Monotone Approximation in Several Variables

Robert Huotari and David Legg
Department of Mathematical Sciences. Indiana University-Purdue University at Fort Wayne, Fort Wayne, Indiana 46805. U.S.A.
Commuricated by R. Bojanic
Received September 1, 1984

Abstract

Let Ω denote the unit n-cube, $[0,1]^{n}$, and let M be the set of all real valued functions on Ω which are nondecreasing in each variable. If f is a bounded Lebesgue measurable function on Ω and $1<p<\infty$, let f_{p} denote the best $L_{p^{-}}$ approximation to f by elements of M. It is shown that f_{p} converges almost everywhere as p decreases to one to a best L_{1}-approximation to f by elements of M. If $/ /$ is continuous, then f_{F} is continuous and converges uniformiy as $p \downarrow 1$ to a best L_{1}-approximation to f by elements of M and f_{p} converges uniformly as $p \rightarrow \infty$ io a best L_{x}-approximation to f by elements of M. $C_{1} 1986$ Academic Press. Inc.

Introduction

For $n \geqslant 1$, let Ω be the unit n-cube, $[0,1]^{n}$. Let μ denote n-dimensional Lebesguc measure on Ω, let Σ consist of the μ-measurable subsets of Ω and, for $1 \leqslant p \leqslant \omega_{0}$, let $L_{p}=L_{p}(\Omega, \Sigma, \mu)$. If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ are elements of Ω, we write $x \leqslant y$ if $x_{t} \leqslant y_{t}$, for $1 \leqslant t \leqslant n$ and we write $x<y$ if $x_{1}<y_{t}$ for $1 \leqslant t \leqslant n$. A function $g: \Omega \rightarrow R$ is said to be nondecreasing in each variable if $x, y \in \Omega$ and $x \leqslant y$ imply that $g(x) \leqslant g(y)$. We will say that such a function is nondecreasing. Let M consist of all nondecreasing functions. For f in L_{p} and $1 \leqslant p \leqslant \infty$, let $\mu_{p}(f \backslash M)$ denote the set of all best L_{p}-approximations to f by elements of M. Since M is a closed convex subset of the uniformly convex Banach space $L_{p}, 1<p<x$, $\mu_{p}(f \mid M)$ consists (up to equivalence) of exactly one function, which we denote by f_{p}. The function f is said to have the Polya property if $f_{x}=$ $\lim _{p \rightarrow \infty} f_{n}$ is well defined as a bounded mcasurable function, i.c., if $p_{n} \rightarrow \alpha_{1}$, then $\lim _{n \rightarrow \infty} f_{p_{n}}$ exists almost everywhere on Ω. If the above condition is true with ∞ replaced by 1 , then f is said to have the Polya-one propercy. In Section 1, we show that, for any $n>0$, and f in L_{x} has the Polya-one property. In Section 2, we assume that f is continuous and establish both the Polya and Polya-one properties, with uniform convergence in each case, and show that f_{p} is continuous, $1 \leqslant p \leqslant \infty$.

1. The Polya-One Property

1.1 Theorem. If $g \in M$, then g is continuous almost everywhere.

Proof. Suppose l is a line in \mathbb{R}^{n} parallel to the line in \mathbb{R}^{n} joining $\overline{0}=$ $(0, \ldots, 0)$ and $\overline{1}=(1, \ldots, 1)$ and $/ \cap \Omega^{n} \neq \varnothing$, where Ω^{n} denotes the interior of Ω. Then there exist constants $a_{j}, j=1, \ldots, n$, and a such that $l \cap \Omega^{0}=$ $\left\{\left(t+a_{1}, \ldots, t+a_{n}\right): \quad 0<t<a\right\}$. Define $h: \quad(0, a) \rightarrow \mathbb{R}$ by $h(t)=$ $g\left(t+a_{1}, \ldots, t+a_{n}\right)$. Suppose $0<t_{0}<a, x=\left(t_{0}+a_{1}, \ldots, t_{0}+a_{n}\right)$ and g is discontinuous at x. Suppose without loss of generality that there exist $\varepsilon>0$ and $\left\{x^{i}\right\} \subset \Omega \cap l$ with $x^{i} \downarrow x$ and, for each $i, g\left(x^{i}\right)>g(x)+\varepsilon$. Then, for any t in $\left(t_{0}, a\right)$, there exists i such that $x^{i}=\left(x_{1}^{i}, \ldots, x_{n}^{i}\right)$ satisfies

