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Monotone Approximation in Several Variables 

ROBERT HUOTARI AND DAVID LEGG 

Let Q dcnotr the unit n-cube, [O. l]“, and let .li be the set of a!l real valued 
functrons on I? which are nondecreasing in each variable. If .f is a bounded 
Lebesguc measurable function on 0 and 1 <pi TC,? let ,/, denote the best L,,- 
apprcC-r?ation to f‘ by elements of M. It is shown that .f, converges almost 
everqu here as p decreases to one to a best L ,-approximation to j‘by elements of X4. 
If,I’is continuous, then .f, is continuous and converges tiniformiy as pJ 1 to a besr 
L,-approximation toJ by elemenrs of Al andj, converges uniformly as p + r I:? a 
best L ,-approximation to .f by elements of $1. ?? 19% .Academic Prcs. Inc. 

INTRODUCTION 

For II 3 1, let R be the unit n-cube, [IO, 11”. Let ,D denote n-dimensional 
Lebesguc measure on Sz, Ict 1 consist of the /l-measurable subsets of R 
and. for I < p d CC. let L, = L,(Q, 2‘, p). If x = (x,, x7 ,..., x, j and J = 
(ill, J’: ,...., y,,) are elements of R, we write .Y c J if x, < yr for 1 < t < n and 
we write .Y < .Y if X, =C ~7~ for 1 < t < f~. A function g: 52 + R is said to be non- 
decreasing in each variable if X, J E Q and I < J’ imply that g(.s) < g(J,). We 
will say that such a function is tzorzdecrrasing. Let M consist of all non- 
decreasing functions. For fin L, and 1 < ia < CC, let p,(fj Mj denote the set 
of all best L,-approximations to ,f by elements of IV. Since M is 3 closed 

convex subset of the uniformly convex Banach space L,, 1 < p < ,x, 
,~Jfl M) consists (up to equivalence) of exactly one function. which we 
denote by J,. The function f is said to have the Polya propertii if f, = 
iim 
then iim f 

p ~ I p ES well defined as a bounded mcasurablc function, i.c., if pi, .+ CC, 
,~ -~ j’,, exists almost everywhere on a. If the above condition is 

true with ~j replaced by 1, then f is said to have the PoJga-one property. II?. 
Section 1, we show that, for any n > 0, and f in L,, has the Polya-one 
property. In Section 2, we assume that f is continuous and establish both 
the Polya and Polya-one properties, with uniform convcrgcncc in each 
case, and show that .j, is continuous, 1 < p < x. 
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1. THE POLYA-ONE PROPERTY 

1.1 THEOREM. Zf g E M, then g is continuous almost everywhere. 

ProoJ: Suppose I is a line in R” parallel to the line in I!%‘* joining 0 = 
(0 ,..., 0) and i = (l,..., 1) and In Q” # Q5, where R” denotes the interior of Q. 
Then there exist constants a], j= l,..., n, and a such that In Q” = 
{(t+a,,...,t+a,): O<t<aj. Define h: (O,a)+R by h(.t)= 
g(t + a,,..., t + a,). Suppose 0 < to < a, x = (to + a, ,..., to + a,,) and g is dis- 
continuous at x. Suppose without loss of generality that there exist E>O 
and (si} c Q n I with x’l x and, for each i, g(x’) > g(x) + E. Then, for any t 
in (to, a), there exists i such that x’= (x; ,..., x:) satisfies 

sj<xj<t+aj, ldj<n 

so 

h(t) 3 g(x’) > g(x) + E = k( to) + E 

whence h is discontinuous at to. Since h is a nondecreasing function of one 
variable, there can be at most countably many points at which h is discon- 
tinuous. Thus, the one dimensional Lebesgue measure of the points of dis- 
continuity off on In 52 is zero. 

Let T: IR” --f R” be a linear isometry such that T( i ) = (0, O,..., 0, &). By 
Fubini’s Theorem and the last paragraph the integral of the characteristic 
funtion of the image under T of the set of discontinuities of g is of n-dimen- 
sional Lebesgue measure zero. This concludes the proof of Theorem 1.1. 

