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ABSTRACT The statistical mechanics of cross-bridge action is considered in order to develop constitutive equations that
express fiber tension as a function of degree of activation and time history of speed of contraction. The kinetic equation
of A. F. Huxley (1) is generalized to apply to the partially activated state. The rate parameters of attachment and
detachment, and cross-bridge compliance are assumed to be step functions of extension, x, with a finite number of
discontinuities. This assumption enables integration of the kinetic equation and its moments with respect to x resulting
in analytic equations from which x has been eliminated. When the constants in the rate parameters and the force
function are chosen so that Hill's force-velocity relation and features of the transient kinetic and tension data can be
fitted, the resulting cross-bridge mechanism is quite similar to the one proposed by Podolsky et al. (2). Because the
derived constitutive equations simplify mathematical analysis, the influence of various cross-bridge parameters on the
mechanical behavior of muscle fibers may be evaluated. For example (a) instantaneous elastic response (To - T,) and
the magnitude of rapid recovery (T2 - T,) after a step length change can be adequately explained when the rate of
attachment is assumed high for positive x. In that case T2 corresponds to the force generated by cross-bridges in the
region of negative x. (b) Kinetic transients occur as a result of the jumps that exist in the distribution of attached
cross-bridges during the isometric state. Because of the hyperbolic nature of the kinetic equation, these jumps propagate

in the -x direction causing rapid changes in the speed of contraction. (c) When the number of actin sites available for
attachment is assumed to depend on the degree of activation, computational results indicate that the speed of shortening
is insensitive to the degree of activation at each relative load. (d) It is shown that during sinusoidal oscillation, the mean
and second-order harmonics of the experimental force-time curve are strongly dependent on cross-bridge parameters.
Therefore, significant information may be lost when the data is expanded into Fourier series and only the first term is
considered.

INTRODUCTION

Here, a set of constitutive equations is developed for
skeletal muscle fibers by considering the statistical
mechanics of cross-bridge action. As an end result, fiber
tension is expressed as a function of the degree of activation
and the time history of the speed of shortening. The
proposed set of equations may be considered as a more
realistic alternative to the two-element muscle model pro-
posed by A. V. Hill (3). Hill's model consists of an elastic
spring and a contractile element that are connected in
series. The contractile element is characterized by a force-
velocity relation known as Hill's equation. This model has
been used extensively in the literature to describe the
mechanics of muscle contraction. However, the recent
experimental data on the time rate of rise of isometric
tension during activation (4), isotonic and isometric tran-
sients (5, 6) and sinusoidal motion (7, 8) have illustrated
the significant shortcomings of Hill's model. More recent-
ly, Huxley (1) has proposed a mathematical model of
active force generation that is based on cross-bridge kinet-
ics. In this model, cross-bridges are idealized as elastic

springs when they form links between thick and thin
filaments. Cross-bridge force is assumed to be a function of
extension x, which is the distance from the stress-free
configuration of the cross-bridge to the nearest actin site.
The time rate of change of attachment is governed by a
first-order hyperbolic partial-differential equation. How-
ever, since its introduction, this model has been revised
considerably by its author and his co-workers (9) and by
others (2, 10). The modifications have been considered in
order to account for the recent data on the short-time
muscle response to a quick release. As a result, models with
distinctly different mechanisms of cross-bridge action have
been developed. For example Podolsky and co-workers
(2, 11-13) consider a two-state model with a high rate of
attachment for x > 0, and they characterize cross-bridge
force by a nonlinear spring. This model has been shown to
describe adequately the isotonic transients as well as
steady-state force-velocity relation. However, in order to
account for the response to step tension reductions,
Podolsky and Nolan (12) had to include a series elastic
element of unknown origin in their model. On the other
hand, Huxley and Simmons (9) have proposed two states
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of attachment for a cross-bridge to explain the initial rapid
phase of transient tension data. The time rate of attach-
ment is assumed to be slow as in Huxley's original treat-
ment, but the transition between attached states is
assumed to occur very fast. The rapid recovery of force
observed in transient tension data is associated with the
transients between attached states. More recently, Eisen-
berg and Hill (10, 14) have developed a mathematical
model that relates the cross-bridge mechanism to a bio-
chemical kinetic cycle for the actomyosin ATPase activity.
This model postulates two cross-bridge states detached
from actin and two cross-bridge states attached to actin,
and is consistent conceptually with the ideas proposed by
Huxley and Simmons (9). The proposed mechanism
accounts reasonably well for the rapid phase of the tran-
sient tension data as well as the relation between the speed
of contraction in vivo and ATPase activity in vitro. The
model has several free energy functions and eight rate
constants, six of them being functions of x. The forms of
these functions are chosen by compatibility requirements
and curve-fitting experimental data. Isotonic transients
have not been considered with this model.
The kinetic models of muscle contraction mentioned

