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Reciprocal functions of hepatocyte growth factor and trans-
forming growth factor-31 in the progression of renal diseases:
A role for CD44? Progressive renal fibrosis occurs via common
pathophysiologic mechanisms, regardless of the primary under-
lying disease. This cascade includes release of cytokines/chemo-
kines and toxic molecules, interstitial inflammation, tubular cell
damage, accumulation of myofibroblasts, and finally, fibrosis.
Hepatocyte growth factor (HGF) and transforming growth
factor-B1 (TGF-B1) are key molecules in this cascade that,
in general, exert opposite actions. Hepatocyte growth factor
promotes, to some extent, inflammation, protects tubular epi-
thelial cells, blocks myofibroblast transition, and contributes
to tissue remodeling. In contrast, TGF-B1 has powerful anti-
inflammatory actions, promotes apoptosis, induces myofibro-
blast transition, and is a strong pro-fibrotic agent. The mecha-
nisms which orchestrate the reciprocal actions of HGF and
TGF-B1 are still largely unknown and are probably multiple.
One of these mechanisms involves the selective up-regulation
of CD44 in damaged kidney. The glomerular and tubular ex-
pression of CD44 closely correlates with the degree of renal
damage, and CD44 has been shown to facilitate the action of
both HGF and TGF-B1. Moreover, during chronic obstructive
nephropathy CD44 knock-out mice display much more tubular
damage but develop less fibrosis in the course of the renal
disease. These histologic findings are associated with impair-
ment of signaling pathways of both HGF and TGF-1. The
development of new therapeutic strategies aimed at preventing
progression of renal diseases that are based on HGF and/or
TGF-B1 may take in account the pivotal role of CD44 expres-
sion in the functions of both molecules.

The majority of progressive renal diseases are glomer-
ular and vascular in origin, whereas the renal outcome
is largely determined by the extent of secondary tubulo-
interstitial damage. Irrespective of the primary insult,
the histologic lesions of kidneys with chronic renal failure
are remarkably similar and characterized by glomerular
sclerosis and tubulointerstitial scarring. This suggests a
common pathway in the development of these lesions.
Experiments in animal models that mimic the complex
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milieu of progressive renal diseases in humans have dis-
sected the cascade of events that lead to end-stage kidney
disease. It is beyond the scope of this review to analyze in
details all mechanisms that take place during progressive
renal disease. Excellent reviews have addressed this topic
recently [1, 2]. Here, we focus on the reciprocal roles of
hepatocyte growth factor (HGF) and transforming growth
factor-1 (TGF-B1) in progression of renal disease and
we examine the potential role of CD44 in the balance
between these growth factors. First, the key events that
take place upon renal injury are summarized in Figure 1.

The mechanisms of renal disease progression in brief

Upon injury, glomeruli release cytokines and chemo-
kines. These inflammatory mediators, combined with other
proteins, immune complexes, toxins, iron, complement
factors [3] are filtered by damaged glomeruli and will
stimulate downstream tubular epithelial cells (TEC) to
start producing cytokines such as interleukin-1 (IL-1) and
tumor necrosis factor-a (TNF-a), and chemokines such
as IL-8, monocyte chemoattractant protein-1 (MCP-1),
regulated on activation, normal T cell expressed and
secreted (RANTES) [4]. This, in turn, leads to the up-
regulation of adhesion molecules including vascular cell
adhesion molecule-1 (VCAM-1), intercellular adhesion
molecule-1 (ICAM-1), and CD44 [5], which support in-
filtration and activation of inflammatory cells. The in-
flammatory infiltrate, mostly composed of monocytes/
macrophages and T lymphocytes, contributes to a posi-
tive feedback of inflammation. Macrophages and their
products are implicated in various deleterious processes
in the course of renal damage such as direct cell toxicity,
basement membrane damage, and interstitial fibrosis.
On the other hand, macrophages are also involved in
tissue repair by phagocytosing apoptotic bodies, remov-
ing immune complexes and fibrin, and secreting pro-
tecting mediators such as HGF [6, 7]. Progression of
renal disease correlates with impaired angiogenesis, which
results from an increase in the expression of the anti-
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angiogenic factor thrombospondin-1 (TSP-1), and de-
crease of the pro-angiogenic factor vascular endothelial
growth factor (VEGF) by TEC [8, 9]. Depending on the
balance between growth factors, TEC may eventually
become apoptotic, start to proliferate, or undergo myo-
fibroblast transition. The accumulation of myofibroblasts
in the interstitium is a key event in the development of
fibrosis. The origin of these cells is probably multiple,
including TEC, interstitial fibroblasts, macrophages, and
pericytes [10]. These cells are characterized by the ex-
pression of a-smooth muscle actin (a-SMA) and fibro-
blastic-specific protein-1 (FSP-1) [11]. Extracellular ma-
trix (ECM) accumulation results from an imbalance