$$
x_{j}<x_{j}^{i}<t+a_{j}, \quad 1 \leqslant j \leqslant n
$$

so

$$
h(t) \geqslant g\left(x^{i}\right)>g(x)+\varepsilon=k\left(t_{0}\right)+\varepsilon
$$

whence h is discontinuous at t_{0}. Since h is a nondecreasing function of one variable, there can be at most countably many points at which h is discontinuous. Thus, the one dimensional Lebesgue measure of the points of discontinuity of f on $l \cap \Omega$ is zero.

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear isometry such that $T(\overline{1})=(0,0, \ldots, 0, \sqrt{n})$. By Fubini's Theorem and the last paragraph the integral of the characteristic funtion of the image under T of the set of discontinuities of g is of n-dimensional Lebesgue measure zero. This concludes the proof of Theorem 1.1.

If $g \in M$, let $C(g)$ denote the set of all points of continuity of g. The following generalization of Helly's Theorem requires only minor modifications in the proof. (See [9, p. 221].)
1.2 Theorem. If G is a uniformly bounded family of elements of M and K is an at most countable subset of Ω, then there exists a function g in M and a sequence $\left\{g_{i}\right\}$ in G such that $g_{i}(x) \rightarrow g(x)$ for every x in $C(g) \cup K$.

Let $d_{1}(f, M)=\inf \left\{\|f-h\|_{1}: h \in M\right\}$, the distance from M to f.
1.3 Lemma. M is an L_{1}-closed convex subset of L_{1}, and $\mu_{1}(f \mid M)$ is a nonempty subset of L_{∞}.

Proof. Suppose $\left\{g_{i}: i=1,2, \ldots\right\} \subset M$ and $g_{i} \rightarrow g$ in L_{1}. Since $\left\{g_{i}\right\}$ has a subsequence which converges to g almost everywhere, we may assume that $g_{i} \rightarrow g$ almost everywhere. Let $\bar{g}=\lim \sup _{i \rightarrow \infty} g_{i}$. Then $\bar{g}=g$ almost everywhere. Since each g_{i} is in M, \bar{g} is in M. Thus g is equivalent to an element of M. Clearly M is convex.

Let $M^{\prime}=\left\{h \in M:\|h\|_{\infty} \leqslant 2\|f\|_{x}\right\}$. Since $\inf \left\{\|f-h\|_{1}: h \in \overline{M^{\prime}}\right\}=$ $d_{1}(f, M)$, there exists a sequence $\left\{g_{i}\right\} \subset M$ such that $\left\|f-g_{i}\right\|_{1} \rightarrow d_{i}(f, M)$. By Helly's Theorem $\left\{g_{i}\right\}$ has a subsequence which converges almost everywhere to a function g in M, so the Dominated Convergence Theorem shows that $g \in \mu_{1}(f \mid M)$. This concludes the proof of Lemma 1.3.

The next theorem shows that every bounded measurable function has the Polya-one property when M is the set from which best approximations are chosen. Let $f_{1}=m_{1}(f \mid M)$, the unique element of $\mu_{1}(f \mid M)$ which minimizes

$$
\left\{\int|f-h| \ln |f-h|: h \in \mu_{1}(f \mid M)\right\} .
$$

The function f_{1} is termed by Landers and Rogge the natural best L_{1}-approximation [8].
1.4 Theorem. If $f \in L_{\infty}$, then f_{n} converges almost everywhere as p decreuses to one to an element of $\mu_{1}(f \mid M)$.

