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Abstract

Let {�n}∞
n=1 be a sequence of points in the open unit disk in the complex plane and let

B0 = 1 and Bn(z) =
n∏

k=0

�k

|�k |
�k − z

1 − �kz
, n = 1, 2, . . . ,

(�k/|�k | = −1 when �k = 0). We put L = span{Bn : n = 0, 1, 2, . . .} and we consider the following “moment” problem:
Given a positive-definite Hermitian inner product 〈·, ·〉 in L, find all positive Borel measures � on [−�, �) such that

〈f, g〉 =
∫ �

−�
f (ei�)g(ei�) d�(�) for f, g ∈ L.

We assume that this moment problem is indeterminate. Under some additional condition on the �n we will describe a one-to-one
correspondence between the collection of all solutions to this moment problem and the collection of all Carathéodory functions
augmented by the constant ∞.
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1. Introduction

As in [1] a moment problem is called indeterminate if it has more than one solution. In [1] it is shown that if the
Hamburger moment problem is indeterminate, then there is a one-to-one correspondence between the collection of all
the solutions to this moment problem and the collection of all Nevanlinna functions augmented by the constant ∞. See
[1, Theorem 3.2.2]. The purpose of the present paper is to prove a similar statement for a rational moment problem
that arises in the study of certain rational functions with poles outside the closed unit disk in the extended complex
plane. A one-to-one correspondence between the collection of all the solutions of our rational moment problem and
the collection of all the Carathéodory functions and the constant ∞ will be established.

Let

T = {z ∈ C : |z| = 1}, D = {z ∈ C : |z| < 1}, E = {z ∈ C : |z| > 1},
G = {z ∈ C : Rz < 0}, H = {z ∈ C : Rz > 0}, I = {z ∈ C : Rz = 0}.

Let �n, n = 0, 1, 2, . . . be given points in D with �0 = 0 and let

D0 = {z ∈ D : z �= �j , j = 0, 1, 2, . . .} and E0 = {z ∈ E : z �= 1/�j , j = 1, 2, . . .}.
The Blaschke factors �n are given by

�n(z) = �n

|�n| · �n − z

1 − �nz
, n = 0, 1, 2, . . . ,

where by convention

�n

|�n| = −1 when �n = 0.

The (finite) Blaschke products are

Bn(z) =
n∏

k=1

�k(z), n = 1, 2, . . . and B0(z) = 1.

We define the linear spaces Ln, n = 0, 1, 2, . . . and L by

Ln = span{Bm : m = 0, 1, . . . , n} and L =
∞⋃

n=0

Ln.

Clearly Ln consists of the functions that may be written as

pn(z)

�n(z)
,

where

�n(z) =
n∏

k=1

(1 − �kz), n = 1, 2, . . . and �0(z) = 1

and pn belongs to �n, the set of polynomials of degree at most n. The substar conjugate f∗ of a function f is defined as

f∗(z) = f (1/z).

For f ∈ Ln\Ln−1 the superstar conjugate f ∗ will be

f ∗(z) = Bn(z)f∗(z).
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If f ∈ L0, then f ∗ = f∗. Furthermore we assume that � is a positive Borel measure on [−�, �) with �([−�, �)) = 1.
Then

〈f, g〉 =
∫ �

−�
f (ei�)g(ei�) d�(�) for f, g ∈ L

defines a Hermitian positive-definite inner product in L.
In this paper we consider the following:

Definition 1.1 (Moment problem). Given the inner product 〈·, ·〉 in L, find all positive Borel measures � on [−�, �)

such that

〈f, g〉 =
∫ �

−�
f (ei�)g(ei�) d�(�) for f, g ∈ L.

Remark 1.1. This formulation of the moment problem is equivalent to the following one: “Given a positive-definite
measure � on [−�, �), find all positive Borel measures � on [−�, �) such that∫ �

−�
Bn(e

i�) d�(�) =
∫ �

−�
Bn(e

i�) d�(�), n ∈ Z, where B−n = Bn∗.

Note that this reduces to the classical trigonometric moment problem if all �k = 0.

