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Almtraet--In this paper the geometrical problem of constructing the largest circle inscribed in a (given) 
convex polygon is solved in 0(n) time. This problem is related to the construction of the skeleton of the 
polygon, which construction is shown to be accomplishable in 0(n log n) time. 

1. I N T R O D U C T I O N  

The coloring in of a two-dimensional (polygonal) figure in a raster graphics environment is 
accomplished by projecting the basic colors onto the planar domain of the figure. The footprint 
of the CRT (cathode ray tube) projection is circular, which gives rise to the theoretical and also 
the practical problems of how to inscribe the largest possible circle in a given convex polygon. 

In conformity with the paradigm of computational geometry, we tacitly assume the convex 
polygon to be given in the form of a counterclockwise listing of the planar coordinates of the 
vertices of the n-gon consideration. Obviously, the largest possible incircle of the convex polygon 
will be in contact with three edges of the polygon, t Furthermore, the three straight lines that are 
determined by the above three edges and that are oriented in the direction of the edges must satisfy 
a "Triangle Condition"--namely, by moving in the direction of the lines a closed triangular circuit 
ensues. Thus, the largest incircle of the polygon corresponds to the incircle of the above triangle. 
Indeed, the validity is readily verifiable for the 0(n 3)-time brute force method where one considers 
all those ~(~) edge triplets that in addition satisfy the Triangle Condition, and in each triangle 
one then inscribes a circle; the largest incircle of the polygon is the smallest circle in a triangle. 

In Section 2 of this paper we propose an efficient 0(n) time algorithm for the construction of 
the largest incircle of the convex polygon. We employ a linear programming (LP) formulation and 
exploit the recent result of Megiddo [1] and Dyer [2] concerning linear-time algorithms for LP in 
R 3. The largest incircle of a convex polygon is intimately related to the "skeleton" of the polygon. 
Roughly speaking, the skeleton is a generalized (medial) axis of symmetry of the polygon, The 
skeleton idea was introduced by Blum [3], and it was further developed by Montanari [4]. Thus, 
in Section 3 we give an 0(n log n)-time algorithm for the construction of the skeleton of a convex 
polygon. In Section 4 we present an additional 0 (n log n)-time approach to the construction of 
skeletons of convex polygons, and we also comment on the related dual problem of the smallest 
enclosing circle. 

2. T H E  L A R G E S T  I N C I R C L E  O F  A C O N V E X  P O L Y G O N  

Assume that our convex n-gon is given by the set of n linear inequalities~: 

ailxt+a+:x2<~bi i = 1,2 . . . . .  n, (1) 

tThis is so for a polygon in general position. Without loss of generality, we shall ignore, in the sequel, the rather exceptional 
case of a rectangle, illustrated in Fig. 2a; thus, if two sides of the polygon are parallel, then some incircles will be in 
contact with the two parallel sides of the polygon, and the largest possible incircle will not be unique. 

:~Note that formulation (1) can obviously be produced in 0(n) time from the polygon vertices listing. 
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where the coefficients satisfy, for all 1 ~< i ~< n, 

a2m + a/22 = 1. 

Then b~ is the distance of  the ith line 

from the origin and the expression, 

ailx~ + a i 2 x  2 ~- b i  

(2) 

bi - (aim XI + ai2x2) 

yields the distance from the ith line of  the planar point (x~, x2). Furthermore, 

a i l x  I -q- a i 2 x  2 ~ h i - x 3 

is the equation of  a straight line that runs parallel to the ith line, and it is displaced a distance 
x3 below the ith line, where x3 >/0. Hence, the set (xm, x2) that is delimited by 

ailxl + ai2x2 + X3 ~ b~ (3) 

is the half-plane below the x3-displaced i th line. The reduced polygon (3) formed by the n 
xa-displaced half-planes, where i = 1, 2 . . . . .  n and x3 > 0 and fixed, is shown in Fig. 1. In general, 
the reduced polygon is an m-gon, where m ~< n. 