If g E M, let C(g) denote the set of all points of continuity of g. The 
following generalization of Helly’s Theorem requires only minor 
modifications in the proof. (See [9, p. 2213.) 

1.2 THEOREM. Zf G is a uniformly bounded family of elements of M and 
K is an at most countable subset of Q, then there exists a function g in M 
and a sequence { gi) in G such that g,(x) + g(x) for every x in C(g) u K. 

Let d,(f, M) = inf{ \lf - 1111 1 : h E M}, the distance from A4 to J: 

1.3 LEMMA. A4 is an L,-closed convex subset of L,, and pl( f ( M) is a 
nonempty subset of L, . 

Proof Suppose { gi: i = 1, 2,... > cMandg,-+ginL,.Since{g,)hasa 
subsequence which converges to g almost everywhere, we may assume that 
gj+ g almost everywhere. Let g= lim supi+ ~ gi. Then g= g almost 
everywhere. Since each gi is in M, g is in M. Thus g is equivalent to an 
element of M. Clearly A4 is convex. 
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Let 44 = {h E M: liklj % < 2llfj\ x )-. Since inf{ iif - h\l r : !I 6 Al’ I- = 
d,(S, M), there exists a sequence {g,). c M’ such that Il.f- gilI I -+ di(,il M). 
By Helly’s Theorem {g, j has a subsequence which converges almost 
everywhere to a function g in M, so the Dominated Convergence Theorem 
shows that g E p,(f\ $4). This concludes the proof of Lemma 1.3. 

The next theorem shows that every bounded measurable function has tk 
olya-one property when M is the set from which best approximations are 

chosen. Let fl = !n,(/l M). the unique element of pl(,fl M) which minimizes 

. 

The function ,f, is termed by Landers and Rogge the narr~~~l best 
~5,-approximation [S]. 

X+oof. We claim that i, + J, a.e. as p J 1. Suppose this is not the case. 
Then there exists a sequence {pij such that pi1 1 and there exists a subset 
E of R with ,uE> 0 and, for all x in E, .f,,( x) does not converge to .~,,c.Y). 

SinceJ; E M, Theorem 1.1 implies that there is a point J’ in Q at which.J; 
is continuous but f,, ( y 1 does not converge 
subsequence {q;i of ‘{pi;’ such that 

to ,!;(x). Thus. there exists a 

By [S. Theorem 21, s,, converges strongly in L 1 to .f,, so there is a sub- 
sequence {r,} of [q,) such that .fr,: +J; almost everywhere. By Helly’s 
Theorem there exist iz in M and a subsequence {s;i of {Y,) such that,ir,, --) A 
on C(h) u (j.1. Since f5, -fr a.e., .f, = h a.e. Since IQ) = d and .f, is con- 
tinuous at J .and h E M, either there exists an interval of the form (.v, :) = 
{.Y E Q: 1’ < .Y < ; j- such that x in (~3, 2) implies I?(X) > j,(s) or there exists 
tt‘ < 1’ such that s in (ut, ~3) implies h(s) < .&(.Y ). In either case 
p[f I~ # A] > 0, a contradiction. This establishes Theorem 1.4. 

There are two proper subsets IV and P of M for which the result of 
Theorem 1.4 also holds. Characterizations of N and P require the following 
definition: If g: 08” + R and a = (a, ,..., cl,, ) and b = (b, ,.... h,,) are points in 
KY’, let 

and let 
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A function f: Q + IF? is said to be posititlely monotone if and only if, 
whenever a, b E 52 and b 2 a, 

The set P will consist of all positively monotone functions in M. The set N 
consists of all positively monotone functions which vanish on the coor- 
dinate planes, i.e., g(x, ,..., x,) = 0 if, for some i, xi = 0. That Nc M is 
shown by Hildebrandt [4, p. 1071. That Helly’s Theorem holds for N (with 
convergence everywhere) is shown in [l, Proposition 2-31. N is closely 
related to the set of all distribution functions on R”. 