It is evident that � is a solution to this moment problem.
Throughout this paper we assume that this moment problem is indeterminate. Under an additional condition on the

�n, n = 0, 1, 2, . . ., we will show that there is a one-to-one correspondence between the collection of all solutions to
this moment problem and the collection of all Carathéodory functions augmented by the constant ∞.

The collection of all Carathéodory functions will be denoted as C. Recall that f ∈ C if and only if f is analytic in D

and f (D) ⊂ H ∪ I.

Remark 1.2. The assumption that our moment problem is indeterminate implies that it is not a generalization of the
trigonometric moment problem which has always a unique solution.

A characterization in terms of Nevanlinna functions of the solutions with support in R of an indeterminate (rational)
moment problem related to rational functions with poles in the extended real line is treated in [2].

2. Orthogonal rational functions

In our approach orthogonal rational functions and the associated functions will play an important role. Let the
sequence {	n}∞n=0 in L be obtained by orthonormalization of the sequence {Bn}∞n=0 with respect to the inner product
〈·, ·〉 on L, i.e.

	n ∈ Ln and 〈	n, 	n〉 = 1, n = 0, 1, 2, . . .

and

〈f, 	n〉 = 0 for f ∈ Ln−1, n = 1, 2, . . . .

Each 	n can be written as

	n(z) =
n∑

k=0

b
(n)
k Bk(z).

We assume that the 	n are chosen such that b
(n)
n > 0.
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Using the uniqueness of the reproducing kernel

n∑
k=0

	k(z)	k(w)

for the inner product space Ln it can be shown, see for instance [5], that the following Christoffel–Darboux formula
holds

	∗
n(z)	

∗
n(w) − 	n(z)	n(w)

1 − �n(z)�n(w)
=

n−1∑
k=0

	k(z)	k(w). (2.1)

The associated functions 
n are defined by


0(z) = − 1

b
(0)
0

, (
0(z) = −
∫ �

−�
	0(e

i�) d�(�)),

and


n(z) =
∫ �

−�

t + z

t − z
[	n(z) − 	n(t)] d�(�), n = 1, 2, . . . with t = ei�.

(This definition and formula (2.2) do not depend on the measure � provided that it is a solution to the moment problem.)
Obviously 
n ∈ Ln for n = 0, 1, 2, . . . . For the superstar conjugates of the 
n we have


∗
0(z) = − 1

b
(0)
0

and


∗
n(z) =

∫ �

−�

t + z

t − z

[
Bn(z)

Bn(t)
	∗

n(t) − 	∗
n(z)

]
d�(�), n = 1, 2, . . . with t = ei�. (2.2)

See [3]. The pairs (	n(z), 	
∗
n(z)) and (
n(z), −
∗

n(z)) satisfy the same recurrency relations. Using the analogue of the
determinant formula and the analogue of Green’s formula for this recurrency we obtain the following relations between
the functions 	n, 	∗

n, 
n and 
∗
n which will be used in the present paper:

	∗
n(z)
n(z) + 	n(z)


∗
n(z) = 1 − |�n|2

1 − �nz

−2zBn(z)

z − �n

, (2.3)

	∗
n(z)


∗
n(w) + 	n(z)
n(w)

1 − �n(z)�n(w)
+ 2

1 − zw
= −

n−1∑
k=0

	k(z)
k(w), (2.4)


∗
n(z)


∗
n(w) − 
n(z)
n(w)

1 − �n(z)�n(w)
=

n−1∑
k=0


k(z)
k(w) (2.5)

and

|
∗
n(z) + s	∗

n(z)|2 − |
n(z) − s	n(z)|2
1 − |�n(z)|2 + 2(s + s)

1 − |z|2 =
n−1∑
k=0

|
k(z) − s	k(z)|2. (2.6)

Proofs of (2.3)–(2.6)) can be found in [4].
If � is a finite positive Borel measure on [−�, �) then we write

F�(z) =
∫ �

−�

t + z

t − z
d�(�) where t = ei�.

