
Journal of Computational and Applied Mathematics 164–165 (2004) 555–567
www.elsevier.com/locate/cam

New implementation of the Tau method for PDEs
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Abstract

In this work we propose an extension of the algebraic formulation for the Tau method for the numerical
solution of partial di6erential problems set on domains in Rn; n¿ 2. This extension is based on an appropriate
choice of a basis for the space of polynomials in Rn and on the construction of the algebraic equivalent
representation of the problem. Another feature of this implementation is related to the solution procedure
for the necessarily large dimensional linear systems involved. We developed for this purpose an adapted LU
factorization with a special pivoting strategy to build approximants in the sense of Tau method and to allow
the solution of large problems.

Numerical results for di6erential problems in 2D and 4D will be shown.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The Tau method originally proposed by Lanczos [4,5] for ordinary di6erential equations has been
extended by Ortiz [6], and formulations for partial di6erential equations have been studied by Ortiz
et al. [1,8]. Most of these formulations are based on an algebraic representation of the di6erential
problem. On the literature all the problems treated by this approach were for dimension n = 2, and
the algorithms were developed with that in mind. In fact, most of the algorithmic approaches are
not generalizable. This may be an important limitation for the application of the method to real life
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problems. It is relevant to stress that recently there has been work on applications of the Tau method
published in literature, for instance [2,3,9], for dimension n6 2.

In this work, we present an extension of the algebraic formulation, given in [8] and further
developed in [1,7], that allows the generalization to partial di6erential problems set on domains on
Rn. With this new approach, real life problems of dimension higher than two can be solved using
Tau approximation.

This paper is organized as follows. In Section 2, we brieLy review the classical description of the
Tau method. In Section 3, we will describe the extension of the algebraic formulation of the Tau
method to problems in Rn. This will be done also for the case n = 2 to be more easily understood
and the generalization for greater dimensions is straightforward. In Section 4, the algorithm and the
details of the pivoting strategy will be given and Enally in Section 5, we will present some numerical
results for problems with domains in R2 and R4.

2. The classical formulation

The Tau method for the solution of the partial di6erential problem

Dy(x) = f(x); x∈� ⊂ Rn;

Djy(x) = 
j(x); j = 1; : : : ; J; (1)

in a rectangular domain �, where D is a linear partial di6erential operator, consists of the construction
on a polynomial approximation ŷ to y such that ŷ satisEes the supplementary (boundary, initial or
mixed) conditions and Dŷ agrees with D applied to the series expansion of y, as far as possible or,
equivalently, ŷ satisEes exactly a perturbed equation Dy(x) = f(x) + 
(x), where 
 is a polynomial
perturbation term.

In [1,8], the authors represent, for n=2; y(x1; x2)=X T
1 AX2 with Xj =(1; xj; x2

j ; : : :)
T; j=1; 2, where

A is the coeNcient matrix of the series expansion, and the algebraic representation of the di6erential
operator is given by Dy(x1; x2) = X T

1 D(A)X2. Such representation is not suitable to generalize to
higher dimension since the action of each basis is taken on both sides of matrix D(A).

3. Extension to Rn

The idea is to consider the action of the basis in one-side of the matrix representation of the
operator. In [8] a technique is presented, called stringing, but, although it is not restricted to n =
2, the authors did not present any implementation of it. In [7] the one-sided approach is used
but only for bidimensional (nonlinear) PDEs. In [10] the authors presented a systematic way to
construct the action of the basis in one-side for the bidimensional case. Here we extend this idea to
n-dimensional case and in the next section we present a numerical implementation that allows the
automatic resolution of the problem (1) and the use of high degrees in the Tau approximants.
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3.1. Algebraic representation of the di4erential problem

We begin by deEning the convenient basis for Rn. Let i = (i1; : : : ; in)∈Rn be a multiindex in
Nn

0; ij ∈N0, j = 1; : : : ; n. By deEnition |i| = i1 + · · · + in. For x = (x1; : : : ; xn)∈Rn the associated
monomial to i is xi = xi11 · · · xinn .