Next, we observe that the reduced polygon corresponds to the curve traced out by the center 
of  a disc of  radius x3 inside the polygon that is rolled around the perimeter of  the polygon. This 
then leads to the LP formulation for the determination of  the radius x3 and the center (x~, x2) of  
the largest incircle of  the convex polygon (1) [where the coefficients in inequalities (1) are 
normalized to satisfy equation (2)]: 

max x3, (4) 
(x I ,X2,X3) 

subject to 

ailxl+ai2x2+x3<~bi i =  1,2 . . . . .  n x3~>0. (5) 

This is a linear program in R 3. We can therefore employ the result of  Megiddo [1] and Dyer [2] 
who give a linear-time algorithm for the solution of  linear programming in R 3. Hence, the 
computational effort to determine the largest incircle of  the convex polygon (1) is 0(n). Also note 
that, by construction, any intermediate output of  the linear programming algorithm yields a 
suboptimal solut ion-- that  is, we obtain the radius x3 > 0 and the center (xl, x2) of  a circle that 
we know is contained in the polygon. 

Further insight into the problem is gained by the following geometrical observation. The feasible 
polyhedron (5) "grows out" of  the convex polygon (1) if through each edge of  the polygon (1), 
we pass a plane that is tilted at 45 ° to the horizontal plane x3 --- 0, where the polygon lies. Hence 
the polyhedron (5) is akin to a multi-slope pitched " roof"  based on the convex polygon (1). The 
optimal point (xl, x~, x2) then designates the vertex point of  the " roo f " - - tha t  is, the point of  
highest altitude x3 above the polygonal base of  the "roof" .  The projection of  the " roof"  of  the 
polyhedron onto the x3 plane is illustrated in Fig. 2(a-c) for a rectangle, a regular hexagon and 
for a rather general polygon, respectively. 

The straight line segments in the polygon are thus the projections of  the edges of  the feasible 
polyhedron onto the plane x3. They emanate from the vertices of  the polygon and move toward 

~ The originoL n-gon 

The reduced pol.ygon 

Fig. ]. The reduced polygon. 
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(a) (b) (c) 

Fig. 2. The skeletons of convex polygons: (a)* center of incircle and ridge line of "roof"; (b)* (c)* center 
of incircle and center point of "roof". 

the vertex point of the "roof",  namely toward the center of the incircle. The straight line segments 
that emanate from the vertices are the bisectors of the internal (vertex) angles of the polygon; when 
two bisectors meet, they merge into a straight line segment that lies on the bisector of the angle 
formed by two non-adjacent edges of the polygon, as is illustrated in Fig. 2(c). 

We finally remark that in Fig. 2(a) the rather exceptional case is illustrated where the center of 
the largest incircle of the polygon is not unique. 

3. THE SKELETON OF A CONVEX POLYGON 

The tree-like structure in the polygons in Fig. 2(a-c) corresponds to the skeletons of these 
(special) polygons. Strictly speaking, we have the following: 

Definition. The skeleton of a simple polygon is the locus S of its internal points such 
that each point ~ E S is equidistant from at least two distinct points on the boundary 
(edges) of the polygon. 

From a physical point of view, one can think of the boundary of the polygon as an initial wavefront 
that subsequently propagates toward the interior of the polygon; in this analogy, there will exist 
line segments where the wavefront "intersects itself". This locus is the skeleton S of the polygon. 

In the sequel we give 0(n log n)-time algorithms for the efficient construction of the skeleton 
S of a given convex polygon. The algorithm is based on the definition of S, and it can be outlined 
as follows: 

Input 
- -The list V of pairs formed by the consecutive vertices of the polygon P and their 

associates; initially, each vertex is its own associate. 
- -The list E of consecutive edges of the polygon P. 
- -The list T of triangles sorted according to an increasing order of the length of their 

altitudes; if two altitudes are equal, then the triangle with the shorter basis is the 
first. 

- -The list S of segments that form the skeleton; S is initially empty. 

The performance of the algorithm consists of the following steps: 

(1) If T consists of more than three triangles consider the triangle t from the bottom 
of the list T; otherwise go to Step (3). Add to S the segments lying on the sides 
of the triangle t between the top vertex of the triangle and the associates of the 
vertices of the base of this triangle. 

