of empiric antifungal therapy was assessed using univariate techniques and multivariate logistic regression. RESULTS: A total of 81 patients were evaluated in this study. Forty-four percent received broad spectrum, 46% received narrow spectrum, and 10% received no therapy. Overall mortality was 51%. APACHEII >20 and narrow spectrum empiric therapy were independent predictors of mortality (p = 0.011). Mortality rates were similar in patients with Apache score >20 given broad (85%) or narrow spectrum (79%) empiric therapy. However, in patients with lower APACHEII scores (<20), mortality was significantly lower in patients started on broad spectrum (4%) compared to narrow spectrum (46%). After excluding patients who died while on therapy, average length of therapy was similar for both groups (11–12 days). CONCLUSIONS: Patients with candidemia with an APACHEII score <20 treated with broad spectrum antibiotics had lower mortality rates compared to those initially treated with narrow spectrum antifungal therapy.

COST ANALYSIS OF A FEBRILE NEUTROPENIA ALGORITHM WITH RESPECT TO EMPIRICAL ANTIFUNGAL THERAPY IN ADULT HEMATOLOGY/ONCOLOGY PATIENTS

Collins CD, DePestel DD, Stunzbeck ER, Shehab N, Erba HP, Stevenson JG
The University of Michigan Health System, Ann Arbor, MI, USA

OBJECTIVE: Neutropenia following cancer chemotherapy is a major risk factor for invasive fungal infections (IFIs). The high rates of mortality associated with IFIs warrants the use of empirical antifungal therapy. Conventional amphotericin B (CAB) is considered to be the standard of care in persistently febrile neutropenic patients; however, infusion-related reactions and nephrotoxicity limit its use. Although liposomal amphotericin B (LAmB) has demonstrated similar efficacy to CAB and is generally well tolerated, it is associated with a high acquisition cost. Voriconazole is a potential alternative for empirical therapy of IFIs. An algorithm for the management of febrile neutropenia (FN) was implemented at the University of Michigan Health System (UMHS). The new algorithm, implemented in January, 2003, recommends voriconazole as the preferred antifungal for adult Hematology/Oncology patients with FN, except those with evidence of hepatic dysfunction or who are receiving gemtuzumab. The objective of this study was to determine the financial impact of this algorithm. METHODS: Patients on the adult Hematology/Oncology service who first received either LAmB or voriconazole over a two-year period were identified retrospectively using the UMHS Data Warehouse. Costs were evaluated from the perspective of the Health System and compared between the voriconazole and LAmB groups from first the antifungal dose to the time of hospital discharge. RESULTS: Seventy-eight patients were included in the analysis (42 LAmB and 36 voriconazole). Antifungal cost per patient declined from $4278 to $3331 in the voriconazole group. This represented a decrease of $947 per patient. Laboratory cost per patient increased by $579. The total cost per patient initiated on voriconazole decreased by $1502. CONCLUSION: The implementation of an algorithm incorporating voriconazole as the preferred antifungal agent for empiric treatment of febrile neutropenia was associated with decreased spending on antifungal agents, increased laboratory costs, and a decrease in total costs.

ECONOMIC EVALUATION OF VACCINATION AGAINST STREPTOCOCCUS PNEUMONIAE IN GERMANY INCLUDING HERD IMMUNITY EFFECTS

Reinert RR, Lloyd A, Scott DA, Patel N, Runge C
1University Hospital, Aachen, Germany; 2Fourth Hurdle Consulting Ltd, London, UK; 3Wyeth Pharma GmbH, Muenster, Germany

OBJECTIVES: Children vaccinated with Prevenar have been shown to be at reduced risk of meningitis, bacteraemia, pneumonia and acute otitis media. Vaccination may also affect risk in unvaccinated individuals by reducing the circulation of infectious organisms in the community, a phenomenon known as herd immunity. This analysis examined the economic consequences of Prevenar vaccination incorporating herd immunity effects. METHODS: An existing model was adapted to consider herd immunity effects in Germany. Vaccine coverage of 83% was assumed and the model estimated the number of pneumococcal events, deaths and associated costs in vaccinated individuals over ten years. Efficacy came from a large randomised study in the US, corrected for age specific German epidemiology. Changes in rates of infection with vaccine susceptible organisms have been found by the Active Bacterial Core Surveillance Network in the US, where Prevenar has been in use for several years. Costs were estimated from the perspective of society, including four vaccine doses, treating pneumococcal disease in hospital and the community, long term disability resulting from infections and social security payments. Future costs were discounted at 5%. RESULTS: The model estimated that vaccination would avoid 98 cases of meningitis, 376 cases of septicemia and 19 deaths in vaccinated individuals. Using the percentage reduction in disease observed in the USA, the model estimated that a further 3940 deaths would be avoided annually in unvaccinated individuals, mostly by reducing the incidence of pneumonia in the elderly. The cost per life year gained was $43,000 in the vaccinated cohort alone, but vaccination was cost saving when herd immunity effects were incorporated. Findings are sensitive to disease incidence, long-term costs of meningitis and vaccine cost. CONCLUSION: The model showed that the benefits of Prevenar extend beyond vaccinated individuals. Failing to consider herd immunity effects may substantially underestimate the economic benefits of vaccination.