above have been introduced mainly to contribute to the
present understanding of cross-bridge mechanism; they are
not easily reduced to a simpler set of equations that
describes the macro-mechanics of muscle contraction.
Recently, Huxley's initial model has been generalized in
several ways to partial activation and variation of muscle
extension (15-17). However, all these models still contain
the internal variable x in their equations, which introduces
considerable difficulties in numerical computations. For
example, analysis of isotonic contraction during a single
twitch involves the numerical solution of several thousand
simultaneous coupled equations (17). The study by
Zahalak (18) recognized the importance of eliminating x
from the constitutive equations of muscle fibers and pro-
posed that the number density n of attached cross-bridges
at any time be approximated by a Gaussian distribution.
However, the solutions of various cross-bridge models
mentioned above, for the transient tension and isotonic
contraction, indicate that this is not a good assumption.
Furthermore, the continuum models mentioned above (15-
18) all use cross-bridge parameters suggested in Huxley's
original model. These parameters must be modified in
order to represent adequately short-time muscle response
to quick releases.
The aim here is to derive a set of equations, governing

muscle contraction on the continuum level, based on an
assumed cross-bridge mechanism. In the section entitled
Mathematical Formulation, the kinetic equation governing
the time rate of attachment of cross-bridges is generalized
to the partially activated state. This equation and its
moments are integrated analytically with respect to x,
resulting in equations free of x. The process of integration
yields equations governing the time rate of change of

averaged quantities such as the tension produced by
attached cross-bridges with positive x. In the two sections
following Mathematical Formulation, entitled Analysis of
Isometric Contractions and Analysis of Isotonic Contrac-
tions, we discuss mechanical aspects of both types of
contraction. The parameters appearing in the kinetic
model are determined so that muscle response to quick
releases as well as isotonic conditions are adequately
represented. The resulting cross-bridge mechanism is simi-
lar to the one proposed by Podolsky and Nolan (12).
Closed form, analytical solutions obtained in these sections
provide further insight into the mechanism of transients. In
the section entitled Sinusoidal Analysis, muscle response to
sinusoidal motion is considered. An analytical solution is
obtained that expresses number density of attached cross-
bridges as a function of time. This solution is used in
analysis of oscillatory data provided by Kawai and Brandt
(8). The derived equations provide useful means of evalu-
ating the influence of cross-bridge parameters on the
macromechanical behavior of muscle fibers.

MATHEMATICAL FORMULATION

The basic contractile unit of skeletal muscle fibers is the sarcomere, which
consists of thick and thin elements arranged in parallel. According to the
sliding filament hypothesis, the thick filaments have side pieces (cross-
bridges) that can slide and attach to an acting site along thin filaments
(1, 19). The attachments are assumed to be formed spontaneously but
broken by a reaction requiring energy to be supplied from metabolic
sources, or when the cross-bridge force reaches a yield value. It is assumed
that the cross-bridges exert force only when attached, and that this force
is elastic in nature. Let x denote the distance of an actin site on the thin
filament from the force-free configuration of the nearest cross-bridge. Let
c = c(t) be the fraction density of the actin sites that have been activated
and let n = n(x,t) be the fraction density of actin sites at position x with an
attached cross-bridge. The time rate of change of attachment of cross-
bridges is assumed to be governed by the following equation

(Dn/Dt) = cn/Ot - (s V/2)(on/Ox) = f (c - n) - gn, (1)

where D/Di is the material time derivative, s is the length of the
sarcomere corresponding to the maximum overlap between filaments, Vis
the speed of contraction per unit length, and f and g are the rate
parameters of attachment and detachment, respectively. During contrac-
tion, the distance x decreases at a rate, x, which is equal to the speed of
shortening (x = -sV/2). Eq. 1 reduces identically to the kinetic equation
proposed by Huxley (1) when contractions at full activation are consid-
ered. The present formulation is different from the earlier generalization
of Julian (20). Julian has assumed that the rate parameter f appearing in
Huxley's equation depended on the degree of activation, and therefore
was a function of time. In the present study, the number of activated sites,
but not the rate parameter f is assumed to vary with the degree of
activation.
The rate parameters and cross-bridge compliance are assumed to be

step functions of x, with a finite number of discontinuities. The rate
functions are chosen as

f = f. (H(x) - H(x - h)]

g =f {4 [H(x) - H(x - h)]