Let X =Xn ⊗Xn−1 ⊗ · · · ⊗X1 be the Kronecker product of the power basis Xj = (1; xj; x2
j ; : : :); j =

1; : : : ; n: X = (xi)∞i=0 deEnes a basis for the space of algebraic polynomials in the variables x1; : : : ; xn
and induces a natural ordering in the multiindexes set Nn

0. With this ordering we can write, at least
formally,

y = a(x) =
∞∑
i=0

aixi;

as a power series expansion

a(x) = a · X;
where a = (ai)∞i=0 is the coeNcient vector of that representation.

Let D be a linear di6erential operator with polynomial coeNcients pi(x), of order �j in each of
the variables xj,

D ≡
�∑

i=0

pi(x)
9|i|
9xi ; (2)

where � = (�1; : : : ; �n) is a multiindex on Nn
0. The e6ect of the action of the operator D on the

coeNcients of a(x) is given [11] by

Da(x) = a ·�x · X;
where �x = ((�ij))∞i; j=0 is a band inEnite matrix and �ij is the coeNcient of xj in the polynomial
Dxi. The number of upper diagonals in the matrix �x is equal to h = (h1; : : : ; hn), the height of the
di6erential operator.

If Wj = Vj · Xj is an orthogonal polynomial basis for the space of polynomials in the variable xj,
deEned by the lower triangular matrix Vj, then V = Vn ⊗ · · · ⊗ V1 deEnes a basis

W = V · X = (wi)∞i=0; wi = V · xi (3)

for the space of polynomials in n variables.
Let

y = �(w) =
∞∑
i=0

�iwi = � ·W;

where �= a ·V−1 is the projection onto the basis W of the series expansion of the function y. Then

Dy = � ·�w ·W;

where �w = V ·�x · V−1 is the trapezoidal inEnite matrix representing the action of the operator D
on the elements of the basis W .
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The di6erential equation of (1)

Dy = f(x); x∈� ⊂ Rn (4)

with D as in (2) and f(x) an algebraic polynomial, can be written as an inEnite linear matrix
equation

a ·�x = fx;

where f(x) = fx · X is the representation of f(x) in the basis X . If fw = fx · V−1 is the projection
of fx on the orthogonal basis W = V · X that equation can be written as

� ·�w = fw:

The supplementary conditions of (1)

Djy ≡
∑
i

gj; i(x)
9|i|
9xi a(x)

∣∣∣∣∣
xl=kj

= 
j(x); j = 1; : : : ; J; (5)

where 
j(x) and gj; i(x) are polynomials and xl = kj are conditions related to di6erent sections of the
domain �, can be treated in similar way as we did with the di6erential equation. In fact, let Bj be
the matrix representing the action of Dj on X and 
j the vector representing 
j(x) = 
j · X . Then
Eq. (5) can be written in the matrix form

a · B(j) = 
j; j = 1; : : : ; J

or, in the basis W ,

� · B( j)
w = 
j; j = 1; : : : ; J;

where B( j)
w = V · Bj; j = 1; : : : ; J .

We conclude that, at least formally, the di6erential problem (1) is equivalent to the algebraic
problem

� ·�w = fw;

� · B( j)
w = 
j; j = 1; : : : ; J:

3.2. Dimension 2

For the case n = 2 we have shown in [10] that if the solution of (4) admits the representation

y = a(x1; x2) = �(w1; w2) = � · (w2 ⊗ w1);

then �(w1; w2) satisEes

� ·�w = fw

and the supplementary conditions (5), for some P · Q such that P + Q = J , can be expressed as

� · Bp = 
p; p = 1; : : : ; P
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Fig. 1. Structures of �w; Bp and Bq in dimension 2.

and

� · Bq = 
q; q = 1; : : : ; Q:

In this case the structure of the matrices �w; Bp and Bq is shown in Fig. 1.
To obtain a Tau approximation �(k1 ; k2)(w1; w2) of degree at most k1 in w1 and k2 in w2 we truncate

the vector � and the columns of �w; Bp and Bq to its Erst k2 +1 row blocks, each of them truncated
to its Erst k1 + 1 rows. This operation results in rectangular matrices with k2 + h2 + 1 column blocks
each of them with k1 + h1 + 1 columns, where for i = 1; 2; hi = max{hij; j = 0; : : : ; J}; hi0 is the
height of D in xi and hij is the height of Dj in xi.