ECONOMIC EVALUATION OF VACCINATION AGAINST STREPTOCOCCUS PNEUMONIAE IN GERMANY INCLUDING HERD IMMUNITY EFFECTS

Reinert RR, Lloyd A, Scott DA, Patel N, Runge C
1University Hospital, Aachen, Germany; 2Fourth Hurdle Consulting Ltd, London, UK; 3Wyeth Pharma GmbH, Muenster, Germany

OBJECTIVES: Children vaccinated with Prevenar have been shown to be at reduced risk of meningitis, bacteraemia, pneumonia and acute otitis media. Vaccination may also affect risk in unvaccinated individuals by reducing the circulation of infectious organisms in the community, a phenomenon known as herd immunity. This analysis examined the economic consequences of Prevenar vaccination incorporating herd immunity effects. METHODS: An existing model was adapted to consider herd immunity effects in Germany. Vaccine coverage of 83% was assumed and the model estimated the number of pneumococcal events, deaths and associated costs in vaccinated individuals over ten years. Efficacy came from a large randomised study in the US, corrected for age specific German epidemiology. Changes in rates of infection with vaccine susceptible organisms have been found by the Active Bacterial Core Surveillance Network in the US, where Prevenar has been in use for several years. Costs were estimated from the perspective of society, including four vaccine doses, treating pneumococcal disease in hospital and the community, long term disability resulting from infections and social security payments. Future costs were discounted at 5%. RESULTS: The model estimated that vaccination would avoid 98 cases of meningitis, 376 cases of septicemia and 19 deaths in vaccinated individuals. Using the percentage reduction in disease observed in the USA, the model estimated that a further 3940 deaths would be avoided annually in unvaccinated individuals, mostly by reducing the incidence of pneumonia in the elderly. The cost per life year gained was $43,000 in the vaccinated cohort alone, but vaccination was cost saving when herd immunity effects were incorporated. Findings are sensitive to disease incidence, long-term costs of meningitis and vaccine cost. CONCLUSION: The model showed that the benefits of Prevenar extend beyond vaccinated individuals. Failing to consider herd immunity effects may substantially underestimate the economic benefits of vaccination.

AN UPDATED EVALUATION OF THE COST-EFFECTIVENESS OF VACCINATING ADOLESCENTS FOR PERTUSSIS

Getsios D, Caro JJ, El-Hadi W, Payne K, O’Brien J
1Caro Research Institute, Hammonds Plains, NS, Canada; 2Caro Research Institute, Concord, MA, USA; 3Caro Research Institute, Dorval, QC, Canada

OBJECTIVES: Acellular pertussis vaccines make immunization of adolescents more feasible and may help reduce the burden of pertussis. Based on recent estimates indicating that infection may be much more common than previously thought, we updated an economic evaluation of adolescent pertussis vaccination to assess programs in this new context. METHODS: A model was previously developed to estimate the effects of pertussis vaccination of adolescents (ages 11–18) including herd immunity. Inputs for the US were taken from literature, government data and cost databases. Recently published incidence estimates replaced previous CDC-based ones. Where adequate data were unavailable, estimates were agreed to by an expert panel (the Global Pertussis Initiative). Health benefits were quantified as cases, deaths, and disability avoided, and life years gained. Both direct medical costs, and lost productivity costs were considered. All outcomes were discounted at 3% per year. Time horizon was ten years. Extensive uni- and multivariate sensitivity analyses were completed. RESULTS: Adopting new incidence estimates dramatically improves the value of adolescent vaccination, with cases avoided exceeding two million over ten years. The economic results switch from the original cost-effective situation to direct medical savings of $719 million and societal of $1.2 billion, if parameters other than incidence are unchanged. Sensitivity analyses show that the cost per case would need to be < 10% of