+ q, [H(x - b,h) -H(x)] + [q2H(x - h)]}, (2)

where h is the length of the attachment zone, b, is a dimensionless
constant, fo is the time constant of attachment, q0, ql, and q2 are the
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M(-) = n((X t)dX)h (6b)

During the fully activated isometric state M(+) = 1/(1 + q0) and M(_) =

0.

When Eq. 4 is multiplied by x and integrated over the range of its
definition, it can be shown that the average first moments Y(,) and Y(
are governed by the following equations

Y(+) =ft {c -(1 + qj) Y(+) -2(V/A)[M(,) - n2j} (7a)

Y( )f= to{-ql Y() -2(V/A) [M(_)-bblnl]i, (7b)

where k(+) = d Y(+)/dt. The variables Y(+), and Y( ) are defined as

Y(+) =
h

n(x, t) xdx]/(h2/2)

Y(-) [f hn(x, t) xdx]/(h2/2).

(8a)

(8b)
CROSS-BRIDGE DISTORTION X

FIGURE I Variation of cross-bridge force P (Eq. 3), and rate parame-

ters of attachment f (Eq. 2) and detachment g (Eq. 2) with variable x (fO
= 2,000 s-, qjf0 = 28 s-',G = 0.72, h = 100 A, b, = 1.14) are shown.

dimensionless time constants of detachment and the step function H(x) =

I for x > 0 and vanishes elsewhere (Fig. 1). The rate parameters f and g
are considered to be functions of x, because of the varying positions of the
enzyme macromolecules along the thick filament (1). These enzymes
catalyze the biochemical reactions occurring during contraction. The
force, P, exerted by a cross-bridge is characterized by the equation

P = Kx for x > 0

(3)
= GKx for x <0,

where G and K are constants (Fig. 1). It is assumed that cross-bridges
detach instantaneously when x < - b,h. This value ofx corresponds to the
peak negative force that can be exerted by a cross-bridge. Eq. 3 allows for
a change in cross-bridge configuration and hence its compliance as the
actin site moves from the attachment zone into the detachment zone as a

result of shortening. The free energy function corresponding to Eq. 3 is an
asymmetric parabola and can be obtained by integrating Eq. 3 with
respect to x.

Substitution of Eq. 2 into the kinetic Eq. 1 yields the following
equations for the region of attachment (O < x < h) and detachment (x <
0) respectively

an/at =f0[c -(I + q0)n] + (sV/2)(dn/dx) (4a)

an/at = ( -f0q1n) + (sV/2)(dn/dx). (4b)

Eqs 4a and 4b may be integrated analytically with respect to x, for an

arbitrary number density function n, yielding

dM(+)/dt = M(+) =fo[c - (1 + qj)M(+)
- (V/A)(n. n2)] (5a)

dM( )/dt = M( ) =f0[-q,M(-) + (V/A)(n. - nj)], (Sb)

where A = (2f0h/s) and n0, n, and n2 are the values of the number density
distribution at x 0, -bh, and h, respectively. The quantities, M(+) and
M(_), are the measures of the number of attached cross-bridges in the
zones of attachment and detachment, respectively. They are defined as

M(+) = (jh n(x, t)dx)/h (6a)

During the fully activated isometric state Y(,) = 1/(1 + q0) and Y( ) = 0.