3.3. Dimensions higher than 2

If y admits the representation

y = a(x) = �(w) = � · (wn ⊗ · · · ⊗ w1);

then we can use exactly the same procedure that we have for dimension 2 for the construction of a
Tau approximation of the solution of the di6erential problem. For dimension n the structure in the
matrices can be deEned, like we did for dimension 2, as being recursively the “Kronecker product”
of the matrices for the case of dimension n− 1 and for the case of dimension 1.

To obtain a Tau approximation �(k) of degree at most

k = (k1; : : : ; kn); (6)

in w = (w1; : : : ; wn) we truncate the vector � and the matrices �w and B( j)
w to its Erst ki + 1 blocks

in each of the levels i; i = 1; : : : ; n of their structures. This approximation ŷ = a(k)(x) = �(k) ·W is a
Tau approximation of the solution of the problem since

Djŷ = 
j; j = 1; : : : ; J

and

Dŷ = f(x) + 
(k)(x); (7)

where 
(k) is a polynomial. In fact ŷ satisEes the given di6erential equation with a polynomial
perturbation, following the formulation of Lanczos and Ortiz, and Dŷ(x) agrees with Dy as far as
possible, following the alternative formulation of da Silva [12,13] for the Tau method.
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4. Numerical computation of the Tau approximation

As explained in the previous section in order to get a Tau approximation �(k) of degree at most
k (6) in w = (w1; : : : ; wn), we construct a linear system

Az = b; (8)

where A = [B(1)
w · · ·B(J )

w �w]T of dimension nr × nc; b = [
1 · · · 
Jfw]T; zT = �(k),

nc =
n∏

i=1

(ki + hi + 1) and nr = (J + 1)
n∏

i=1

(ki + 1);

with hi =max{hij; j=0; : : : ; J}; hi0 the height of D in xi and hij the height of Dj in xi, for i=1; : : : ; n.
The structure of the coeNcient matrix is divided in J + 1 row blocks, where the Erst J blocks

correspond to the supplementary conditions and the last one to the di6erential operator. On Figs. 2
and 3, we can see the block structure of the coeNcient matrices for the examples (with two di6erent
basis) given in Section 5.

To solve the linear system (8) we need to take into account the fact that the supplementary
conditions must be satisEed which implies that the equations of the Erst J blocks are to be preferred
to the operator equations in the last one. A special LU factorization can be developed to integrate this
requirement by inducing a special row ordering within the partial pivoting. The need of introducing
that special row ordering justiEes the impossibility to solve the rectangular linear system by means
of least-squares methods or iterative methods.

To obtain a rectangular LU factorization of A, where the lower triangular factor L has dimension
nr × nc and the upper factor U is nc × nc, Gaussian elimination is used over the total rectangular
system with a special pivoting strategy. This strategy must be developed in order to preserve the
stability of LU factorization and, at the same time, to ensure that the supplementary conditions are
satisEed. The approach followed consists on using partial pivoting in the Erst J blocks, and just
allowing interchanges between equation ‘ with one equation from the last block (related to the
operator) in case of unsuccessful pivoting—a null pivot in step ‘.

After the process we obtain a L factor matrix divided in 2 blocks. The Erst one, L̂, of dimen-
sion nc× nc corresponds to linearly independent supplementary conditions and linearly independent
operator equations. The remaining block, R, of dimension (nr − nc) × nc contains the redundant
supplementary and operator equations, and the inconsistent operator equations.

From the linear system (8) we solve L̂Uz = b̂ with b = (b̂; r)T, where b̂ represents the permuted
right-hand side b associated with the rows of L̂. The R block is related to the polynomial 
(k) (7) by

(k) = (r−Rz)TW . Empirically a “good” Tau approximation ŷ of y is obtained whenever ‖r−Rz‖∞
is “small”.

