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Let £ denote the unit n-cube, [0.1]" and let A be the set of all real valued
functions on £ which are nondecreasing in each variable. If f is a bounded
Lebesgue measurable function on @ and 1< p< o, et f, denote the best L,-
approximation 1o f by elements of M. Tt is shown that f, converges almost
everywhere as p decreases to one to a best L -approximation to f by elements of 47,
If /'is continuous, then f), is continuous and converges uniformiy as p| 1 to a best
L -approximation to f by elements of M and £, converges uniformly as p — x io a
best L -approximation to f by elements of 3. 7 1986 Academic Press. Tnc.

INTRODUCTION

For n>= 1, let £2 be the unit a-cube, [0, 1]” Let u denote n-dimensional
Lebesguc measurc on ©, let X2 consist of the y-measurable subsets of 2
and, for I1<p<oo, let L,=L, (2,2, u). f x=(x,,x,,.,x,) and y=
{¥1» Y30 ¥,) are elements of Q, we write x < 1 if x, <y, for 1 <r<n and
we write x < v if x, < y, for 1 <7< n. A function g: 2 — R is said to be non-
decreasing in each variable if x, y € Q and x < 3 imply that g{x) < g()). We
will say that such a function is nondecreasing. Let M consist of all non-
decreasing functions. For fin L, and 1 < p < oc, let 1, (f] M) denote the set
of all best L -approximations to f by elements of M. Since A is a closed
convex subset of the uniformly convex Bamach space L,, 1<p<x,
L (f1 M) consists (up to equivalence) of exactly one function, which we
denote by f,. The function f is said to have the Polya property if f, =
lim, , . f,is well defined as a bounded mcasurablc function, i.c, if p, — o
then lim, _, . j, exists almost everywhere on £2. If the above condition is
true with oo replaced by 1, then fis said to have the Polya-one property. In
Section 1, we show that, for any n>0, and f in L has the Polya-one
property. In Section 2, we assume that f is continuous and establish both
the Polya and Polya-one properties, with uniform convergence in cach
case, and show that £ is continuous, 1 < p<<oc.
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220 HUOTARI AND LEGG
1. THE PorLya-ONE PROPERTY

1.1 THEOREM. If ge M, then g is continuous almost everywhere.

Proof. Suppose / is a line in R” parallel to the line in R” joining 0 =
(0,...,0)and 1={(1,.., 1) and / ~ Q° # &, where Q° denotes the interior of Q.
Then there exist constants a;, j=1,.,n, and a such that /n Q%=
{(t+ay,..t+a,): 0<t<a}. Define h (0,a)>R by h(t)=
glt+ay,..,t+a,). Suppose O0<ty<a, x=(l,+4a,,.,1o+a,) and g is dis-
continuous at x. Suppose without loss of generality that there exist £¢>0
and {x'} =« Qn/with x'| x and, for each i, g(x') > g(x) + . Then, for any ¢
in (o, a), there exists i such that x"= (x%,..., x) satisfies

X;<xj<t+a, 1<j<n
$O
h(t)= g(x')> g(x)+e=k(ty) +¢

whence # is discontinuous at z,. Since 4 is a nondecreasing function of one
variable, there can be at most countably many points at which # is discon-
tinuous. Thus, the one dimensional Lebesgue measure of the points of dis-
continuity of fon [N Q is zero. _

Let T- R* — R" be a linear isometry such that T(1)= (0, 0,..., 0, x/”)- By
Fubini’s Theorem and the last paragraph the integral of the characteristic
funtion of the image under T of the set of discontinuities of g is of n-dimen-
sional Lebesgue measure zero. This concludes the proof of Theorem 1.1.

If ge M, let C(g) denote the set of all points of continuity of g. The
following generalization of Helly’'s Theorem requires only minor
modifications in the proof. (See [9, p. 221].)

1.2 TurOREM. If G is a uniformly bounded family of elements of M and
K is an at most countable subset of Q, then there exists a function g in M
and a sequence | g;} in G such that g{x)— g(x) for every x in C(g)u K.

Let d,(f, M)=inf{|f —h|,: he M}, the distance from M to f.

1.3 LeMMA. M is an L -closed convex subset of L, and u,(f| M) is a
nonempty subset of L, .

Proof. Suppose {g,:i=1,2,.}cMand g;,— gin L,. Since {g,} has a
subsequence which converges to g almost everywhere, we may assume that
g;,— g almost everywhere. Let g=Ilimsup, g, Then g=g almost
everywhere. Since each g; is in M, g is in M. Thus g is equivalent to an
element of M. Clearly M is convex.
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Let M'={heM: |h)|.<2|f|..} Since f{|f—4hl,: hedl' =
d,{f, M), there exists a sequence {g;} = M’ such that |f — g, — di(/, M.
By Helly's Theorem {g;} has a subsequence which converges almost
everywhere to a function g in M, so the Dominated Convergence Theorem
shows that ge u,(f1 M). This concludes the proof of Lemma [.3.