Proof. We claim that $f_{p} \rightarrow f_{1}$ a.e. as $p \downarrow 1$. Suppose this is not the case. Then there exists a sequence $\left\{p_{i}\right\}$ such that $p_{i} \downarrow 1$ and there exists a subset E of Ω with $\mu E>0$ and, for all x in $E, f_{p_{1}}(x)$ does not converge to $f_{1}(x)$.

Since $f_{1} \in M$, Theorem 1.1 implies that there is a point y in Ω at which f_{1} is continuous but $f_{p_{1}}(y)$ does not converge to $f_{1}(y)$. Thus. there exists a subsequence $\left\{q_{i}\right\}$ of $\left\{p_{i}\right\}$ such that

$$
\lim _{i \rightarrow \infty} f_{u_{1}}(y)=d \neq f_{1}(y)
$$

By [8. Theorem 2], $f_{4:}$ converges strongly in L_{1} to f_{1}, so there is a subsequence $\left\{r_{i}\right\}$ of $\left\{q_{i}\right\}$ such that $f_{r_{i}} \rightarrow f_{1}$ almost everywhere. By Helly's Theorem there exist h in M and a subsequence $\left\{s_{i}\right\}$ of $\left\{r_{i}\right\}$ such that $f_{s_{t}} \rightarrow h$ on $C(h) \cup\{y\}$. Since $f_{s_{t}} \rightarrow f_{1}$ a.e., $f_{1}=h$ a.e. Since $h(y)=d$ and f_{1} is continuous at y and $h \in M$, either there exists an interval of the form $\left(s_{s} z\right)=$ $\{x \in \Omega: y<x<z\}$ such that x in (y, z) implies $h(x)>f_{1}(x)$ or there exists $u<y$ such that x in (w, y) implies $h(x)<f_{1}(x)$. In either case $\mu\left[f_{1} \neq h\right]>0$, a contradiction. This establishes Theorem 1.4.

There are two proper subsets N and P of M for which the result of Theorem 1.4 also holds. Characterizations of N and P require the following definition: If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$ are points in \mathbb{R}^{n}, let

$$
A_{b_{i}-a_{i}} g(a)=g\left(a_{1}, \ldots, a_{i-1}, b_{i}, a_{i+1}, \ldots, a_{n}\right)-g(a)
$$

and let

$$
\Delta_{b-a}^{n} g(a)=\Delta_{b_{1}-a_{1}} A_{b_{2}-a_{2}} \cdots A_{b_{n}-u_{n}} g(a)
$$

A function $f: \Omega \rightarrow \mathbb{R}$ is said to be positively monotone if and only if, whenever $a, b \in \Omega$ and $b \geqslant a$,

$$
\Delta_{b-a}^{n} g(a) \geqslant 0
$$

The set P will consist of all positively monotone functions in M. The set N consists of all positively monotone functions which vanish on the coordinate planes, i.e., $g\left(x_{1}, \ldots, x_{n}\right)=0$ if, for some $i, x_{i}=0$. That $N \subset M$ is shown by Hildebrandt [4, p. 107]. That Helly's Theorem holds for N (with convergence everywhere) is shown in [1, Proposition 2-3]. N is closely related to the set of all distribution functions on \mathbb{R}^{n}.

Though the Polya-one property holds, the Polya property fails. The example in $[2$, Sect. 4$]$ is easily modified to show this.

2. Uniform Polya Properties

In this section we restrict our attention to the case where $f \in C(\Omega)$, the set of real valued continuous functions on Ω. In this context, we show that both the Polya and Polya-one properties hold, with uniform convergence in each case, and that $f_{p} \in C(\Omega), 1 \leqslant p \leqslant \infty$.