The main steps of our procedure are summarized in the following algorithm:

(1) Given �;D;Dj; f(x); 
j(x) (as deEned in (4), (5)), W (like in (3)) and k (like in (6)).
(2) Build (truncated to k) �w; B

( j)
w ; fw; 
j.
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Fig. 2. Sparsity pattern of the coeNcient matrices for Example 1, using, respectively the canonical and the Chebyshev
basis. Matrices of size 1442 × 290 with nz nonzero elements.

(3) Compute LU factorization with special pivoting strategy
for ‘ = 1; nc,
(a) End a non null pivot over the rows from ‘ to J ∗∏n

i=1(ki + 1),
(b) if (a) fails (only null pivots on the supplementary conditions blocks) then End a non null

pivot over the rows from J ∗∏n
i=1(ki + 1) + 1 to nr (operator block),

(c) if (a) and (b) fails then there is no solution,
(d) interchange row ‘ with selected pivot row,
(e) form column ‘ of L̂ and row ‘ of U .

(4) Solve L̂Uz = b̂, where b̂ represents the permuted right-hand side b associated with the rows of L̂.
(5) Compute ŷ = zTW .
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Fig. 3. Sparsity pattern of the coeNcient matrices for Example 2, using, respectively the canonical and the Chebyshev
basis. Matrices of size 3248 × 1025 with nz nonzero elements.

Steps 1 and 2 of this algorithm were implemented using exact arithmetic in MATHEMATICA 2 in
order to take advantage of its algebraic manipulation capacities. Due to memory limitations for high
dimensional problems and/or high degree of polynomial approximations the following steps were
implemented using Loating point arithmetic in Fortran. Finally MATLAB 3 was used to integrate
both software packages allowing to proEt from its pos-processing facilities.

5. Numerical results

The previous algorithm was applied to two test problems.
Example 1 is the Saint–Venant’s torsion problem for a prismatic bar [14], solved by the Tau

method in [8] and Example 2 is a four-dimensional wave equation [15]. In Example 1, we want to
compare the results from our approach with those of [8]. In Example 2, we test our algorithm to a
higher dimensional problem.

2 MATHEMATICA is a registered trademark of Wolfram Research, Inc.
3 MATLAB is a registered trademark of The MathWorks, Inc.
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Table 1
‖y − ŷ (k)‖∞ for Example 1

k W = C; C

(4,4) 1:8 × 10−2

(8,8) 1:1 × 10−3

(16,16) 5:3 × 10−5

In each example the Egures display the error surfaces y− ŷ (k) choosing degrees ki and basis Wi,
in the variable xi; i = 1; : : : ; n. On the examples, Wi = C stands for the Chebyshev basis and Wi = I
for the canonical one.

Example 1. Problem:

92

9x2
1
a(x1; x2) +

92

9x2
2
a(x1; x2) = −2; (x1; x2)∈ (−1; 1) × (−1; 1)

a(±1; x2) = a(x1;±1) = 0:

Exact solution:

y = a(x1; x2) =
32
+3

∞∑
n=1;3;5;:::

(−1)(n−1)=2

n3

[
1 − cosh(nx2+=2)

cosh(n+=2)

]
cos(nx1+=2):

In Table 1, we show the ∞-norm of the error y− ŷ obtained for several polynomial degrees and
using the canonical and the Chebyshev basis.

Our algorithm reproduces the results presented in [8] with k = (4; 4) and k = (8; 8) for W = C; C
(the only two cases treated). As expected, in this example by increasing the degree of the polynomial
approximants we get a gain in the accuracy of the approximation.

In Fig. 4, we plot the error surface for the Chebyshev basis with k = (16; 16). In this particular
example, and as for other choices of symmetric degrees, the error surface shows a balancing behavior
that was also observed in [1].