Fig. 1. Pathophysiologic mechanisms of renal
damage. Abbreviations are: AT, angiotensin;
PDGEF, platelet-derived growth factor; VEGF,
vascular endothelial growth factor; TECs, tu-
bular epithelial cells; T, T lymphocyte; M¢,
macrophage; ECM, extracellular matrix.

between synthesis by myofibroblasts and degradation by
matrix metalloproteinases (MMP) [12]. This cascade of
events is schematized in Figure 1.

The reciprocal functions of TGF-31 and HGF in renal
disease progression

In renal disease progression, TGF-B1 and HGF exert
reciprocal and essential functions [13, 14], as reviewed
in Figure 2. Transforming growth factor-f1 and HGF
share similar cellular sources, including macrophages,
TEC, and myofibroblasts [15, 16]. Numerous factors are
known to stimulate TGF-B1 production, including angio-
tensin II, endothelin-1, ischemia, insulin, glucose, shear



Florquin and Rouschop: Role of CD44 in progression of renal diseases

Renal injury

\ Myofibroblasts

S-17

Macrophages /

TGF-B1

HGF

WC—>  Synthesis TGF-B H

Synthesis HGF

e

) —

-

TEC apoptosis

Inflammation

<—m

H TEC proliferation ~ <—m

<—m

> Myofibroblasts transition H

| — ECM synthesis
MMPs

TIMPs

Renal fibrosis

stress, insulin growth factor-1 (IGF-1), atrial natriuretic
factor, platelet-activating factor, thromboxane, and
TGF-B1 [2]. To become biologically active, pro-TGF-1
must be cleaved by a proteinase such as MMP-9, throm-
bospondin, or plasmin [17-19]. Heparin and IL-1 are the
most powerful mediators involved in the secretion of
HGF [20-22]. Transforming growth factor-1 and HGF
inhibit the synthesis of each other [23] and HGF also
down-regulates the expression of TGF-B receptor 1
(TGF-BR1) in vivo [24]. Experimental studies in rodent
models of chronic kidney diseases revealed that HGF is
produced principally at an early stage of renal damage
when tubulointerstitial inflammation and proliferation
of TEC dominate the picture [25, 26], and that (active)

<=
<—m

Fig. 2. The reciprocal effects of transforming
growth factor-f1 (TGF-B1) and hepatocyte
growth factor (HGF) in the cascade of tubulo-
interstitial damage. Black arrows, inhibitory
actions; gray arrows, controversial actions; open
arrows, stimulatory actions. Abbreviations are:
TEC:s, tubular epithelial cells; ECM, extracel-
lular matrix; MMP, matrix metalloproteinase;
TIMP, tissue inhibitors of matrix metallopro-
teinase.

TGF-B1 is strongly expressed at a later stage of renal
damage when apoptosis of TEC and interstitial fibrosis
occur [23, 27].