Clearly F� is an analytic function on C\T. In fact F� is analytic outside the support of the measure on T which
corresponds to � by the mapping � 
→ ei�. If �1 and �2 are finite positive Borel measures on [−�, �) and F�1(z)=F�2(z)
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for z ∈ C\T then �1=�2. Sometimes the function F� is called the Riesz–Herglotz transform of the measure �. Regarding
this transform we mention the following special case of [5, Theorem 6.2.1].

Proposition 2.1. If �1 and �2 are positive Borel measures on [−�, �) with �1([−�, �)) = �2([−�, �)) = 1, then∫ �

−�
f (t)g(t) d�1(�) =

∫ �

−�
f (t)g(t) d�2(�) (t = ei�) for f, g ∈ Ln

if and only if

F�1(z) − F�2(z) = Bn(z)g(z),

where g is analytic in D and g(0) = 0.

In the present paper we consider the expression

Rn(z, �) = 
n(z) − �
∗
n(z)

	n(z) + �	∗
n(z)

for z, � ∈ C.
If � ∈ T, then there exists a (discrete) positive Borel measure �n which solves the “truncated” moment problem in

Ln−1, i.e.,∫ �

−�
f (t)g(t) d�n(�) =

∫ �

−�
f (t)g(t) d�(�) (t = ei�) for f, g ∈ Ln−1

such that

F�n
(z) = Rn(z, �) for z ∈ C\T.

See [3].
In [4] it is shown that for fixed z ∈ D0 ∪ E0 the values of

s = Rn(z, �)

describe a circle Kn(z) if � varies in T. The equation of Kn(z) is

n−1∑
k=0

|
k(z) − s	k(z)|2 = 2(s + s)

1 − |z|2 (2.7)

and the corresponding closed disk �n(z) is given by the equation

n−1∑
k=0

|
k(z) − s	k(z)|2 � 2(s + s)

1 − |z|2 . (2.8)

The interior of �n(z) will be denoted as �0
n(z). It follows from (2.8) that �n(z) ⊃ �n+1(z), n = 1, 2, . . ., so the disks

�n(z) are nested. Eq. (2.8) also implies that

�n(z) ⊂ H if z ∈ D0

and

�n(z) ⊂ G if z ∈ E0.
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3. The moment problem

Since we assume that our moment problem is indeterminate, we have
∞∑

n=0

(1 − |�n|) < ∞. (3.1)

Indeed, if this series would diverge, then by [5, Theorem 7.1.2] and a density argument in C(T), the moment problem
would have only one solution. (Notice that there is a misprint in this theorem: 1 ≤ p ≤ ∞ must be 1 ≤ p < ∞.) See
also [5, Chapter 10]. Evidently (3.1) implies that {�n : n ∈ N} is a discrete subset of D and that each �n occurs only
a finite number of times in the sequence {�n}∞n=0. Let S be the set of accumulation points of {�n : n ∈ N}. Then S is a
closed subset of T. In [4] it is shown that the series

∑∞
n=0 |	n(z)|2,

∑∞
n=0 |	∗

n(z)|2,
∑∞

n=0 |
n(z)|2 and
∑∞

n=0 |
∗
n(z)|2

converge uniformly on compact subsets of D0 ∪ E0. However, the argument of the proof of [4, Theorem 6.2] also gives
uniform convergence of these series on compact subsets of D0 ∪ E0 ∪ (T\S). In the remaining part of this paper we
assume that

S �= T.

For fixed w ∈ C we define

An(z) = 
n(w)
n(z) − 
∗
n(w)
∗

n(z)

1 − �n(w)�n(z)
,

Bn(z) = 
n(w)	n(z) + 
∗
n(w)	∗

n(z)

1 − �n(w)�n(z)
,

Cn(z) = 	n(w)
n(z) + 	∗
n(w)
∗

n(z)

1 − �n(w)�n(z)
,

Dn(z) = 	n(w)	n(z) − 	∗
n(w)	∗

n(z)

1 − �n(w)�n(z)
.

By (2.1), (2.4) and (2.5)) we have

An(z) = −
n−1∑
k=0


k(w)
k(z),

Bn(z) = − 2

1 − wz
−

n−1∑
k=0


k(w)	k(z),

Cn(z) = − 2

1 − wz
−

n−1∑
k=0

	k(w)
k(z),

Dn(z) = −
n−1∑
k=0

	k(w)	k(z).