Eqs. 5 and 7 comprise a set of first-order ordinary differential equations
governing the time variation of average cross-bridge quantities M(+),
M(_), Y(+) and Y( ). To estimate the force generated by all attached
cross-bridges it is assumed that each cross-bridge acts independently. An
ergodic principle can then be used to express the average tension
generated by cross-bridges

T= (T'/T.)

b P(x) n(x, t)dx]/[f P(x)/(1 + qO)dxJ (9)

where T' is the fiber tension, To is the isometric tension in the fully
activated state, and P is given by Eq. 2. During isometric tension,
attached cross-bridges exist only in the region (O < x < h). Using Eqs. 2,
6, and 8, it can be shown that the dimensionless tension T satisfies the
following equation

(10)

where T(+) and T(-) are the dimensionless tensions produced by cross-

bridges attached in the regions of attachment and detachment, respec-

tively. If attached cross-bridges exist in the region x > h as a result of
stretch, corresponding terms M(R), Y(R) and T(R) must be added to Eq. 10.
This case will be considered in the section entitled Sinusoidal Analysis.
Eq. 10 expresses fiber tension Tas a linear combination of Y(+) and Y(-).
The time variation of these quantities are governed by Eqs. 5 and 7. To
solve these equations the value of the number density n at locations x = 0,

and x = -b,h must be known. The solution of kinetic Eq. 1 can be
obtained analytically by using the method of characteristics. The method
of solution is summarized by Zahalak (18) for the case of full activation
where c(t) = 1. The more general solution that is also applicable to partial
activation can be shown to be given by the equation

n -n(x, t) =ni[x + h (V/A)dy]

* exp [ L [x + hf (V/A)dz]dy

+ , f[x + h f (V/A)dz] c(y)

* exp{ f L[x + hf (V/A)dw]dz}dY ( 11)
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where t = ft, A = 2fJh/s, L = (f + g)/fo and f [p] = f(x)x-p. The values
of no, n1 and n2 can be obtained from Eq. 11 at any time by setting x = 0,
x = -b,h and x = h, respectively. The first term on the right-hand side of
Eq. 11 is a transient representing the influence of initial conditions. The
second term on the right-hand side reduces to the steady state solution
during isotonic contraction. At full activation it can be shown that

nO = [1 -exp (-A*/V)]I/(1 + qo), (12a)

n, = no exp [ - b, q, (A */ V)], (1 2b)

n2 = °, (1 2c)

where V is the steady state speed of contraction and A* = (I + qo)A. Eqs.
5, 7, 9, and 11 express fiber tension T and other average cross-bridge
quantities such as M(+) and M(_), in terms of the time histories of the
degree of activation and the speed of the contraction. The analysis given
above is valid for sarcomere lengths of 2-2.2 jm, where all cross-bridges
are overlapped by thin filaments. Gordon et al. (21) showed that isometric
tension decreases linearly with the degree of overlap. The fiber tension Eq.
10 may be used in the descending limb (2.2 jAm < s < 3.9 jAm) provided
that To is taken as isometric tension corresponding to the particular
sarcomere length. In the ascending limb, thin filaments overlap and there
is significant evidence that activation is length dependent in this region
(22). Cross-bridge parameters f0, go, G, h, and b, appearing in these
equations will be determined next by fitting experimental data on quick
releases.

ANALYSIS OF ISOMETRIC CONTRACTIONS

Here time development of tension after a step length
change will be considered first. It is assumed that the fiber
is in the activated isometric state before the quick release.
For simplicity in analysis, the rate of detachment, g0, in the
region of attachment is assumed to be negligibly small
compared withf0. Let z be the magnitude of the step length
change. When the step size z is smaller than the length of
the detachment region (z < b,h), it can be shown that nO =
1, and n, = 0 during the duration of contraction. Eqs. 5, 7,
and 10 can be used to determine M(+), M(_), Y(+), Y(-), and
T immediately after the quick release

M(+) =1 - Z, Ml( ) = Z,

YJ(+) = I - 2Z + Z2, yl(_) = _Z2,

T,(+)= 1 - 2Z + Z2,

Tl(-) = G(-Z2),

T, = TI(+) + Tl(-) = I -2Z +Z2(1 -G),

rate constants fS and g,. When the ratio (fl/gl) = (1 /q,)
is assumed to be much larger than one, the rapid recovery
(T2 - T,) observed in the experiments is explained by the
rapid attachment of the cross-bridges in the region (h -
z < x < h). In this case the experimental T2 curve is
equivalent to the curve given by T2 = 1 + T1(-) (Eq. 15) of
the present study. Our computations indicate that, for
q, << 1, the experimental T, and T2 curves can be fitted
well by suitably choosing the cross-bridge parameters h
and G. The comparison of the experimental data and
corresponding curves of the present model are shown in
Fig. 2 for h = 110 A, and G = 0.72. Recently, it has been
suggested by Ford et al. (23) that the upward curvature
observed in experimental T, curves occurs as a result of the
rapid recovery during the application of the length step.
Values of parameters h and G can easily be adjusted to fit
also the corrected curves of Ford et al. (23).