Though the Polya-one property holds, the Polya property fails. The 
example in [2, Sect. 41 is easily modified to show this. 

2. UNIFORM POLYA PROPERTIES 

In this section we restrict our attention to the case where f~ C(Q), the 
set of real valued continuous functions on R. In this context, we show that 
both the Polya and Polya-one properties hold, with uniform convergence 
in each case, and that f, E C(Q), I 6 p d CD. 

We will reduce each question to a study of step functions. For con- 
venience, we will use the dyadic rational partitions of 52: for k 20, let rrk 
denote the set of all points in Q whose coordinates are rational numbers 
with denominator 2k. The points of nk divide Q into a set of iz-cubes {J(i): 
ie 4}, where each i has the form i= (ii, iI,..., i,,) and each i, is an integer in 
[2”, 2k + k]. We will henceforth call an n-cube a cube. The cubes {J(i): 
in 9) are pairwise disjoint and their union is G?. If x and 2’ are, respec- 
tively, the inlimum and supremum of J(i), then J(i) contains the set 

and any part of the boundary of (x, J*) = (z: x < z < J > which intesects the 
boundary of Q. The point x will be called the loaoer corner of J(i). 

We will also denote by 7~~ the set of all such cubes. Let the cubes in 7ck be 
partially ordered by restricting the order d on .Q to the set of all centers of 
cubes in rck. We assume that the order on rrk corresponds to the natural 
ordering on 9. 

Let IE denote the indicator function of a subset E of Q, i.e., JE(x) = 1 if 
x E E and IE(x j = 0 otherwise, and let Sk consist of all functions f: 52 + R 
which have the form 
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Let Ip* consist of all subsets E of Q which satisfy the condition I E E. 
x<~,ay~E. Then Y* is a sigma lattice and M is the system of al? 
functions measurable with respect to 6p*, i.e., g E M if and only if for each y 
in R, the set [g > r] is an element of Y*. 

For each J(i)~rc~, let J+(i)=u{s~Q: r~.J(,i) and J(j)>J(i)i. Let Yk 
be the sigma lattice generated by the set of intervals ‘,J’(ij: J(i) E rt,:.. Let 
M, denote the set of all functions measurable with rspect to -yZ and let -2’ 
be the sigma lattice generated by U, a c Pk. 

2.1 LEMMA. open sets in Y* ure in ~2’ 

Proqfi Suppose C # Q is an open set in 5?*. For each s E Cn Q*. 
choose a sequence 1x . , ’ Pk. k > 0} such that, for each k. sk is the lower corner 
of a cube in ?I~ and .? 1 s. For each k 3 0. let C,. = lJ{?: XE Cl. and let 
D, = g Ir, where the second union is over all .Y in C, and I., = J+(i), i 
being chosen so that x is the lower corner of JC i). Then D, E Pk and Li {III, : 
k 3 0) = C so Lemma 2.1 holds. 

Suppose g E M. By Section 307 in [j], lim, r 1 g( .r.) exists for every .Y in 
Cl’. Define g”: R + R by 

Then for each I’ E R. [g* > r] is an open element of Y*, so [g* > r] is in 
Y. By Theorem 1.1, g is continuous almost everywhere, so g is equivalent 
to an Y-measurable function. For 1 < p ( x’. L, is a uniformly convex 
Banach space so, for each fin C(Q2) there exist unique nearest pointsSk in 
M,, Jb in A4 andib in the set of P-measurable functions. The unicity is, of 
course, up to equivalence. The above shows that & =,$ almost everywhere 
so we may assume without loss of generality that & is Y-measurable. 