These functions also may be written as

An(z) = an(z)

�n−1(z)
, Dn(z) = dn(z)

�n−1(z)
,

where an, dn ∈ �n−1, the set of polynomials of degree at most n − 1, and

Bn(z) = bn(z)

(1 − wz)�n−1(z)
, Cn(z) = cn(z)

(1 − wz)�n−1(z)
,

where bn, cn ∈ �n. The coefficients of the polynomials an, bn, cn, dn depend on w.
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In the sequel we assume that w ∈ T\S. The condition w ∈ T is needed to get the right mapping properties as used
for example in (3.9) and the condition w /∈ S is needed to get the convergence of series of rational functions in w such
as the series

∑ |
k(w)|2 in the next paragraph.
From the uniform convergence of the series

∑∞
n=0 |	n(z)|2,

∑∞
n=0 |	∗

n(z)|2,
∑∞

n=0 |
n(z)|2 and
∑∞

n=0 |
∗
n(z)|2 on

compact subsets of D0 ∪E0 ∪ (T\S) it follows immediately that the functions An(z), Bn(z), Cn(z) and Dn(z) converge
uniformly on compact subsets of D0 ∪ E0 ∪ (T\S) as n → ∞. For e.g., Bn we have

|Bm(z) − Bn(z)| =
∣∣∣∣∣
m−1∑
k=n


k(w)	k(z)

∣∣∣∣∣ �
m−1∑
k=n

|
k(w)|2
m−1∑
k=n

|	k(z)|2,

so {Bn(z)}∞n=1 is a uniform Cauchy sequence on compact subsets of D0 ∪ E0 ∪ (T\S). Clearly the limits A(z), B(z),
C(z) and D(z) of An(z), Bn(z), Cn(z) and Dn(z), respectively, are analytic in D0 ∪ E0 ∪ (T\S).

As

[1 − �n(w)�n(z)]2[An(z)Dn(z) − Bn(z)Cn(z)]
= −[	∗

n(w)
n(w) + 
∗
n(w)	n(w)][	∗

n(z)
n(z) + 
∗
n(z)	n(z)]

it follows from (2.3) and

1 − �n(w)�n(z) = (1 − |�n|2)(1 − wz)

(1 − �nw)(1 − �nz)

that

An(z)Dn(z) − Bn(z)Cn(z) = −4
wBn(w)zBn(z)(1 − �nw)(1 − �nz)

(w − �n)(z − �n)(1 − wz)2
.

As w ∈ T, this becomes

An(z)Dn(z) − Bn(z)Cn(z) = −4
wBn(w)zBn(z)(w − �n)(1 − �nz)

(1 − �nw)(z − �n)(w − z)2
. (3.2)

This implies that the mapping

t 
→ An(z)t + Cn(z)

Bn(z)t + Dn(z)

is a well-defined linear fractional transformation if z ∈ D0 and w ∈ T.
Some simple calculations yield

An(z)t + Cn(z) = 
n(w)t + 	n(w)

1 − �n(w)�n(z)

[

n(z) − 
∗

n(w)t − 	∗
n(w)


(w)t + 	n(w)

∗

n(z)

]

and

Bn(z)t + Dn(z) = 
n(w)t + 	n(w)

1 − �n(w)�n(z)

[
	n(z) + 
∗

n(w)t − 	∗
n(w)


(w)t + 	n(w)
	∗

n(z)

]
.

Set

� = �n(t) = 
∗
n(w)t − 	∗

n(w)


(w)t + 	n(w)
so t = −	n(w)� + 	∗

n(w)


(w)� − 
∗
n(w)

.