We will reduce each question to a study of step functions. For convenience, we will use the dyadic rational partitions of Ω : for $k \geqslant 0$, let π_{k} denote the set of all points in Ω whose coordinates are rational numbers with denominator 2^{k}. The points of π_{k} divide Ω into a set of n-cubes $\{J(i)$: $i \in \mathscr{I}\}$, where each i has the form $i=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ and each i_{t} is an integer in $\left[2^{k}, 2^{k}+k\right]$. We will henceforth call an n-cube a cube. The cubes $\{J(i)$: $i \in \mathscr{I}\}$ are pairwise disjoint and their union is Ω. If x and y are, respectively, the infimum and supremum of $J(i)$, then $J(i)$ contains the set

$$
\left\{z: x_{1}<z_{1} \leqslant y_{1}, x_{2}<z_{2} \leqslant y_{2}, \ldots, x_{n}<z_{n} \leqslant y_{n}\right\}
$$

and any part of the boundary of $(x, y)=\{z: x<z<y\}$ which intesects the boundary of Ω. The point x will be called the lower corner of $J(i)$.

We will also denote by π_{k} the set of all such cubes. Let the cubes in π_{k} be partially ordered by restricting the order \leqslant on Ω to the set of all centers of cubes in π_{k}. We assume that the order on π_{k} corresponds to the natural ordering on \mathscr{F}.

Let I_{E} denote the indicator function of a subset E of Ω, i.e., $I_{E}(x)=1$ if $x \in E$ and $I_{E}(x)=0$ otherwise, and let S_{k} consist of all functions $f: \Omega \rightarrow \mathbb{R}$ which have the form

$$
f=\sum_{i \in \mathscr{I}} f(i) I_{J(t)}
$$

Let \mathscr{L}^{*} consist of all subsets E of Ω which satisfy the condition $x \in E$, $x \leqslant y \Rightarrow y \in E$. Then \mathscr{L}^{*} is a sigma lattice and M is the system of all functions measurable with respect to \mathscr{L}^{*}, i.e., $g \in M$ if and only if for each r in R, the set $[g>r]$ is an element of \mathscr{L}^{*}.

For each $J(i) \in \pi_{k}$, let $J^{+}(i)=\bigcup\{x \in \Omega: x \in J(j)$ and $J(j) \geqslant J(i)\}$. Let \mathscr{L}_{k} be the sigma lattice generated by the set of intervals $\left\{J^{+}(i): J(i) \in \pi_{k}\right\}$. Let M_{k} denote the set of all functions measurable with rspect to \mathscr{L}_{k} and let \mathscr{L} be the sigma lattice generated by $\bigcup_{k \geqslant 0} \mathscr{L}_{k}$.

2.1 Lemma. Open sets in \mathscr{L}^{*} are in \mathscr{L}.

Proof. Suppose $C \neq \Omega$ is an open set in \mathscr{L}^{*}. For each $x \in C \cap \Omega^{0}$, choose a sequence $\left\{x^{k}: k \geqslant 0\right\}$ such that, for each k, x^{k} is the lower corner of a cube in π_{k} and $x^{k} \downarrow x$. For each $k \geqslant 0$, let $C_{k}=\bigcup\left\{x^{k}: x \in C\right\}$, and let $D_{k}=\bigcup I_{x}$, where the second union is over all x in C_{k} and $I_{x}=J^{+}(i), i$ being chosen so that x is the lower corner of $J(i)$. Then $D_{k} \in \mathscr{L}_{k}$ and $\bigcup\left\{D_{k}\right.$: $k \geqslant 0\}=C$ so Lemma 2.1 holds.

Suppose $g \in M$. By Section 307 in [5], $\lim _{, ~} \uparrow x(y)$ exists for every x in Ω^{0}. Define $g^{*}: \Omega \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
g^{*}(x) & =\lim _{r^{\uparrow} \uparrow x} g(y), & & \prod_{t=1}^{n} x_{t} \neq 0 \\
& =g(\overline{0}), & & \prod_{t=1}^{n} x_{t}=0
\end{aligned}
$$