Proof. We will assume that the statement is false and derive a con- 
tradiction by constructing an element of p,(fi MI,+ ,) which is not 
equivalent to .f$ ~ ‘. Let 4 and 9’ be the index sets such that zk= {J(i): 
i~.Jaj and n ktl= (J(i):iEY’]. LetS=(lf,k+‘(i)-.f~+‘(;)i: i,j~.P’j, and 
T = { 14: + ‘(ii -f(i)] : i E .g’ ). Let 0 (respectively. 7 ) be the smallest positive 
number in S (respectively, T). We may assume without loss of generality 
that min{cr, ri =2. For any v in 4’, let v’=(v~ + 1, v2* . . . . v,,)E~‘. 

If there exists fi in 4 such that f; A+ 1 is not constant on J(p)? then there 
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exists x in 9’ such that J(a)uJ(cr’) c J(b) and (relabeling if necessary) 
f;+l(a’) >f,k”(U). w e now construct a pair of sets on which we will alter 
the value off,k+ ‘. Let 

A= (j~4’: jr=ai, j2>a1 ,..., j,,~or,,andf,k+‘(j)=fpk+‘(a)), 

B=(~E$‘: ji=cII+l, jzdcr,,..., j, <a,andf,k+‘(j)=fk+i(~~‘)), 

A’= A u {(j, - 1, j, ,..., j,!): jE Bj- c Y’, 

B’=Bu ((j, + 1, j: ,..., j,,): jE.4) cg’, 

A*=U(J(j): jEA’}, 

B*=U{.J(j’): jEB’}. 

Then A’ and B’ have the same number of elements and for each je A’, 
f(j) = f( j’), so -4 * may be written as a disjoint union of sets A,*, -4T and 
A;, where, for each cube J(j)cAT, f~+‘(j)<f(j)<f~+‘(j’), for each 
J(j)cAF, f(j)<f,“+‘(j)<f~+‘(j’) and for each J(j) c A;, j$+ l(j) < 
f,k+‘(j’)<f(j). For ~=1,2,3, let B,!=U{J(j’): J(j)EAP). 

We now construct an element of M,, I which is a better L,- 
approximation to f than is f,“” : Define $: Q + R by 

G(x) =.r,“+ ‘(xl > X$ A*, 

= fi’ l(x) + 1, XE A”. 

Clearly ti E M, + , If Ilf-t,li/,< Ilf -f,“+‘llp, then fE+I is not the unique 
best L,-approximation to f by elements of Mk+ 1, a contradiction. If 
Ilf-$I,> llf -f$+'llp, define $': Q+ LQ by 

l)‘(x) = ff’ l(x) ) x $ B”, 

=.r;+ l(x) - 1, x E B*. 

Then $‘E Mk+, and we claim that ilf - i,VjlP < llf -.fE+‘ll,,. Indeed, let 

and 

for r= 1, 2, 3. By the construction of the AT, e, 30, e’, 30, e2 ~0, 
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e>> -e,. e3 >O and e;> -e;. Since ll.f- $I!, > Ils-f;+ lllp7 
ei + e2 + e3 < 0. Thus 

iB lf~f~+l~p~~ If-ICI’l”=e;+e~+e;>e;+e,30, * -i3* 

so 1l.f - $‘ll, 6 llj-J’i+ 1 IID. Therefore, in every possible case, the 
assumption that ,j$ + l is not essentially constant on J(a) produces a con- 
tradiction. Hence, Lemma 2.2. 

2.3 THEOREM. If f E S,, then fb E S, for ail p, I < p < ZG. 

ProojY Our first claim is that for each integer HI > k? f,“’ E S,. Indeed, 
suppose YYZ > k and there exists J(a) in rink such that j; is not constant on 
J(U). Now a construction similar to that in the proof of Lemma 2.2 
produces a contradiction. 

By the construction of 9, the sequence {div, 3 of sigma lattices increases 
to Y. Thus, by [ 7, Theorem 4.11, the constant sequence {S; : PI > k > con- 
verges almost everywhere to f,. This proves Theorem 2.3. 