The next theorem shows that every bounded measurable function has the
Polya-one property when M is the set from which best approximations are
chosen. Let f; =m (f| M), the unique elemen? of u,{ f] Af) which minimizes

M'}}.

The function f, is termed by Landers and Rogge the narwral best
Li-approximation [87.

{l‘ f =l Inlf = hl:he pil f

1.4 THEOREM. [If fel,, then f, converges almost everywhere as p
decreases 10 one 1o an element of w,(fl M).

Proof. We claim that f, — f, a.e. as p| 1. Suppose this is not the case.
Then there exists a sequence {p,} such that p;| | and there exists a subset
E of  with uE>0 and, for all x in E, f,(x) does not converge to f,{x}.

Since f, € M, Theorem 1.1 implies that there is a point y in £ at which f;
is continuous but f,(y) does not converge to fi(y). Thus. there exists a

subsequence {g;} of {p,} such that

lim £, (yy=d# /1)

By [8. Theorem 2], f,, converges strongly in L, to f, so there is a sub-
sequenice {r;} of {g;} such that f, —f, almost everywhere. By Helly’s
Theorem there exist & in M and a subsequence {s;} of {r;} such that /| — /i
on Clhyu{r}. Since f, > f, a.e., fi=h ae. Since h(y)=d and f, is con-
tinuous at 3 and #e M, either there exists an interval of the form {1y, zi=
{xeQ: y<x<z} such that x in (}, z) implies /1(x)> f,(x} or there xists
w<y such that x in (w, y) implies A(xi<fi{x}. In either case
ul f1 #h1>0, a contradiction. This establishes Theorem !.4.

There are two proper subsets NV and P of M for which the resuit of
Theorem 1.4 also holds. Characterizations of & and P require the following
definition: If g: R" - R and a=(a,..., a,} and b= {b,... b,} are points in
R”, let

A}?,—a,' g(a) = g(al‘x"'v a[—h bis aiﬂ‘»lﬁ“-s [I”) - g{([}
and lez

Az)ag{a):Ahl—mAb:ru:K”Abnfu,,g(a)'
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A function f: Q - R is said to be positively monotone if and only if,
whenever a, b and b>a,

43, 8(a)>0.

The set P will consist of all positively monotone functions in . The set N
consists of all positively monotone functions which vanish on the coor-
dinate planes, ie., g(x,..., x,)=0 if, for some i, x,=0. That Nc M is
shown by Hildebrandt [4, p. 107]. That Helly’s Theorem holds for N (with
convergence everywhere) is shown in [1, Proposition 2-3]. N is closely
related to the set of all distribution functions on R".

Though the Polya-one property holds, the Polya property fails. The
example in [2, Sect. 4] is easily modified to show this.

2. UNIFORM PoOLYA PROPERTIES

In this section we restrict our attention to the case where /e C(2), the
set of real valued continuous functions on Q. In this context, we show that
both the Polya and Polya-one properties hold, with uniform convergence
in each case, and that f,e C(2), I < p< w.

We will reduce each question to a study of step functions. For con-
venience, we will use the dyadic rational partitions of Q: for k=0, let =,
denote the set of all points in Q whose coordinates are rational numbers
with denominator 2. The points of n, divide Q into a set of n-cubes {J(i):
ie f}, where each 7 has the form i= (i, i,,..., i,} and each i, is an integer in
[2%, 2%+ k]. We will henceforth call an n-cube a cube. The cubes {J(i):
ie ¥} are pairwise disjoint and their union is Q. If x and y are, respec-
tively, the infimum and supremum of J(i), then J(i) contains the set

(20X, <2<y, X< 2, € Yoy X

n

<z, < ¥}

and any part of the boundary of (x, y)= {z: x <z< y} which intesects the
boundary of €. The point x will be called the lower corner of J(i).

We will also denote by n, the set of all such cubes. Let the cubes in 7, be
partially ordered by restricting the order < on Q to the set of all centers of
cubes in w,. We assume that the order on n, corresponds to the natural
ordering on .#.