Then for each $r \in R .\left[g^{*}>r\right]$ is an open element of \mathscr{L}^{*}, so $\left[g^{*}>r\right]$ is in \mathscr{L}. By Theorem 1.1, g is continuous almost everywhere, so g is equivalent to an \mathscr{L}-measurable function. For $1<p<\infty, L_{p}$ is a uniformly convex Banach space so, for each f in $C(\Omega)$ there exist unique nearest points $f_{p}^{k} \mathrm{in}$ M_{k}, f_{p} in M and \hat{f}_{p} in the set of \mathscr{L}-measurable functions. The unicity is, of course, up to equivalence. The above shows that $\hat{f}_{p}=f_{\rho}$ almost everywhere so we may assume without loss of generality that f_{p} is \mathscr{L}-measurable.
2.2 Lemma. If $1<p<\infty$ and $f \subset S_{k}$, then f_{p}^{k+1} is (up to equivalence) also in S_{k}.

Proof. We will assume that the statement is false and derive a contradiction by constructing an element of $\mu_{\rho}\left(f \mid M_{k+1}\right)$ which is not equivalent to f_{p}^{k-1}. Let \mathscr{F} and \mathscr{F}^{\prime} be the index sets such that $\pi_{k}=\{J(i)$: $i \in \mathscr{I}\}$ and $\pi_{k+1}=\left\{J(i): i \in \mathscr{I}^{\prime}\right\}$. Let $S=\left\{\left|f_{p}^{k+1}(i)-f_{p}^{k+1}(j)\right|: i, j \in \mathscr{F}^{\prime} ;\right.$ and $T=\left\{\left|f_{p}^{k+1}(i)-f(i)\right|: i \in \mathscr{I}^{\prime}\right\}$. Let σ (respectively, $\left.\tau\right)$ be the smallest positiva number in S (respectively, T). We may assume without loss of generality that $\min \{\alpha, \tau\}=2$. For any v in \mathscr{F}^{\prime}, let $v^{\prime}=\left(v_{1}+1, v_{2}, \ldots, v_{n}\right) \in \mathscr{F}^{\prime}$.

If there exists β in \mathscr{I} such that f_{p}^{k+1} is not constant on $J(\beta)$, then there
exists α in \mathscr{I}^{\prime} such that $J(\alpha) \cup J\left(\alpha^{\prime}\right) \subset J(\beta)$ and (relabeling if necessary) $f_{p}^{k+1}\left(\alpha^{\prime}\right)>f_{p}^{k+1}(\alpha)$. We now construct a pair of sets on which we will alter the value of f_{p}^{k+1}. Let

$$
\begin{aligned}
A & =\left\{j \in \mathscr{I}^{\prime}: j_{1}=\alpha_{1}, j_{2} \geqslant \alpha_{2}, \ldots, j_{n} \geqslant \alpha_{n} \text { and } f_{p}^{k+1}(j)=f_{p}^{k+1}(\alpha)\right\}, \\
B & =\left\{j \in \mathscr{I}^{\prime}: j_{1}=\alpha_{1}+1, j_{2} \leqslant \alpha_{2}, \ldots, j_{n} \leqslant \alpha_{n} \text { and } f_{p}^{k+1}(j)=f_{p}^{k+1}\left(\alpha^{\prime}\right)\right\}, \\
A^{\prime} & =A \cup\left\{\left(j_{1}-1, j_{2}, \ldots, j_{n}\right): j \in B\right\} \subset \mathscr{I}^{\prime}, \\
B^{\prime} & =B \cup\left\{\left(j_{1}+1, j_{2}, \ldots, j_{n}\right): j \in A\right\} \subset \mathscr{I}^{\prime}, \\
A^{*} & =\bigcup\left\{J(j): j \in A^{\prime}\right\}, \\
B^{*} & =\bigcup\left\{J\left(j^{\prime}\right): j \in B^{\prime}\right\} .
\end{aligned}
$$