Then

An(z)t + Cn(z)

Bn(z)t + Dn(z)
= 
n(z) − �
∗

n(z)

	n(z) + �	∗
n(z)

= Rn(z, �) = s (3.3)
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and

1

t
= −
n(w)� − 
∗

n(w)

	n(w)� + 	∗
n(w)

= −
n(w) − 1
�
∗

n(w)

	n(w) + 1
�	∗

n(w)
= −Rn

(
w,

1

�

)
. (3.4)

We have already observed that � 
→ s = Rn(z, �) maps T onto Kn(z) if z ∈ D0 ∪ E0. From (2.3) we conclude that
� 
→ s is a well-defined linear fractional transformation if z ∈ D0 ∪ T. We first consider the case z ∈ D0. Then (2.6)
in the form

|
∗
n(z) + s	∗

n(z)|2 − |
n(z) − s	n(z)|2
1 − |�n(z)|2 =

n−1∑
k=0

|
k(z) − s	k(z)|2 − 2(s + s)

1 − |z|2 (3.5)

and the equations for Kn(z) and �n(z) imply

{� ∈ D ⇐⇒ s ∈ (C ∪ {∞})\�n(z),

� ∈ T ⇐⇒ s ∈ Kn(z),

� ∈ E ∪ {∞} ⇐⇒ s ∈ �0
n(z).

(3.6)

Now let z ∈ T. Then we multiply (3.5) with z replaced by v, v ∈ D0, by 1 − |v|2 and let v → z to obtain

|1 − �nz|2{|
∗
n(z) + s	∗

n(z)|2 − |
n(z) − s	n(z)|2} = −2(s + s). (3.7)

This yields

{� ∈ D ⇐⇒ s ∈ G,

� ∈ T ⇐⇒ s ∈ I ∪ {∞},
� ∈ E ∪ {∞} ⇐⇒ s ∈ H.

(3.8)

Notice that in this case s =∞ gives 	n(z)+ �	∗
n(z)= 0 while |	n(z)|= |	∗

n(z)| �= 0 by (2.1), and hence � ∈ T. Recall
that w ∈ T\S. Thus (3.8) implies that for � and t in (3.4) we have

{� ∈ D ⇐⇒ t ∈ G,

� ∈ T ⇐⇒ t ∈ I ∪ {∞},
� ∈ E ∪ {∞} ⇐⇒ t ∈ H.

(3.9)

Now let s and t be as in (3.3). If z ∈ D0, combination of (3.6) and (3.9) gives

{
t ∈ G ⇐⇒ s ∈ (C ∪ {∞})\�n(z),

t ∈ I ∪ {∞} ⇐⇒ s ∈ Kn(z),

t ∈ H ⇐⇒ s ∈ �0
n(z).

(3.10)

If z ∈ T we get

{
t ∈ G ⇐⇒ s ∈ G,

t ∈ I ∪ {∞} ⇐⇒ s ∈ I ∪ {∞},
t ∈ H ⇐⇒ s ∈ H.

Notice that Kn(z) ⊂ H if z ∈ D0. Therefore

z 
→ s = An(z)t + Cn(z)

Bn(z)t + Dn(z)

maps D0 into H if t ∈ H ∪ I.
As we will establish a one-to-one correspondence between Carathéodory functions and solutions to the moment

problem we consider two subsections I and II. In I we start from a Carathéodory function h ∈ C or from an
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infinite constant. If h ∈ C we show that there exists a unique solution � to the moment problem with

F�(z) = A(z)h(z) + C(z)

B(z)h(z) + D(z)
. (3.11)

The infinite constant corresponds to F�(z) = A(z)/B(z). Conversely in II we begin with a solution � of the moment
problem and we show that there is a unique h ∈ C such that (3.11) holds or F�(z) = A(z)/B(z). Combination of I and
II will lead to our main result.

I. Let h ∈ C. Put

Fn(z) = An(z)h(z) + Cn(z)

Bn(z)h(z) + Dn(z)

for z ∈ D0. Then Fn maps D0 into H. If we multiply numerator and denominator of Fn by (1 − wz)�n−1(z) which is
non-zero in D, we obtain

Fn(z) = (1 − wz)an(z)h(z) + cn(z)

bn(z)h(z) + (1 − wz)dn(z)
.