Theorem 2.3 effectively allows us to restrict our attention to a function 
whose domain is a finite partially ordered set. For such a function severai 
properties are known: see [3, 61. The proof in those papers are easily 
adapted to yield the following theorem. 

2.4 THEOREM. Let .f E C(Q). Then there exists nondecreasing factions 
&, I < p < mxS, such that, for 1 < p < m, f, is (up to equivalence) the best 
L,-approximation to f by rlondecreasing functions, 

lim .f, = .fk 
P11 

lim .fp = f x . 
D - % 

ir+rh un~fom convergeme in each case. 

2.5 THEOREM. The nondecreasing functions f, and f, are elements sf 
p,(f M) and ,u,(f I M), respectively. 

Proqf: That fi ~p~(f / M) follows from Theorems 1.4 and 2.4. For J, ) 
suppose g E M satisfies 11 f - g/l 5c < //f-f, 11 %. Then there exist real num- 
bers a and b such that llf - gl/ ?c < a <b < Il.f‘- fx /I r so, for sufficiently 
large F, ilf - gllP < a. By Theorem 2.4. f -.fD +.f -.f, uniformly, so there 
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exists a set E with pE > 0 such that, for sufficiently large p, 
If(x) -&(,t-)l > b for every x in E. Thus, for large p, 

a contradiction. This concludes the proof of Theorem 2.5. 
We now turn to the question of the continuity off,, 1~ p d co. Our 

approach is to uniformly approximate f by functions in Sk, k 3 1. The 
following definitions will expedite our discussion of these step functions. 
We will say that J(i) and J(j) in 7ck are adjacent ifj= (ir, i?,..., i,- I, i, f 1, 
i I + r ,..., i,) for some t, 1 6 t 6 IZ. The union of a set of cubes is said to be a 
component if for any two cubes J(i) and J(j) in the set, there exist cubes 
J( i’) = J(i), J(iZ),..., J(T) = J(j) such that, for 1 <t <n? - 1, J(C) is 
adjacent to J(i’+ ‘). If J(i) and J(j) are any two adjacent cubes, we will call 
I g(f) - g(Al a MTJ ofg. 

2.6 LEMMA. For any E > 0, if f E S, and f has no jump greater than E, 
then, for 1 < p < ‘x), f, has no jump greater than 3~. 

PYOOJ By Lemma 2.2, f, = f,“. If there exist adjacent cubes J(a) and 
J(E’) in rrk such that f,(d) - fp(cc) > 3.s, then an element of pp(f) M) = 
p,(f 1 Mk) which is not equivalent to f, can be constructed in a manner 
similar to the construction in Lemma 2.2. In the amended proof, the role of 
J(p) is played by the cube in nk- i which contains J(a), each occurrence of 
“k + 1” is replaced by “k” and, for each cube J(j) c A T (respectively, A:, 
AZ), f,(j) <f(j) <f(Y) <f,(Y) (respectively3 f(j) <f,(h f(Y) >f,(/)). 

2.7 THEOREM. If f: R + R is continuous and 1 d p < we, then f, is con- 
tinuous. 

Proof In view of Theorem 2.4, it suffices to prove the statement for 
1 <p< co. Let r>O be given. Then there exist k= k(E) >O such that 
sup,..f(.~) - inf,,, f(x) < E for every J in nk. Define fE by 

f”(x) = sup f (x), XE JE xk, 
us.J 

and define f, similarly, with Ysup” replaced by “inf.” Since f, <f <f” and 
f” - E <f< f, + E, the monotonicity of the nearest point projection (see 2.8 
in [7]) implies that 

(f,), Gf, G (f”)PJ 

(f”),-EGfpafJp+& 
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and 

(fplp - c”fJ, 6 2. 

Since neither SE nor fE has a jump greater than E, Lemma 2.6 implies that 
neither (f,), nor (fE)p has a jump greater than 3~. 

Let B be a ball in R of radius 2 Pk ~ I. Then 

SUPfAx)- inf f,(x)djm, 
KEB I t B 

whence f, is continuous. 
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