Then A^{\prime} and B^{\prime} have the same number of elements and for each $j \in A^{\prime}$, $f(j)=f\left(j^{\prime}\right)$, so A^{*} may be written as a disjoint union of sets A_{1}^{*}, A_{2}^{*} and A_{3}^{*}, where, for each cube $J(j) \subset A_{1}^{*}, f_{p}^{k+1}(j)<f(j)<f_{p}^{k+1}\left(j^{\prime}\right)$, for each $J(j) \subset A_{2}^{*}, f(j)<f_{p}^{k+1}(j)<f_{p}^{k+1}\left(j^{\prime}\right)$ and for each $J(j) \subset A_{3}^{*}, f_{p}^{k+1}(j)<$ $f_{p}^{k+1}\left(j^{\prime}\right)<f(j)$. For $r=1,2,3$, let $B_{r}^{*}=\bigcup\left\{J\left(j^{\prime}\right): J(j) \in A_{r}^{*}\right\}$.

We now construct an element of M_{k+1} which is a better L_{p} approximation to f than is $f_{p}^{k+1}:$ Define $\psi: \Omega \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
\psi(x) & -f_{p}^{k+1}(x) \quad, & & x \notin A^{*} \\
& =f_{p}^{k+1}(x)+1, & & x \in A^{*}
\end{aligned}
$$

Clearly $\psi \in M_{k+1}$. If $\|f-\psi\|_{p} \leqslant\left\|f-f_{p}^{k+1}\right\|_{p}$, then f_{p}^{k+1} is not the unique best L_{p}-approximation to f by elements of M_{k+1}, a contradiction. If $\|f-\psi\|_{p}>\left\|f-f_{p}^{k+1}\right\|_{p}$, define $\psi^{\prime}: \Omega>\mathbb{R}$ by

$$
\begin{aligned}
\psi^{\prime}(x) & =f_{p}^{k+1}(x), & & x \notin B^{*} \\
& =f_{p}^{k+1}(x)-1, & & x \in B^{*} .
\end{aligned}
$$

Then $\psi^{\prime} \in M_{k+1}$ and we claim that $\left\|f-\psi^{\prime}\right\|_{p}<\left\|f-f_{p}^{k+1}\right\|_{p}$. Indeed, let

$$
e_{r}=\int_{A_{r}^{*}}\left|f-f_{p}^{k+1}\right|^{p}-\int_{A_{r}^{*}}|f-\psi|^{p}
$$

and

$$
e_{r}^{\prime}=\int_{B_{r}^{*}}\left|f-f_{p}^{\kappa+1}\right|^{p}-\int_{B_{r}^{*}}\left|f-\psi^{\prime}\right|^{p}
$$

for $r=1,2,3$. By the construction of the $A_{r}^{*}, e_{1} \geqslant 0, e_{1}^{\prime} \geqslant 0, e_{2}<0$,
$e_{2}^{\prime}>-e_{2}, \quad e_{3}>0 \quad$ and $\quad e_{3}^{\prime}>-e_{3}$. Since $\|f-\psi\|_{p}>\left\|f-f_{p}^{k+1}\right\|_{p}$, $e_{1}+e_{2}+e_{3}<0$. Thus

$$
\int_{B^{*}}\left|f-f_{p}^{k+1}\right|^{p}-\int_{B^{*}}\left|f-\psi^{\prime}\right|^{p}=e_{1}^{\prime}+e_{2}^{\prime}+e_{3}^{\prime}>e_{1}^{\prime}+e_{1} \geqslant 0
$$

so $\left\|f-\psi^{\prime}\right\|_{p} \leqslant\left\|f-f_{p}^{k+1}\right\|_{p}$. Therefore, in every possible case, the assumption that f_{p}^{k+1} is not essentially constant on $J(\alpha)$ produces a contradiction. Hence, Lemma 2.2.

2.3 Theorem. If $f \in S_{k}$, then $f_{p} \in S_{k}$ for all $p, 1<p<\infty$.

Proof. Our first claim is that for each integer $m>k, f_{p}^{m} \in S_{k}$. Indeed, suppose $m>k$ and there exists $J(\alpha)$ in π_{k} such that $f_{i,}^{m}$ is not constant on $J(\alpha)$. Now a construction similar to that in the proof of Lemma 2.2 produces a contradiction.