Transforming growth factor-g1 exerts powerful anti-
inflammatory effects in organ damage [28, 29]. In con-
trast, the role of HGF in inflammation is still controversial.
In vitro, HGF induces MCP-1 and RANTES production
in TEC, which may induce interstitial inflammation [30].
However, in vivo, HGF gene therapy has been shown to
suppress macrophage infiltration after unilateral ureteral
obstruction [31]. Blocking TGF-B1 diminishes TEC apo-
ptosis and leads to increased proliferation of tubular
epithelial cells after unilateral ureteral obstruction [32].
In contrast, endogenous, as well as exogenous, HGF
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stimulates the proliferation of TEC [26, 33] and protects
TEC from apoptosis after renal injury [31, 34-36].

Transforming growth factor-g1 has been shown to in-
duce epithelial-mesenchymal transition in vitro [24],
which can be blocked by HGF. Hence, HGF abrogates
the a-SMA expression and E-cadherin suppression trig-
gered by TGF-B1 in TEC. In addition, administration
(even delayed) of recombinant HGF blocks myofi-
broblast accumulation in obstructive nephropathy [37, 38].
End-stage kidney disease is characterized by extensive
interstitial fibrosis and glomerulosclerosis. The develop-
ment of interstitial fibrosis can be prevented by TGF-31
antisense oligodeoxynucleotides therapy in chronic ob-
structive nephropathy [39]. Administration of a blocking
anti-HGF antibody increases renal fibrosis in rats with
remnant kidneys [25]. Accordingly, the systemic admin-
istration of naked plasmid encoding HGF selectively pre-
vents the accumulation and deposition of collagen type I
and fibronectin in chronic obstructive nephropathy [24].
Hepatocyte growth factor exerts this in vivo anti-fibro-
genic activity in part by counteracting TGF-B1 action
through attenuation of one of its downstream mediators,
connective tissue growth factor (CTGF) [40]. However,
in an in vitro system, co-administration of TGF-B1 and
HGTF significantly increases the production of collagen
type I, which is associated with an early enhanced CTGF
induction [41]. Therefore, further investigations are nec-
essary for definitive conclusions regarding this interac-
tion. To what extent HGF is able to directly alter the
synthesis of the ECM by TEC is still a matter of debate.
In one study, HGF was shown to inhibit the expression
and extracellular deposition of fibronectin by TEC [37],
but Liu et al [25] indicated that HGF had no effect
on ECM synthetic rate. Transforming growth factor-f1
inhibits MMP expression and induces expression of tis-
sue inhibitor of matrix metalloproteinase-1 (TIMP-1),
the endogenous inhibitors of MMP-9, thereby contribut-
ing to ECM accumulation. Hepatocyte growth factor mar-
kedly increases collagenase expression such as MMP-9
and decreases the expression of TIMP-1 and TIMP-2,
resulting in matrix degradation [25].

In summary, TGF-B1 is a key modulator in renal fi-
brosis and HGF is a protective and anti-fibrotic factor
during renal injury. Since both molecules share the same
cellular source and are produced upon renal injury, the
question arises which molecules may orchestrate their
respective actions and may finally tip the balance, de-
termining whether an injured kidney will repair or be-
come fibrotic. One of the molecules that may modulate
the balance between HGF and TGF-B1 is CD44.

The role of CD44 in progressive renal diseases

CD44 represents a family of cell surface—expressed
glycoproteins encoded by one gene that consists of 19
exons. Through alternative RNA-splicing of up to 10
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exons (v1 to v10), a large number of CD44 splice variants
can be generated. CD44 is widely expressed and can be
found on leukocytes, endothelial cells, and epithelial
cells [42, 43]. The CD44 family is implicated in cell-cell
and cell-matrix interaction, lymphocyte extravasation,
tissue remodeling, and fibrosis and binding and presenta-
tion of growth factors [44, 45]. Hyaluronan and osteo-
pontin are the two major ligands of CD44 [46]. CD44
1soforms expressing the domain encoded by exon v3 are
decorated by heparan sulphate (CD44-HS) and there-
fore aquire unique functions. CD44-HS can act as areser-
voir for cytokines and chemokines [47] and is able to bind
growth factors and present these to their high-affinity
receptors [48, 49]. In particular, CD44-HS binds HGF
and presents it to its high affinity receptor, Met [50].
Besides facilitating the action of the reno-protective fac-
tor HGF, CD44 can also contribute to the pro-fibrotic
actions of TGF-B1. CD44 provides a cell surface docking
receptor for proteolytically active MMP-9, and MMP-9
localized at the cell surface is able to activate latent
TGF-B1 [17]. Furthermore, upon binding with hyaluro-
nan, CD44 interacts with TGF-p receptor I, leading to
enhanced TGF-B1 signaling [51].