Let I denote the indicator function of a subset E of @, ie., I(x)=1if
xe E and I.(x)=0 otherwise, and let S, consist of all functions f/: 2 > R
which have the form

f= Z f(l) IJ(z’)‘
ie s
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Let #* consist of all subsets E of £ which satisfy the condition xe F|
x<y=yeE Then £* is a sigma lattice and M is the system of all
functions measurable with respect to .#*, i.e., ge M if and only if for each »
in R, the set [ g>r] is an element of ¥*.

For each J(i)en,, let J*(i)={J{xeQ: xeJ(j) and J{j}) = J(i)}. Let &%
be the sigma lattice generated by the set of intervals {J7(i}: J{i}en,}. Let
M denote the set of all functions measurable with rspect to %, and let &
be the sigma lattice generated by {J,. . %

2.1 LEMMA. Open sets in ¥* are in &.

Proof. Suppose C ;éQ is an open set in Z* For each xe Cn£2°,
choose a sequence {x*: k>0} such that, for each k., x* is the lower corner
of a cube in n; and x* | x. For each k> 0. let C,={J{x*: xe C} and let
D=1 I,, where the second union is over all x in C, and I, =J"(i}, /
being chosen so that x is the lower corner of J{i}. Then D, € & and (J{D,:
k>20}=C so Lemma 2.1 holds.

Suppose g e M. By Section 307 in [5], lim,, gi{y) exists for every x in
Q° Define g*: 2 - R by

it

g*(x)=lim g(»), IT x,#0.
rTy

Then for each re R, [g* >r] is an open element of ¥*, s0 [g¥>r] is in
. By Theorem 1.1, g is continuous almost everywhere, 50 g is equivalent
to an Z-measurable function. For 1 <p<x Lp is a uniformly convex
Banach space so, for each fin C(£2) there exist unique nearest points /% in
M, f,in M andf in the set of #-measurable functions. The unicity 15 of
course, up to equivalence. The above shows that f /, almost everywhere

so we may assume without loss of generality thstfp 15 ¥-measurable.

22 LemMA. If 1<p<co and fe Sy, then f5* is {up to equivalence)
also in S,.

Proof. We will assume that the statement is false and derive a con-
tradiction by constructing an element of pu,(fIM, ) which is not
equivalent to 3~ '. Let # and #' be the index sets such that 7, = l'J(f"r
ie;ﬂ and m, ;= {J(i):ie F ). Let S={|f5~ (i) — fE+ Y (j)l: 4, je #'} and

T= (I‘“ Yiy— fli)|: ie #'}. Let o (respectively, 1) be the smallest posnnﬂ
number in S (respectively, T). We may assume without loss of generality
that min{e, t} =2. Forany vin J', let v/ =(v, + 1, vo..., v, ) €5

If there exists f in .# such that fﬁ*‘ is not constant on J(f), then there



224 HUOTARI AND LEGG

exists o in ' such that J(a)uJ(¢')=J(f) and (relabeling if necessary)
f’;“(a’) >f’;+ Y(a). We now construct a pair of sets on which we will alter
the value of f5+!. Let

A={jeS" ji=ay, 20, jy=a,and f341(j)=fpH )},
B={jeS " ji=a+ 1, j1<0y,., j, <a, andf’;“(j):f’;Jrl(oc’)},
A'=A40{(ji—1, jao Ju): jJEB} = I,
B =BU{(ji+1, 1 j)jed} I,
A* =) je '),
B*={J(j): je B'}.
Then 4’ and B’ have the same number of elements and for each je 4,

f(N=f(j), so A* may be written as a disjoint union of sets A¥, 4F and
A¥, where, for each cube J(j)c AF, fAT'())<f(j)< S5 '(J). for each

J(NeAF, fN<fr='D<f37'0) and for cach J(j)< A%, )<
SErNGY<f() Forr=1,2,3, let B¥=U{J(j'): J(j)e AF}.

We now construct an element of M, ., which is a better L,-
approximation to f than is f4*!: Define y: Q - R by

‘//(x) :fZ+ l(x) ? X¢A*’
=f§+‘(x)+1, xe A*.
Clearly ye My, . If | /=y, <|f—f5*l,, then f5*" is not the unique

best L -approximation to f by elements of M,,,, a contradiction. If
If =¥, > If =5+, define y": @ > R by

W)=, . x¢BX

=fr N x)—1, xe B*,
Then '€ M, ,, and we claim that ||f — '], <|lf —f%* '], Indeed, let
e, =] U=rinr=] If=y1
Ar Ay
and
=] V—rsir=] v
B} B}

for r=1,2,3. By the construction of the AX, ¢,=20, ¢,>=0, ¢,<0,
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ehy> —e;, e;>0 and e3> —es.  Since | f—yl, > S-S5,
e;+e,+e;<0. Thus

I A R | Y )
B* N vB*
so |If-¥'ll,< |if—f’;+1]|p. Therefore, in everv possible case, the
assumption that f%+! is not essentially constant on J(x) produces a con-
tradiction. Hence, Lemma 2.2.