By the construction of \mathscr{L}, the sequence $\left\{\mathscr{L}_{k}\right\}$ of sigma lattices increases to \mathscr{L}. Thus, by [7, Theorem 4.1], the constant sequence $\left\{f_{p}^{m} ; m>k\right\}$ converges almost everywhere to f_{p}. This proves Theorem 2.3.

Theorem 2.3 effectively allows us to restrict our attention to a function whose domain is a finite partially ordered set. For such a function severai properties are known: see [3, 6]. The proof in those papers are easily adapted to yield the following theorem.
2.4 Theorem. Let $f \in C(\Omega)$. Then there exists nondecreasing functions $f_{p}, l \leqslant p \leqslant \infty$, such that, for $1<p<\infty, f_{p}$ is (up to equivalence) the best L_{p}-approximation to f by nondecreasing functions,

$$
\lim _{p \downharpoonright 1} f_{p}=f_{1}
$$

and

$$
\lim _{p \rightarrow \infty} f_{p}=f_{x},
$$

with uniform convergence in each case.
2.5 Theorem. The nondecreasing functions f_{1} and f_{x} are elements of $\mu_{1}(f \mid M)$ and $\mu_{\infty}(f \mid M)$, respectively.

Proof. That $f_{1} \in \mu_{1}(f \mid M)$ follows from Theorems 1.4 and 2.4. For f_{x}, suppose $g \in M$ satisfies $\|f-g\|_{x}<\left\|f-f_{x c}\right\|_{x}$. Then there exist real numbers a and b such that $\|f-g\|_{x}<a<b<\left\|f-f_{x}\right\|_{x}$ so, for sufficiently large $p,\|f-g\|_{p}<a$. By Theorem 2.4, $f-f_{p} \rightarrow f-f_{\infty}$ uniformly, so there
exists a set E with $\mu E>0$ such that, for sufficiently large p, $\left|f(x)-f_{p}(x)\right|>b$ for every x in E. Thus, for large p,

$$
\left\|f-f_{p}\right\|_{p}=\left\{\int\left|f-f_{p}\right|^{p} d \mu\right\}^{1 / p} \geqslant b(\mu E)^{1 / p}>a
$$

a contradiction. This concludes the proof of Theorem 2.5.
We now turn to the question of the continuity of $f_{p}, 1 \leqslant p \leqslant \infty$. Our approach is to uniformly approximate f by functions in $S_{k}, k \geqslant 1$. The following definitions will expedite our discussion of these step functions. We will say that $J(i)$ and $J(j)$ in π_{k} are adjacent if $j=\left(i_{1}, i_{2}, \ldots, i_{t-1}, i_{t} \pm 1\right.$, i_{t+1}, \ldots, i_{n}) for some $t, 1 \leqslant t \leqslant n$. The union of a set of cubes is said to be a component if for any two cubes $J(i)$ and $J(j)$ in the set, there exist cubes $J\left(i^{1}\right)=J(i), J\left(i^{2}\right), \ldots, \quad J\left(i^{m}\right)=J(j)$ such that, for $1 \leqslant t \leqslant m-1, J\left(i^{t}\right)$ is adjacent to $J\left(i^{t+1}\right.$). If $J(i)$ and $J(j)$ are any two adjacent cubes, we will call $|g(i)-g(j)|$ a jump of g.
2.6 Lemma. For any $\varepsilon>0$, if $f \in S_{k}$ and f has no jump greater than ε, then, for $1<p<\infty, f_{p}$ has no jump greater than 3ε.