Under normal conditions, CD44 is undetectable in the
kidney except in passenger leukocytes [52-54]. CD44
expression is markedly enhanced in inflammatory and
chronic renal diseases, particularly on injured TECs in
human nephropathies and in various animal models [44,
53, 55, 56]. We recently showed a strong correlation
in immunoglobulin A (IgA) nephropathy between the
tubulointerstitial expression of CD44 and the extent of
glomerular and tubular damage and the degree of pro-
teinuria [53]. The results of these studies suggest a key
role for CD44 in the progression of renal diseases and
prompted us to study the function of CD44 in chronic
obstructive nephropathy using CD44 knock-out mice
(CD447"7).

Early after obstruction, CD44~'~ mice displayed sig-
nificantly more tubular damage associated with less pro-
liferation and more apoptosis of TECs compared to wild-
type (WT) animals. Despite increased tubular damage,
accumulation of myofibroblasts was less pronounced in
CD447'~ than in WT mice and renal fibrosis was almost
completely prevented in CD44 '~ mice. In the first days
following obstruction, renal homogenates of CD44~'~
mice contained more HGF than those of WT mice. De-
spite this higher concentration of HGF in CD44 '~ mice,
the activation of c-Met, the high affinity receptor of HGF,
was less compared to WT mice, suggesting an important
role for CD44 in the signaling pathway of HGF in the
kidney. The levels of TGF-B1 in renal homogenates of
CD447'~ mice decreased in time, whereas TGF-B1 levels
increased in WT mice. This was associated with an im-
paired signaling pathway of TGF-B1 in CD44~'~ kidneys
[57]. From this study, we concluded that CD44 is crucial
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for the preservation of tubuli during renal injury, but
promotes renal fibrosis through a cascade of events in-
volving HGF and TGF-B1 signaling.

CONCLUSION

End-stage renal diseases are all characterized by ex-
tensive fibrosis that occurs via a common pathophysio-
logic pathway. Most patients with chronic renal diseases
are identified before they reach terminal renal failure
and would greatly benefit from therapeutic strategies
that can stop or slow down the progression of renal
fibrosis. Hepatocyte growth factor and TGF-1, the two
key molecules in this process, are excellent targets for
therapy. Before starting clinical trials, more knowledge
about the way both molecules are targeted to the dam-
aged kidney, their interactions, their signaling pathways,
and the role of other proteins, such as CD44, in this
cascade of events are required.

ACKNOWLEDGMENTS

This study was funded by the Dutch Kidney Foundation and the
Netherlands Organization for Research. We are grateful to J. Aten,
J.C. Leemans, and J.J. Weening for valuable discussion and critical
review of the manuscript.

Reprint requests to S. Florquin, M.D., Ph.D., Dept. of Pathology,
Academic Medical Center, PO Box 22660, NL-1100 DD, Amsterdam,
The Netherlands.