The time variation of tension after a quick release is
governed in the present study by the following equation

T= 1 - (T2- T1) exp (-ft)

-( I-T2) exp (-q1f,t). (17)
This is an exponential curve with two time constants.
According to Ford et al. (23), experimental tension
response to length step can be divided into four phases.
Experiments show that the rapid recovery phase usually
lasts between 2-5 ms, however, the rate of recovery
increases with the step size.
The present cross-bridge model predicts a single expon-

ential time constant (rate parameter f0) during the rapid
recovery phase. This rapid partial recovery is followed by a
slowing or reversal of recovery. This step is not well
accounted for with Eq. 17. The number of exponential
constants appearing in Eq. 17 could be increased if the

(13)

(14)

(I5a)

(1 5b)

(16)

where Z = z/h. Subscript 1 is used in Eqs. 13-16 to denote
the values of the average cross-bridge quantities just after
the release. It is assumed that the number of attached
cross-bridges remains the same during quick release. The
contraction force given by Eq. 16 corresponds to the
experimental T, curve [TI = T,(z)] of Huxley and Sim-
mons (9). Eq. 16 shows that T, is a linearly decreasing
function of z when G = 1. Huxley and Simmons (9) have
also provided an experimental curve depicting the tension
T = T2 as a function of step size z after rapid recovery. To
model this curve with the present formulation an assump-
tion must be made about the relative magnitudes of the

I

I
-5

:SThPUIZEA(IR)-

FIGURE 2 Tensions T, and T2 (response to step length reductions) as a
function of step size A. Points are taken from the data of Huxley and
Simmons (6). Continuous curves are the predictions of the proposed
model with parameter values given in Fig. 1. (See Eqs. 1 Sb and 16 with z
=A).
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number of discontinuities in the f and g functions were
increased. The third phase of the recovery may be
explained to an extent if it is assumed that degree of
activation changes with the application of a length step.
However, the present mathematical simplification would
be lost with these extensions, and as a result the corre-
sponding continuum models would be composed of a
considerably larger set of equations. Note also that the
rapid recovery occurs so quickly that, on the continuum
level it would be observed at most as a spike.

Instantaneous stiffness, E, of a muscle fiber is propor-
tional to the number of attached cross-bridges for the
kinetic models cited in the Introduction (1, 2, 9, 14). For
this reason stiffness measurements have been used in
muscle literature to test the validity of these different
models of cross-bridge mechanism (2, 24). Here, dimen-
sionless fiber stiffness E0 measured from a fully activated
isometric state can be obtained as E0 = 2 by taking the
derivative of Eq. 16 with respect to Z and setting Z equal to
zero.

Stiffness E can also be measured during isotonic con-
traction and transient tension by applying an infinitesimal
step change of length. In all cases E is defined as E =
(dT/dZ). The dimensionless tension Tdefined by Eq. 10 is
related to the number density function n through Eqs. 5
and 7. The number density n immediately after the quick
release can be expressed by the equation

n = n(x, t, z) = n(x + z, t). (18)

It can then be shown that the instantaneous stiffness E
corresponding to the present model can be written as

E= 2(M(+) + GM(-) - Gbln1). (19)

Eq. 19 shows that the stiffness E is not proportional to the
number of attached cross-bridges for the proposed model.
This result follows because cross-bridges are assumed to be
more compliant in the region of detachment, and it is
assumed that cross-bridges break when extended beyond
the limit x < -b,h. Ford et al. (24) have measured fiber
stiffness at the end of the early recovery of tension by
applying a second step change of length after an initial
conditioning step. It was observed that 2 ms after the initial
step, stiffness decreases slightly. More recently, Julian and
co-workers (25; 26) have reported similar results. Using
Eq. 19 it can be shown that the stiffness corresponding to
the present model increases linearly with increasing size of
the initial conditioning step. If it is assumed that the initial
step size is z = h/2 and that 90% of the rapid recovery has
occurred before the second step, then the corresponding
increase in stiffness is -25%. However, this value must be
considered as an upper bound because the compliance of
the sarcomere structures other than cross-bridges were
neglected and it was assumed that the number of attached
cross-bridges did not change during the applied length
steps. It is expected that some detachment takes place

during quick release because of mechanical reasons beyond
that predicted by the kinetic equation (Eq. 1). Finite
transmission time of mechanical impulses down the length
of a muscle fiber sets a natural limit to the speed in which a
length step can be applied [Schoenberg et al. (27),
Podolsky (28)]. As a result, these factors introduce a
velocity dependence in the measurements of stiffness.