2.3 THEOREM. If f€ Sy, then f,€S, for all p, 1 < p< .

Proof. Our first claim is that for each integer m >k, f »eS,. Indeed,
suppose m >k and there exists J(a) in m, such that /7' is not constant on
J(a). Now a construction similar to that in the proof of Lemma 2.2
produces a contradiction.

By the construction of %, the sequence {.%} of sigma lattices increases
to Z. Thus, by [7, Theorem 4.1], the constant sequence {/7': m>k} con-
verges almost everywhere to f,. This proves Theorem 2.3.

Theorem 2.3 effectively allows us to restrict our attention te a function
whose domain is a finite partially ordered set. For such a function several
properties are known: see [3, 6]. The proof in those papers are easily
adapted to yield the following theorem.

24 THEOREM. Let fe C(Q). Then there exists nondecreasing functions
Sor V< p< o0, such that, for 1< p<oo, f, is (up to equivalence) the best
L -approximation to f by nondecreasing functions,

lim f, = f}
pit
and
lim f,=f,.
P oo

with uniform convergence in each case.

2.5 THEOREM. The nondecreasing functions f, and f., are elemenis of
w(fI MY and u_(fI M), respectively.

Proof. That f,epu,(f| M) follows from Theorems 1.4 and 2.4. For /_,
suppose ge M satisfies |f— gl .. <l f— /.| .. Then there exist real num-
bers @ and b such that |f— gl . <a<b<|f— [, so, for sufficiently
large p, ||/ — gll, <a. By Theorem 2.4, f — f, — f — f,. uniformly, so there
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exists a set E with puE>0 such that, for sufficiently large p,
| f(x)—f,(x)| > b for every x in E. Thus, for large p,

=1 ={ U =rde} > bty >0

a contradiction. This concludes the proof of Theorem 2.5.

We now turn to the question of the continuity of f,, 1< p< . Our
approach is to uniformly approximate f by functions in S,, k> 1. The
following definitions will expedite our discussion of these step functions.
We will say that J(i) and J(j) in =, are adjacent if j= (iy, iy, {,_,, i, 1,
i, 1sm I,) for some 7, 1 <t<n The union of a set of cubes is said to be a
component if for any two cubes J(i) and J(j) in the set, there exist cubes
J@H=JG), J(®),.., J(@™)=J(j) such that, for 1<r<m—1, J(i') is
adjacent to J(i**'). If J(i) and J( ) are any two adjacent cubes, we will call
|g(i)— g(Jj)I a jump of g.

2.6 LEMMA. For any ¢>0, if f€S, and f has no jump greater than ¢,
then, for 1 < p <o, f, has no jump greater than 3e.

Proof. By Lemma 2.2, f,=f ’; . If there exist adjacent cubes J(a) and
J(«') in m, such that f (o) —f,(«)> 3¢, then an element of u,(f|M)=
t,(f1M,) which is not equivalent to f, can be constructed in a manner
similar to the construction in Lemma 2.2. In the amended proof, the role of
J(p) is played by the cube in 7, _; which contains J(«), each occurrence of
“k + 17 is replaced by “k” and, for each cube J(j) <= 4 [ (respectively, 4%,
A2), () < S <SG < (7'} (respectively, F()) < S, ()2 F,'))

2.7 TueoREM. If f: Q > R is continuous and 1< p < oo, then f, is con-
tinuous.

Proof. In view of Theorem 2.4, it suffices to prove the statement for
l1<p<oo. Let ¢>0 be given. Then there exist k=k(g)>0 such that
sup,.., f(x)—inf__, f(x) <¢ for every J in n,. Define f* by

fi(x)=sup f(x), xeJem,

xeJ

and define f, similarly, with “sup” replaced by “inf.” Since f, < f < f*® and
f?—e< f<f,+¢, the monotonicity of the nearest point projection (see 2.8
in [7]) implies that
(fo)o <o <),
(f—esf,<(fo),+e
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and

(%), — (), < 2e

Since neither f, nor f° has a jump greater than ¢, Lemma 2.6 implies that
neither (f}), nor (f°), has a jump greater than 3e.

Let B be a ball in Q of radius 2%~ !. Then

sup f,(x) — inf f,{x) < Sne,
xeB xe B

whence f, is continuous.
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