E-mail: s.Florquin@amc.uva.nl

REFERENCES

1. KLaHR S, Morrissey J: Obstructive nephropathy and renal fibrosis.
Am J Physiol Renal Physiol 283:F861-875, 2002
2. Eppy AA: Molecular basis of renal fibrosis. Pediatr Nephrol
15:290-301, 2000
3. NaNGaku M, PrepiN J, Couser WG: C6 mediates chronic progres-
sion of tubulointerstitial damage in rats with remnant kidneys. J
Am Soc Nephrol 13:928-936, 2002
4. vaN Kooten C, DaHA MR: Cytokine cross-talk between tubular
epithelial cells and interstitial immunocompetent cells. Curr Opin
Nephrol Hypertens 10:55-59, 2001
5. SuappELL SB, MENDozA LH, GurpINAR T, et al: Expression of
adhesion molecules in kidney with experimental chronic obstruc-
tive uropathy: The pathogenic role of ICAM-1 and VCAM-1.
Nephron 85:156-166, 2000
6. NikoLic-PaTERsoN DJ, LaN HY, Atkins RC: Macrophages in im-
mune renal injury, in Immunologic Renal Diseases, 2nd edition,
Philadelphia, Lippincott Williams & Wilkins, edited by NEiLsoN E,
Couser W, 2001, pp 609-632
7. NikoLic-PaTERsON DJ, ATkiNs RC: The role of macrophages in
glomerulonephritis. Nephrol Dial Transplant 16:3-7, 2001
8. KanG DH, ANDERSON S, KiM YG, et al: Impaired angiogenesis in
the aging kidney: Vascular endothelial growth factor and throm-
bospondin-1 in renal disease. Am J Kidney Dis 37:601-611, 2001
9. Kanc DH, KaneLLis J, HuGo C, et al: Role of the microvascular
endothelium in progressive renal disease. / Am Soc Nephrol
13:806-816, 2002
10. IwaNo M, PLiETH D, DANOFF TM, et al: Evidence that fibroblasts
derive from epithelium during tissue fibrosis. J Clin Invest 110:341—
350, 2002
11. Strutrz F, Oxkapa H, Lo CW, et al: Identification and characteriza-
tion of a fibroblast marker: FSP1. J Cell Biol 130:393-405, 1995
12. LeEnz O, ELL1oT SJ, STETLER-STEVENSON WG: Matrix metalloprotei-

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

S-19

nases in renal development and disease. J Am Soc Nephrol 11:574—
581, 2000

StaHL PJ, FELSEN D: Transforming growth factor-beta, basement
membrane, and epithelial-mesenchymal transdifferentiation: Im-
plications for fibrosis in kidney disease. Am J Pathol 159:1187-1192,
2001

Liu Y: Hepatocyte growth factor and the kidney. Curr Opin
Nephrol Hypertens 11:23-30, 2002

Liv Y, ToLBert EM, SuN AM, DwoORKIN LD: Primary structure of
rat HGF receptor and induced expression in glomerular mesangial
cells. Am J Physiol 271:F679-688, 1996

ABBATE M, Zosa C, RotroL1 D, et al: Proximal tubular cells promote
fibrogenesis by TGF-betal-mediated induction of peritubular myo-
fibroblasts. Kidney Int 61:2066-2077, 2002

Yu Q, StamENkovic I: Cell surface-localized matrix metalloprotein-
ase-9 proteolytically activates TGF-beta and promotes tumor inva-
sion and angiogenesis. Genes Dev 14:163-176, 2000

CRAWFORD SE, STELLMACH V, MUrPHY-ULLRICH JE, ef al: Throm-
bospondin-1 is a major activator of TGF-betal in vivo. Cell
93:1159-1170, 1998

CHu TM, Kawinski E: Plasmin, substilisin-like endoproteases, tis-
sue plasminogen activator, and urokinase plasminogen activator
are involved in activation of latent TGF-beta 1 in human seminal
plasma. Biochem Biophys Res Commun 253:128-134, 1998
Martsumoro K, Okazakt H, Nakamura T: Up-regulation of hepato-
cyte growth factor gene expression by interleukin-1 in human skin
fibroblasts. Biochem Biophys Res Commun 188:235-243, 1992
Martsumoro K, Nakamura T: Heparin functions as a hepatotrophic
factor by inducing production of hepatocyte growth factor. Bio-
chem Biophys Res Commun 227:455-461, 1996