If the dimensionless time constant q, is taken as > 1, then
it can be shown that the resulting T, and T2 curves cannot
be fit to the experimental data of Huxley and Simmons (6).
Therefore, this case is not presented in detail. The proposed
mechanism described above is not unique in explaining the
T, and T2 curves of the transient tension experiments.
Huxley and Simmons (9) and more recently Eisenberg et
al. (14) showed that muscle response during the early
phase of rapid recovery may also be accounted for by
transients from one attached state to another.
The time development of isometric tension will be

considered next. It is assumed that the fraction of activated
actin sites c = c(t) is not a function of cross-bridge
parameters, but is supplied independently. Using Eq. 11 it
can be shown that n, = 0 and that nO is given by the
following equation

no = c[t - s] exp (-fos)ds. (20)

Further consideration of Eqs. 5, 7, and 10 yields that the
dimensionless tension T is equal to nO during the time
development of isometric tension. When the rate parame-
ter of attachment fo is sufficiently large, the exponential
term appearing in Eq. 20 can be approximated by the
Dirac delta function [exp (-fgt) = o(t)/lf] so that nO =
T = c(t) in this case. In Huxley's original model and more
recently in Eisenberg et al. (14), it is assumed that the rate
of attachment is low, attachment of cross-bridges being the
rate-limiting step. In that case, the tension T not only
depends on the instantaneous value of c = c(t) but on its
time history. It can be shown that there exists a consider-
able phase lag between T and c whenf is small. This point
is illustrated in Fig. 3. The activation function c is assumed
to be given by the relation c = 1 -exp( - hjt). Shown in the
figure are the two cases where hl/f0 = 1/100 and h0/f0 =
1/2. The figure shows that the rate parameter f plays an
important role in the time development of isometric tension
when the attachment is assumed to be the rate-limiting
step.

In this section we have considered muscle contractions in
which the sarcomere length has been kept constant. Since
the speed of contraction, V, is zero in such cases, the second
term on the left-hand side of the kinetic equation (Eq. 1)
drops out. Therefore, these experiments yield only partial
information on cross-bridge kinetics. To study how the
relative sliding motion influences attached cross-bridge
distribution n, isotonic contractions will be considered in
the next section.
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FIGURE 3 Time development of tension in isometric tetanus calculated
by using Eq. 20 with c = 1 - exp(- ht) (I: ho/fo = 1/100, II: ho/fo = 1/2).

ANALYSIS OF ISOTONIC CONTRACTIONS

Steady state isotonic contractions at full activation will be
considered first. Experimental force-velocity relations in
this case can be well represented with Hill's equation (3)

V= aV0( -T)/(a + T), (21)

where V0 is the maximum speed of shortening (s- ') and a is
a dimensionless measure of curvature. Here all time deriv-
atives appearing in Eqs. 5 and 7 must be equal to zero
during steady state. In this case n0, n, and n2 are given by
Eq. 12. Hence, the variables M(+), M(-), Y(+), and Y(-) can
be expressed as functions of the speed of contraction. The
corresponding equation for the dimensionless muscle ten-
sion Tcan then be obtained, by using Eq. 10. This equation
can be well fitted with Hill's force-velocity relation by
adjusting the values of q, and b, and using the values off0,
h, and G already determined in the best fit of the data for
transient tension after a quick release (fo = 2,000 s-', h =
110 A, G = 0.72). If V0 = 2s-', and a = 1/4, as in frog
skeletal muscle at 50C, then the model accurately predicts
Hill's force-velocity relation provided that b, = 1.14 and
q,J0 28 s-' (Fig. 4). Our computations indicate that
maximum speed of contraction V0 increases in proportion
with increasing rate of detachment q,f0, but VO/ is not
sensitive to the rate of attachment f0. Recently Ferenczi et
al. (29) have considered the dependence of force and
shortening velocity on substrate concentration (MgATP)
in skinned muscle fibers. They found that the maximum
velocity of shortening, V0, showed a roughly hyperbolic
dependence on MgATP concentration. These results indi-
cate that the rate of detachment qJf0 must increase with
increasing MgATP at low levels of substrate concentration
and must attain an asymptotic value with further increases
in MgATP.