Example 2. Problem:

92

9x2
1
a(x) +

92

9x2
2
a(x) +

92

9x2
3
a(x) =

92

9x2
4
a(x); x∈�;

a(x1; x2; x3; 0) = 0;

(x3 + 3)
9
9x4

a(x1; x2; x3; 0) = x1 + x2;

where � = {x = (x1; x2; x3; x4) : −1¡x1 ¡ 1;−1¡x2 ¡ 1;−1¡x3 ¡ 1; x4 ¿ 0}.
Exact solution:

a(x1; x2; x3; x4) =
1
2

(x1 + x2) ln
3 + x3 + x4

3 + x3 − x4
:
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Fig. 4. Error surface y − ŷ (16;16) in Example 1 for the Chebyshev basis.

Table 2
‖y − ŷ (k)‖∞ for Example 2

k W = I; I; I; I W = I; I; C; C

(1,1,4,4) 3:0 × 10−2 2:5 × 10−2

(1,1,8,8) 4:5 × 10−3 2:7 × 10−3

(1,1,12,12) 6:5 × 10−4 1:3 × 10−4

(1,1,16,16) 1:0 × 10−4 4:5 × 10−5

In this example we recover an important feature of the Tau method: if the solution is polynomial
in any variable then the Tau approximation of appropriate degree reproduces that polynomial. The
polynomial (x1 +x2) is preserved as the degrees of the approximation in variables x1 and x2 increase.
With this example we get

ŷ (1;1;1;1) =
1
9

(x1 + x2)(3 − x3)x4;

ŷ (2;2;2;2) =
1
27

(x1 + x2)(9 − 3x3 + x2
3)x4;

ŷ (3;3;3;3) =
1
81

(x1 + x2)(27 − 9x3 + 3x2
3 − x3

3 + x2
4 − x3x2

4)x4;

ŷ (4;4;4;4) =
1

243
(x1 + x2)(81 − 27x3 + 9x2

3 − 3x3
3 + x4

3 + 3x2
4 − 3x3x2

4 + 2x2
3x

2
4)x4;

in the canonical basis.
In Table 2, we show the ∞-norm of the error y − ŷ obtained for several polynomial degrees.

Since the exact and the Tau solution are both linear in variables x1 and x2, we worked with degree
1 in these variables. By the same reason, there was no need to choose an orthogonal basis for these
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Fig. 5. Error surface y − ŷ (1;1;16;16) for approximants in Example 2, with degrees 1 in x1 and x2 variables (canonical
basis) and degrees 16 in x3 and x4 (Chebyshev basis).

Fig. 6. Absolute error surface |y − ŷ (1;1;16;16)|, in logarithmic scale, obtained from that on Fig. 5.

two variables. The ability of consider distinct basis for each variable is another feature of the Tau
method.

We also see in this example, that by increasing the polynomial degree of the approximants smaller
error norms are obtained. For the case W = I; I; C; C and k = (1; 1; 16; 16) our method produced an
analytical solution with a precision of 5 decimal digits all over the domain.

In Fig. 5, we plot the error surface restricted to x1 = x2 = 1, with k = (1; 1; 16; 16) for W = I; I; I; I
and W = I; I; C; C. The Tau method produces, on a signiEcative part of the domain, an approximate
solution with error in the order of the machine precision used (10−16); this is clear from Fig. 6.
This is a four-dimensional problem solved in the Tau sense.
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6. Conclusions

We developed an extension of an approach of the Tau method for linear PDEs with domains in
Rn. Other current implementations only covered the case n = 2.

With this implementation it is possible to obtain approximate analytical solutions of linear n-
dimensional PDEs. This is important because recently there have been several application problems
for n6 2 using the Tau method, some of them cited in Section 1.

We developed a special pivoting strategy for the LU factorization to solve the overdeterminated
truncated linear system involved in the algebraic formulation of the Tau method. This approach
allowed us to solve larger problems than with symbolic computation.

We tested this approach with 2D and 4D examples. For both we could achieve a precision of
10−5 for the Tau approximation, although better precisions are achieved for most part of the points
in the domain.

This implementation preserves the characteristics of Tau method, namely it can deal with several
boundary type conditions (initial or multipoint).
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