WENG J, MoHAN RR, L1 Q, WiLsoN SE: IL-1 upregulates keratino-
cyte growth factor and hepatocyte growth factor mRNA and pro-
tein production by cultured stromal fibroblast cells: Interleukin-1
beta expression in the cornea. Cornea 16:465-471, 1997

Mizuno S, Matsumoto K, Kurosawa T, er al: Reciprocal balance
of hepatocyte growth factor and transforming growth factor-beta 1
in renal fibrosis in mice. Kidney Int 57:937-948, 2000

YaNG J, Dar C, Liu Y: Systemic administration of naked plasmid
encoding hepatocyte growth factor ameliorates chronic renal fi-
brosis in mice. Gene Ther 8:1470-1479, 2001

LivuY,Rasur K, ToLBERT E, DworkIN LD: Endogenous hepatocyte
growth factor ameliorates chronic renal injury by activating matrix
degradation pathways. Kidney Int 58:2028-2043, 2000

Kawaia K, Marsumoro K, SHimazU H, Nakamura T: Hepatocyte
growth factor prevents acute renal failure and accelerates renal
regeneration in mice. Proc Natl Acad Sci USA 91:4357-4361, 1994
WRIGHT EJ, McCAFFREY TA, ROBERTSON AP, et al: Chronic unilat-
eral ureteral obstruction is associated with interstitial fibrosis and
tubular expression of transforming growth factor-beta. Lab Invest
74:528-537, 1996

ScHIFFER M, VON GERSDORFF G, BITZER M, et al: Smad proteins
and transforming growth factor-beta signaling. Kidney Int Supp!
77:S45-52, 2000

WaHL SM: TGF-beta in the evolution and resolution of inflamma-
tory and immune processes. Introduction. Microbes Infect 1:1247—
1249, 1999

WanG SN, LAPAGE J, HirscHBERG R: Role of glomerular ultrafil-
tration of growth factors in progressive interstitial fibrosis in dia-
betic nephropathy. Kidney Int 57:1002-1014, 2000

Gao X, MAE H, Avase N, et al: Hepatocyte growth factor gene
therapy retards the progression of chronic obstructive nephropa-
thy. Kidney Int 62:1238-1248, 2002

Mivanma A, CHEN J, LAWRENCE C, et al: Antibody to transforming
growth factor-beta ameliorates tubular apoptosis in unilateral ure-
teral obstruction. Kidney Int 58:2301-2313, 2000

MIiLLER SB, MARTIN DR, KissaNE J, HAMMERMAN MR: Hepatocyte
growth factor accelerates recovery from acute ischemic renal injury
in rats. Am J Physiol 266:F129-134, 1994

VuayaN A, MARTIN DR, Sapow JL, et al: Hepatocyte growth factor
inhibits apoptosis after ischemic renal injury in rats. Am J Kidney
Dis 38:274-278, 2001

Liu Y: Hepatocyte growth factor promotes renal epithelial cell
survival by dual mechanisms. Am J Physiol 277:F624-633, 1999



S-20

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.

46.

47.

Mizuno S, Matsumoro K, Nakamura T: Hepatocyte growth factor
suppresses interstitial fibrosis in a mouse model of obstructive
nephropathy. Kidney Int 59:1304-1314, 2001

YanG J, Da1 C, Liu Y: Hepatocyte growth factor gene therapy and
angiotensin II blockade synergistically attenuate renal interstitial
fibrosis in mice. J Am Soc Nephrol 13:2464-2477, 2002

YaNnGJ, Liu Y: Delayed administration of hepatocyte growth factor
reduces renal fibrosis in obstructive nephropathy. Am J Physiol
Renal Physiol 284:F349-357, 2003

Isaka Y, Tsusie M, ANDoO Y, et al: Transforming growth factor-
beta 1 antisense oligodeoxynucleotides block interstitial fibrosis in
unilateral ureteral obstruction. Kidney Int 58:1885-1892, 2000
Inouk T, Okapa H, KoBayasHi T, et al: Hepatocyte growth factor
counteracts transforming growth factor-betal, through attenuation
of connective tissue growth factor induction, and prevents renal
fibrogenesis in 5/6 nephrectomized mice. FASEB J 17:268-270,
2003