Using the data on transient tension and steady isotonic

r 2

;6 9I~ -' i

FIGURE 4 Force-velocity relation for isotonic contractions (points
obtained from Hill's equation (Eq. 21) with a = 1/4 and V0 = 2 s-' are
shown with the symbol +; continuous curve is the prediction of the
proposed model with parameter values given in Fig. 1).

contraction, we have determined all six cross-bridge
parameters. Fig. 5 shows M(+) and M(_) as functions of the
speed of contraction. The figure indicates that the number
of attached cross-bridges with x > 0, M(+), decreases
slightly with increasing speed of contraction, V. On the
other hand, M(_) increases sharply at first and then levels
off with further increases in V. Fig. 6 shows dimensionless
tensions T(±), T( ), and T as functions of Vduring steady
state isotonic contraction.

Instantaneous stiffness may be measured during isotonic
contraction by the application of a second force step or by
imposing a small sinusoidal length change of high fre-
quency (25, 26). Experimental measurements using sinu-
soidal oscillations (25, 26, 30) indicate that stiffness
decreases with tension during steady shortening. Some
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FIGURE 5 The number of attached cross-bridges given by Eq. 6 during
steady state isotonic contraction as a function of the speed of shortening
[M = M(+) + M( )J.
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FIGURE 6 The relation between the steady speed of shortening and the
average forces T(+,) and T(-) produced by cross-bridges in the regions of
attachments and detachment, respectively.

significant problems that exist in stiffness measurements
have been discussed in the previous section. The accuracy

of the stiffness measurements involving sinusoidal oscilla-
tions may be improved to an extent by direct computer
control of the input and output signals. Sinusoidal oscilla-
tions will be considered in the next section. Stiffness would
increase with the speed of contraction in the model
proposed by Podolsky and Nolan (11) because the total
number of attached cross-bridges would increase with
decreasing isotonic load. On the other hand, stiffness E
would decrease with decreasing load for Huxley's original
model and its extensions (1, 9, 14).

It is also of interest to see how the stiffness E correspond-
ing to the present analysis depends on the isotonic load.
This is illustrated in Fig. 7. It is shown that the stiffness E
increases when the fiber load is reduced from T = 1, to T =

0.90, and then decreases with further reduction in isotonic
tension. The peak stiffness E that occurs at T = 0.9 is
=30% larger than the corresponding stiffness during
steady state isometric state. At zero-load stiffness is
slightly lower than its isometric value. Present analysis
illustrates that stiffness E need not be proportional to the
number of attached cross-bridges during contraction. Also
shown in Fig. 7 are some representative data points from
Julian and Morgan (26). The figure shows that the stiff-
ness of the present model is significantly higher than the
corresponding data. However, the slopes of the experimen-
tal and theoretical stiffness-tension curves are nearly the
same.

It is generally assumed that the contraction is activated
by the binding of calcium to the thin filament regulatory
proteins (31). Podolsky and Teicholz (32) have provided
experimental evidence that shortening velocity is insensi-
tive to the degree of activation, c, at each relative load.
Because the experiments mentioned above were performed
on skinned fibers, activation level, c, is not a function of

0 0.5
DIMENSIONLESS TENSION T

1

FIGURE 7 Fiber stiffness E = dT/dZ (Z = z/h is the dimensionless step

size) during isotonic contractions as a function of the relative tension T.
Continuous curve corresponds to the present model, data points from
Julian and Morgan (26) are shown with the symbol +; Eo = 2 denotes the
fiber stiffness during isometric tension.

time. Our computations show that the force-velocity rela-
tion in the case of partial activation (c < 1) can be obtained
from the corresponding relation for full activation (c = 1)
provided that the dimensionless tension T in the equation
be replaced by T/c. Hence, the proposed generalization to
partial activation assumes implicitly that calcium acts as a

simple twitch, removing the inhibition from actin sites so

that cross-bridges can attach. Experimental data of
Podolsky and Teicholz (32) have not been uniformly
supported by the results obtained in other laboratories. For
example, Julian (32) has found evidence of an additional
calcium-dependent effect. These experiments have
recently been reviewed (33). However, the controversy
about the influence of the activation level on cross-bridge
kinetics has not yet been resolved.

