0.1245
12 0.0843 0.1080 0.0673 0.0867 0.1032 0.1305
13 0.1110 0.1320 0.0920 0.1149 0.1290 0.1437
14 0.1185 0.1242 0.1109 0.1073 0.1376 0.1341
15 0.1032 0.1171 0.0897 0.0996 0.1204 0.1341
16 0.1357 0.1529 0.1203 0.1456 0.1548 0.1566
17 0.1130 0.1360 0.1035 0.1301 0.1376 0.1533

Note: There are a total of 17 candidates for evaluation.

Table 6
Separations, closeness coefficients, weights and ranking.

DMs Sþk Sl�
k

Sr�
k Ck kk Ranking

d1 0.0902 0.1284 0.1342 0.7444 0.2350 4
d2 0.0460 0.1092 0.1065 0.8242 0.2601 1
d3 0.0675 0.1246 0.1252 0.7874 0.2485 3
d4 0.0523 0.1116 0.1150 0.8125 0.2564 2

Table 7
Integrated assessment of 17 candidates.

No. of candidates Panel interview 1-on-1 interview Sum Ranking

1 0.1259 0.1344 0.2603 4
2 0.0970 0.1265 0.2235 12
3 0.1298 0.1542 0.2840 3
4 0.0951 0.1187 0.2138 15
5 0.1036 0.1246 0.2281 11
6 0.1170 0.1397 0.2567 5
7 0.1017 0.1200 0.2217 13
8 0.1149 0.1207 0.2357 10
9 0.1350 0.1505 0.2855 2
10 0.1060 0.1315 0.2375 9
11 0.0901 0.1131 0.2032 14
12(#) 0.0841 0.1082 0.1923 17

13 0.1108 0.1323 0.2431 7
14 0.1181 0.1245 0.2426 8
15 0.1030 0.1173 0.2203 16
16(*) 0.1354 0.1531 0.2885 1

17 0.1125 0.1360 0.2485 6

Note: (1) There are a total of 17 candidates for evaluation. (2) ‘‘*’’ and ‘‘#’’ mark the first and the last candidate, respectively.
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Each of methods has its advantages and disadvantages and none of them can always perform better than the others in any
situations. It all depends on how we look at things, and not on how they are themselves.

The traditional TOPSIS has solved a MADM problem with just one DM; whereas the extended TOPSIS technique in this
paper has solved a MADM problem with multiple DMs. The PIS/NIS in the traditional TOPSIS, as a benchmark of all alterna-
tives (vectors), is expressed by a vector; whereas the PIS and NISs of the extended TOPSIS technique in this paper, as a bench-
mark of all decision matrixes of DMs, are expressed by three matrixes which are PIS, L-NIS and R-NIS.

As described in the above section, the traditional TOPSIS method is suitable for cautious (risk avoider) DM(s), because the
DM(s) might like to have a decision which not only makes as much profit as possible, but also avoids as much risk as possible



Table 8
Comparison with the traditional TOPSIS.

Characteristics Traditional TOPSIS Extended TOPSIS

Evaluation
objective

Selection and ranking of a number of alternatives Selection and ranking of a number of DMs

No. of DMs One More than one
Weights on

attributes
Given Given

Cardinal
information

Alternatives with respect to attributes Alternatives with respect to attributes of multiple DMs

PIS The best alternative expressed by a vector The best decision expressed by a matrix
NIS The worst alternative expressed by a vector The worst decisions expressed by L-NIS and R-NIS matrixes
Core process The distances from each alternative to PIS and NIS (between

two vectors)
The distances from each decision to PIS, L-NIS and R-NIS
(between two matrixes)

Table 9
Comparison with the method proposed by Shih et al.

Characteristics Proposed by Shih et al. Proposed by this paper

Decision
information

Decision matrixes X1, X2, . . . , Xt of alternatives with respect to
attributes

Decision matrixes X1, X2, . . . , Xt of alternatives with respect
to attributes

No. of DMs t > 1 t > 1
Weights on

attributes
Subjective assessments given by DMs Given

PIS The best alternative expressed by a vector The best decision expressed by a matrix
NIS The worst alternative expressed by a vector The worst decision expressed by L-NIS and R-NIS matrixes
Core process The separations (s�i and sþi ) from each alternative to PIS and NIS

(between two vectors)
The separations (Sþk ; S

l�
k and Sr�

k ) from each decision to PIS,
L-NIS and R-NIS (between two matrixes)

Relative
closeness

s�i
sþ

i
þs�

i
, for alternative Ai

Sl
k
�
þSr

k
�

Sþk þSl
k
�
þSr

k
� , for DM dk

Weights on DMs Same Different
Key decision Ranking of a number of alternatives Ranking of a number of DMs
Final decision Ranking of a number of alternatives Ranking of a number of alternatives
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[29]. In this sense, the distance measure between an alternative (vector) and PIS reflects the alternative’s preference in the
traditional TOPSIS, i.e., the smaller the distance measure from PIS, the more the alternative’s preference; whereas the dis-
tance measure between an individual decision matrix and PIS reflects the DM’s profit in this extended TOPSIS technique,
i.e., the smaller the distance measure from PIS, the more the DM’s profit. On the contrary, the distance measure between
an alternative (vector) and NIS reflects the alternative’s preference to avoid risk in the traditional TOPSIS, i.e., the larger
the distance measure, the more the alternative’s preference to avoid risk; whereas the distance measures between an indi-
vidual decision matrix and NISs, including L-NIS and R-NIS, reflects the DM’s decision level to avoid risk in this extended
TOPSIS technique, i.e., the larger the distance measure from NIS(s), the higher the DM’s decision level to avoid risk, or the
smaller the DM’s individual regret (the smaller distance from PIS). The above mentioned merits and demerits of this ex-
tended TOPSIS method are briefly shown in Table 8.

Another remarkable TOPSIS method is proposed by Shih et al. [34], which is a good MADM technique in a group decision
environment.

In the method proposed by Shih et al., the ideal solutions are generated by individual decision matrix, so that the infor-
mation of the ideal solutions is dispersive. In this paper, the ideal solutions are generated by group decision (all decision ma-
trixes of group), so that the information of the ideal solutions is a whole (divides into three matrixes: PIS, L-NIS and R-NIS)
and reflects a group effect.

The DMs’ weights are same in the method proposed by Shih et al., whereas the DMs’ weights of the proposed method in
this paper are different, which are generated from the individual decision matrix. In general, the information of weight from
the data (measured values) is more suitable than a priori or same. Additionally, each individual decision matrix provides not
only the information of alternatives in group but also the information of individual weight (decision level).

As far as the extended TOPSIS in this paper is concerned, its biggest advantage is that ideal solutions are macroscopic and
high-dimension, so it is a clear, convenient and practical approach for dealing with group decision problems.

Others of relative comparison with the method proposed by Shih et al. are shown in Table 9.
6. Conclusions

Many practical problems are often characterized by MAGDM. Evaluating decisional level of DM is important research
topic in group decision making. In this paper, we have developed an approach for determining weights of DMs in a group
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decision environment based on the extended TOPSIS method. Compared to the existing MADM approaches, the method pro-
posed in this paper has certain distinguishing characteristics. The developed algorithm is applicable not only ranking DMs,
but also aggregating individual decision into a group decision, then ranking alternatives according to the group decision.

However, it should be made clear that the use of the proposed method is limited by the requirement that the attribute
data is in the form of crisp numbers. The proposed method should be extended to support situations in which the informa-
tion is in other forms, e.g., linguistic variables or fuzzy numbers.
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