Proof. By Lemma 2.2, $f_{p}=f_{p}^{k}$. If there exist adjacent cubes $J(\alpha)$ and $J\left(\alpha^{\prime}\right)$ in π_{k} such that $f_{p}\left(\alpha^{\prime}\right)-f_{p}(\alpha)>3 \varepsilon$, then an element of $\mu_{p}(f \mid M)=$ $\mu_{p}\left(f \mid M_{k}\right)$ which is not equivalent to f_{p} can be constructed in a manner similar to the construction in Lemma 2.2. In the amended proof, the role of $J(\beta)$ is played by the cube in π_{k-1} which contains $J(\alpha)$, each occurrence of " $k+1$ " is replaced by " k " and, for each cube $J(j) \subset A_{1}^{*}$ (respectively, A_{2}^{*}, $\left.A_{3}^{*}\right), f_{p}(j)<f(j)<f\left(j^{\prime}\right)<f_{p}\left(j^{\prime}\right)$ (respectively, $\left.f(j) \leqslant f_{p}(j), f\left(j^{\prime}\right) \geqslant f_{p}\left(j^{\prime}\right)\right)$.
2.7 Theorem. If $f: \Omega \rightarrow R$ is continuous and $1 \leqslant p \leqslant \infty$, then f_{p} is continuous.

Proof. In view of Theorem 2.4, it suffices to prove the statement for $1<p<\infty$. Let $\varepsilon>0$ be given. Then there exist $k=k(\varepsilon)>0$ such that $\sup _{x \in J} f(x)-\inf _{x \in J} f(x)<\varepsilon$ for every J in π_{k}. Define f^{ε} by

$$
f^{\varepsilon}(x)=\sup _{x \in J} f(x), \quad x \in J \in \pi_{k}
$$

and define f_{ε} similarly, with "sup" replaced by "inf." Since $f_{\varepsilon} \leqslant f \leqslant f^{\varepsilon}$ and $f^{\varepsilon}-\varepsilon \leqslant f \leqslant f_{\varepsilon}+\varepsilon$, the monotonicity of the nearest point projection (see 2.8 in [7]) implies that

$$
\begin{gathered}
\left(f_{\varepsilon}\right)_{p} \leqslant f_{p} \leqslant\left(f^{\varepsilon}\right)_{p}, \\
\left(f^{\varepsilon}\right)_{p}-\varepsilon \leqslant f_{p} \leqslant\left(f_{\varepsilon}\right)_{p}+\varepsilon
\end{gathered}
$$

and

$$
\left(f^{\varepsilon}\right)_{p}-\left(f_{\varepsilon}\right)_{p} \leqslant 2 \varepsilon .
$$

Since neither f_{ε} nor f^{ε} has a jump greater than ε, Lemma 2.6 implies that neither $\left(f_{\varepsilon}\right)_{p}$ nor $\left(f^{\varepsilon}\right)_{p}$ has a jump greater than 3ε.

Let B be a ball in Ω of radius 2^{-k-1}. Then

$$
\sup _{x \in B} f_{p}(x) \quad \inf _{x \in B} f_{p}(x) \leqslant 5 n c,
$$

whence f_{p} is continuous.

References

1. R. B. Darst and Z. Honargohar, Weak-star convergence in the dual of the continuous functions of the n-cube, $1 \leqslant n \leqslant \infty$, Trans. Amer. Math. Soc. 275 (1983), 357-372.
2. R. B. Darst and R. Huotari, Best L_{1}-approximation of bounded. approximately continuous functions on [0,1] by nondecreasing functions, J. Approx. Theory 43 (985), 178-189.
3. R. B. Darst and S. Sahab, Approximation of continuous and quasicontinuous functions by monotone functions, J. Approx. Theory 38 (1983), 9-27.
4. T. H. Hildebrandt, "Introduction to the Theory of Integration," New York, 1963.
5. Hobson, E. W., "The Theory of Functions of a Real Variable," New York, 1957.
6. R. Huotari, Best L_{1}-approximation of quasi-continuous functions on [0, 1] by nondecreasing functions, J. Approx. Theory 44 (1985), 221-229.
7. D. Landers and L. Rogge, Isotonic approximation in L_{s}, J. Approx. Theory 31 (1981), 199-223.
8. D. Landers and L. Rogge, Natural Choice of L_{i}-approximants. J. Approx. Theory 33 (1981), 268-280.
9. I. P. Natanson, "Theory of Functions of a Real Variable, Vol. 1,"Ungar, New York, 1955.