So Fn is a quotient of analytic functions in D and hence Fn is meromorphic in D. Since D0 is dense in D and Fn(D0)

is contained in the half-plane H ∪ I, Fn must be analytic in D. Therefore Fn ∈ C.
Hence by the Riesz–Herglotz representation theorem for Carathéodory functions there is a positive Borel measure

�n on [−�, �) and a real constant cn such that

Fn(z) = icn +
∫ �

−�

t + z

t − z
d�n(�) (t = ei�).

See [1,5]. On the other hand, we have

Fn(z) = Rn(z, �n(h(z)))

and in particular

Fn(0) = Rn(0, �n(h(0))) = 
n(0) − �n(h(0))
∗
n(0)

	n(0) + �n(h(0))	∗
n(0)

.

By orthogonality of the 	n it follows from the definition of 
n and from (2.2) that


n(0) =
∫ �

−�
[	n(0) − 	n(e

i�)] d�(�) = 	n(0)

and


∗
n(0) =

∫ �

−�

[
Bn(0)

Bn(ei�)
	∗

n(e
i�) − 	∗

n(0)

]
d�(�) = −	∗

n(0)

if n�1. Hence Fn(0)=1 if n�1 and from the representation of Fn we get cn=IFn(0)=0 and �n([−�, �))=Fn(0)=1.
Hence

Fn(z) =
∫ �

−�

t + z

t − z
d�n(�) = F�n(z),

which is the Riesz–Herglotz transform of the measure �n.
For every � = �n(t) ∈ T there is a measure �n = �n(·, �n(t)) such that F�n

(z) = Rn(z, �n(t)) which solves the
truncated moment problem in Ln−1. As �n(t) ∈ T if and only if t ∈ I∪{∞}, we may take t =∞ to obtain the measure
�(0)

n = �n(·, �(∞)) solving the truncated moment problem in Ln−1 and such that

F�(0)
n

(z) = Rn(z, �n(∞)) = An(z)

Bn(z)
.
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We will use the measure �(0)
n to show that under a certain condition on the function h, also �n solves the truncated

moment problem in Ln−1. To that end we consider Fn(z)−F�(0)
n

(z). Using (2.3) we get after some tedious calculations

Fn(z) − F�(0)
n

(z) = An(z)h(z) + Cn(z)

Bn(z)h(z) + Dn(z)
− An(z)

Bn(z)

= − An(z)Dn(z) − Bn(z)Cn(z)

Bn(z)[Bn(z)h(z) + Dn(z)]

= 4
wBn(w)zBn(z)(w − �n)(1 − �nz)

(1 − �nw)(z − �n)(w − z)2Bn(z)[Bn(z)h(z) + Dn(z)]

= 4
wBn(w)zBn(z)(w − �n)(1 − �nz)

(1 − �nw)(z − �n)(w − z)2 bn(z)

(1 − wz)�n−1(z)

[
bn(z)

(1 − wz)�n−1(z)
h(z) + dn(z)

�n−1(z)

]

= 4Bn−1(w)
zBn−1(z)(�n−1(z))

2

bn(z)[wbn(z)h(z) + (w − z)dn(z)] .

Hence

Fn(z) − F�(0)
n

(z) = zBn−1(z)Jn−1(z), (3.12)

where Jn−1 is a rational function and Fn(z) − F�(0)
n

(z) is analytic in D.
Now we assume that the function h satisfies

wbn(�k)h(�k) + (w − �k)dn(�k) �= 0 for k = 0, 1, . . . , n − 1. (3.13)

Remember that �0 = 0. Since the numerator 
n(w)	n(z) − 
∗
n(w)	∗

n(z) of Bn(z) is para-orthogonal, it has its zeros
in T. See [4]. Notice that |
n(w)| = |
∗

n(w)| �= 0 for w ∈ T. Hence bn(z) �= 0 for z ∈ D. Therefore the assumption
(3.13) implies that Jn−1 will not have poles at the points �0, �1, . . . , �n−1. But then