Inoue T, Oxkapa H, KoBayasHi T, et al: TGF-betal and HGF
coordinately facilitate collagen turnover in subepithelial mesen-
chyme. Biochem Biophys Res Commun 297:255-260, 2002

BEeNz PS, Fan X, WuthricH RP: Enhanced tubular epithelial CD44
expression in MRL-Ipr lupus nephritis. Kidney Int 50:156-163, 1996
GRrIFFIOEN AW, CoENEN MJ, DAMEN CA, ef al: CD44 is involved
in tumor angiogenesis; an activation antigen on human endothelial
cells. Blood 90:1150-1159, 1997

GunTHERT U: CD44: A multitude of isoforms with diverse func-
tions. Curr Top Microbiol Immunol 184:47-63, 1993

LesLeEy J, HymaN R, Kincape PW: CD44 and its interaction with
extracellular matrix. Adv Immunol 54:271-335, 1993

SIEGELMAN MH, DEGRENDELE HC, EsTESs P: Activation and inter-
action of CD44 and hyaluronan in immunological systems. J Leu-
koc Biol 66:315-321, 1999

TANAKA Y, Apams DH, HUBSCHER S, et al: T-cell adhesion induced
by proteoglycan-immobilized cytokine MIP-1 beta. Nature 361:79—
82, 1993

48.

49.

50.

S1.

52.

53.

54.

S5.

56.

57.

Florquin and Rouschop: Role of CD44 in progression of renal diseases

JacksoN DG, BELL JI, DickinsoN R, et al: Proteoglycan forms of
the lymphocyte homing receptor CD44 are alternatively spliced
variants containing the v3 exon. J Cell Biol 128:673-685, 1995
VAN DER VOORT R, KEEHNEN RM, BEULING EA, et al: Regulation of
cytokine signaling by B cell antigen receptor and CD40-controlled
expression of heparan sulfate proteoglycans. J Exp Med 192:1115—
1124, 2000

VAN DER VOORT R, TAHER TE, WIELENGA V], et al: Heparan sulfate-
modified CD44 promotes hepatocyte growth factor/scatter factor-
induced signal transduction through the receptor tyrosine kinase
c-Met. J Biol Chem 274:6499-6506, 1999

BourcuigNoN LY, SINGLETON PA, Znu H, Zuou B: Hyaluronan
promotes signaling interaction between CD44 and the TGF-3 RI
in metastatic breast tumor cells. J Biol Chem 277:39703-39712,
2002

Takazok K, Fort R, TEscH GH, et al: Up-regulation of the tumour-
associated marker CD44V6 in experimental kidney disease. Clin
Exp Immunol 121:523-532, 2000

FLORQUIN S, NUNZIATA R, CLAESSEN N, ef al: CD44 expression in
IgA nephropathy. Am J Kidney Dis 39:407-414, 2002

ScreaToN GR, BELL MV, JacksoN DG, et al: Genomic structure
of DNA encoding the lymphocyte homing receptor CD44 reveals
at least 12 alternatively spliced exons. Proc Natl Acad Sci USA
89:12160-12164, 1992

DoucGHERrTY GJ, LANDORP PM, CooPEr DL, HumpPHRIES RK: Molec-
ular cloning of CD44R1 and CD44R2, two novel isoforms of the
human CD44 lymphocyte “homing” receptor expressed by hemo-
poietic cells. J Exp Med 174:1-5, 1991

Torc C, HormMaNN M, HERRLICH P, PonTA H: Splicing choice from
ten variant exons establishes CD44 variability. Nucleic Acids Res
21:1225-1229, 1993

RouscHor KMA, SEwNATH ME, CLAESSEN N, et al: CD44 protects
kidneys in vivo from tubular damage but promotes fibrosis through
alteration of HGF/cMet and TGF-B1 signaling pathways. J Am
Soc Nephrol 13:162A, 2002