(2) Update the lists V, E and T as follows: 

(a) remove the triangle t from the list T; 
(b) remove its base from the list E; 
(c) remove two triangles, the bases of which are edges adjacent to the base of 

the triangle t; 
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(d) extend these two edges (to the point of  intersection); replace these two edges 
by their extensions on the list E (new edges); 

(e) replace, in the list P, the consecutive pairs formed by vertices of  the base 
of  the triangle t by the common point of  "new edges" and appoint the top 
vertex of  the triangle t as its associate; 

(f) construct two new triangles with new edges as their bases, and bisectors of  
adjacent angles as their sides; 

(g) insert these triangles into the list T according to their altitudes and go to 
Step (1). 

(3) Add to S the three segments the common end of  which is a top vertex of  a 
triangle from T and the other ends are the associates of  the remaining vertices. 

(4) STOP. 

Note. For the sake of  simplicity we assume that the processed polygon is in general position, 
that is no two edges are parallel. To cover this case a little effort is required to extend the instruction 
(3) in the algorithm on the case where Step (2d) does not yield a point. This easy task is left to 
the reader. 

The proof  of  the correctness of  the algorithm follows from the following observation. If the 
triangle t (see Fig. 3) is the smallest triangle on the list T for the original polygon, then each of  
the segments of  the bisectors of  the angles of  P, between P and the (n - 1)-gon PI, obtained by 
parallel translations of  edges of  P towards its interior by a distance equal to the altitude of  t. Now, 
one can repeat this for the consecutive (n - 1)-gon Pt, (n - 2)-gon/'2 etc.; see Fig. 2. If  t~ is the 
smallest triangle for P~, then the triangle t '  is the smallest triangle on the updated list T after the 
first loop has been performed. 

We also point out that the pieces of  bisectors between consecutive polygons are not added 
gradually, but in one aggregated piece at the moment when this piece is lying on the side of the 
current smallest triangle. 

From the above analysis one can infer that the tree S has at most as many vertices of  degree 
/> 3 as the number of  polygons P;  and hence the number of  edges in S is < 2n. Hence, and since 
[T[, IEI, IPI ~< n, one can infer that the space needed is of  range 0(n). 

The computational complexity of  the algorithms is 0(n log n). The lists V and E are virtually 
given. The computation of  the triangles and the preparation of  the list T requires 0(n log n) time. 
The number of  performed loops ~ (1) --+ (2) ~ (1) is <n  and each Step requires constant time 
except the Step (2g) which needs 0(logn) time. Thus the overall complexity of  the algorithm is 
0(n log n). 

"'" " - ~  
Fig. 3. Illustration to the proof of correctness of the algorithm. 

4. A D D I T I O N A L  A P P R O A C H  AND R E M A R K  

The following idea for an alternative construction of  S is based on our discussion in Section 2 
concerning the polyhedron (5), namely: 

Proposition. The skeleton S of  the convex n-gon in the plane (x~, x2), which is given 
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by the set of n-linear inequalities (1) and where the coefficients satisfy equation (2), 
coincides with the projection onto the plane x3 = 0 of the edges of the polyhedron 
in R 3 = {(xl, x2, x3)} that is given by the set of n + 1 linear inequalities (5). 

Hence, in order to obtain S it is sufficient to construct the polyhedron (5). Thus, we must evoke 
the 0(n log n ) algorithm of  Preparata and Muller [5] for finding the intersection of n half-spaces 
in three-dimensional space. 

There is a certain duality relationship between the smallest enclosing circle for a set of points 
A [1] and the largest incircle in a convex polygon. Suppose that the polygon P is given by the 
equations of its m sides 

f~:a~x + b i y =  l i =  l , . . . , n ,  (6) 

and the largest incircle S, for P has the center at the origin of the coordinates system and the radius 
r. It is obvious that the distances of the lines in equation (6) from the origin are not less than r. 
By the transformation 

'fi ~ (ai, bi). 

One obtains a set A = {(a~, b~); i = 1 . . . . .  n} of points, which distances from the origin are not 
bigger than 1/r. Only the images of the lines that were tangent to S, are at a 1/r distance from the 
origin so that they lie on the circle S~/, with the center at the origin and radius 1/r. One can easily 
see that S~/, is the smallest enclosing circle for the set A. 

The connection between the Voronoi diagram of A and the skeleton of P, as well as other related 
notions is the subject of our further studies. 
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