Jn−1(z) =
Fn(z) − F�(0)

n
(z)

zBn−1(z)

is analytic in D. Since Fn = F�n it follows from (3.12) and Proposition 2.1 that �n and �(0)
n induce the same inner

product on Ln−1. Thus under the condition (3.13) also �n is a solution to the truncated moment problem in Ln−1.
Suppose now that h is an arbitrary Carathéodory function. Then we take 
n ∈ R, 
n > 0 with 
n → 0 as n → ∞

such that (3.13) is satisfied for all n if h is replaced by hn(z) = h(z) + 
n. It is clear that hn ∈ C and that hn → h as
n → ∞. By the foregoing for each n there exists a solution �n of the truncated moment problem in Ln−1 such that

F�n(z) = An(z)hn(z) + Cn(z)

Bn(z)hn(z) + Dn(z)
.

By the argument given in [4], applying Helly’s theorems on the non-decreasing functions � 
→ �n([−�, �)), we obtain
a subsequence {�nk

}∞k=1 of {�n}∞n=1 such that � = limk→∞�nk
is a solution to the (full) moment problem and F�nk

(z)

converges to F�(z). On the other hand

F�nk
(z) = Ank

(z)hnk
(z) + Cnk

(z)

Bnk
(z)hnk

(z) + Dnk
(z)

→ A(z)h(z) + C(z)

B(z)h(z) + D(z)
as k → ∞

for all z ∈ D0. Hence for each h ∈ C there is a solution � to the moment problem such that (3.11) is satisfied. Obviously
� is unique.

If h ≡ ∞ we apply Helly’s theorems on the measures �(0)
n and we get a subsequence {�(0)

nk
}∞k=1 converging to a

positive Borel measure � satisfying F�(z) = A(z)/B(z) for z ∈ D0.
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II. Assume that � is a solution to the moment problem. For z ∈ D0 define hn(z) by

F�(z) = An(z)hn(z) + Cn(z)

Bn(z)hn(z) + Dn(z)
,

i.e.,

hn(z) = −Dn(z)F�(z) − Cn(z)

Bn(z)F�(z) − An(z)
= − (1 − wz)dn(z)F�(z) − cn(z)

bn(z)F�(z) − (1 − wz)an(z)
.

Since F� is analytic in D and an, bn, cn, dn are polynomials, hn may be considered to be meromorphic in D. From
(3.10) and the fact that F�(z) ∈ �n(z) if z ∈ D0, see [4], we conclude that hn(z) ∈ I ∪ {∞} ∪ H if z ∈ D0. As D0 is
dense in D it follows that hn is analytic in D and that hn(D) ⊂ I ∪ H. Hence hn ∈ C.

Clearly hn(z) converges to

h(z) = −D(z)F�(z) − C(z)

B(z)F�(z) − A(z)

in D0 as n → ∞, where A, B, C, D are analytic in D0.
Suppose that h is not an infinite constant. As h(D0) ⊂ I ∪ H, h must be analytic in D0, and for the same reason it

follows from the Casorati–Weierstrass theorem that the singularities of h in D must be removable. So h is extendable
to an analytic function in D which is again denoted as h. But then h ∈ C. Hence given � there is a unique h ∈ C such
that

F�(z) = A(z)h(z) + C(z)

B(z)h(z) + D(z)
for z ∈ D0,

or h ≡ ∞ in which case we have F�(z) = A(z)/B(z) for z ∈ D0.
Combination of the results in I and II leads to:

Theorem 3.1. Assume that the moment problem as defined in Section 1 is indeterminate. Suppose that the set S of all
accumulation points of {�n : n ∈ N} satisfies S �= T and let A, B, C, D be the locally uniform limits in D0 of the
rational functions An, Bn, Cn, Dn, with parameter w ∈ T\S. Then the formula∫ �

−�

t + z

t − z
d�(�) = A(z)h(z) + C(z)

B(z)h(z) + D(z)
(t = ei�), z ∈ D0,

establishes a one-to-one correspondence between the collection of all solutions � to the moment problem and the
collection of all Carathéodory functions h augmented by the constant ∞.

Remark 3.2. If in Theorem 3.1 the function h is a constant in I ∪ {∞}, then the measure � is an N -extremal solution
to the moment problem and every N -extremal solution is obtained in this way. See [6].
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