Isotonic transients will be considered next, with the
proposed model. First experimental results were presented
by Civan and Podolsky (5). In these experiments fiber
length is measured as a function of time after the applica-
tion of a force step. It was observed that shortening speed is
at first greater than, and then less than, the steady state
value, resulting in an unsteady oscillatory motion.
Podolsky and co-workers (2, 11, 12) have presented a

numerical iterative procedure to compute isotonic tran-
sients, and chose cross-bridge parameters in order to fit
data on isotonic transients. In the present study, cross-

bridge parameters have already been determined. These
values will be used in the analysis of isotonic transients.
Eqs. 3 and 11 are combined to obtain simplified expres-
sions for nO and n,. The number density at x = 0, no, can be
expressed as

no= 1, for(I) <1I

nO = 1 -exp [ -(-tp)], for I(t) > 1, (22)
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where I = fto, and I(tp) = I(t) - 1. The function I is
defined by the relation

I() =f (V/A) dt.

Similarly n1 is found to be

n, = 0, for I(!) < b,
= exp [-q,(I - tx)], for b, < I(!) < (1 + bl)
= exp [-q,(t - t.)] {1 - exp [-(t. - ty)II,
for I(7)> (I +b),

(23)

(24)

where I(t.) = I(i) -b, and I(ty) = I(i) - (1 + b1). These
equations must be combined with Eqs. 5, 7, and 10 to
estimate the speed of contraction as a function of time. In
the computations, the tension T is taken constant. Fig. 8
shows modelled fiber sarcomere length as a function of
time t for T = 0.38. The nonlinear oscillatory behavior
observed in the figure is the result of propagation of the
discontinuities that exist in the distribution with respect to
x of attached cross-bridges during the isometric state. This
point is more clearly illustrated in Fig. 9. During the initial
isometric state the function n is discontinuous at locations
x = 0, and x = h. These discontinuities propagate in the
negative x direction after the reduction of muscle force to a
constant value (T = 0.38). Propagation occurs because of
the hyperbolic nature of the kinetic equation (Eq. 1). The
magnitudes of the jumps decrease with time because of the
detachment of cross-bridges in the region (- b, h < x < 0).
When these jumps reach the location x =-b,h, a rapid
change in the speed of contraction is observed as shown in
Fig. 9. The time derivatives of the variables M(+), M( ),
Y(+), Y(-) are not necessarily equal to zero during the
transient phase. Our computations indicate that the dura-
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FIGURE 8 Change in sarcomere length as a function of dimensionless
time fj after a step tension reduction of AvT = 0.62. Parameters used in
the computations are shown in Fig. 1.
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FIGURE 9 The dimensionless speed of shortening V and fraction of
attached cross-bridges nO and n, computed by using Eqs. 21 and 23,
respectively, as functions of the dimensionless timef0t for the case shown
in Fig. 8.

tion of the transient phase decreases with increasing force
step. This is consistent with the experimental results of
Civan and Podolsky (5). Recently, Sugi and Tsuchiya (35)
have studied isotonic velocity transients on tetanized frog
skeletal muscle fibers. Quick increases in load as well as
quick releases were considered. Velocity transients follow-
ing quick decreases in load were found to be very similar to
those reported by Civan and Podolsky (5). These authors
have extended the Podolsky and Nolan model (11, 12) to
simulate isotonic motions after step increases in load by
choosing appropriate f and g functions in the region x > h.
They have also assumed that g increases with load and then
returns to the initial value exponentially with time. Tran-
sients after a quick increase in load have not been consid-
ered in the present study. However, the method of solution
described above can easily be adopted to this case. Analysis
of isotonic transients provide evidence that the Eq. 1
represents actual cross-bridge kinetics.

SINUSOIDAL ANALYSIS

In this section, oscillatory experiments on muscle fibers
will be considered. In these experiments the length of a
muscle fiber is oscillated sinusoidally and the resulting
force amplitude and phase shift are observed. This tech-
nique has been used in insect muscle (7, 35) and other
muscle types (8). The experimental scheme has been
improved by introducing direct computer control of the
length driver (8). As a result the time required for
measurement is greatly reduced and a wider frequency
range can be considered. Kawai and Brandt (8) have
observed three time constants in their data and have
correlated these time constants with the different rate
processes observed in transient tension experiments. How-
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ever, the assumed correspondence between sinusoidal and
step analyses would hold if the fiber length and tension
were related by a linear differential equation of the form
(36)

aoT + a,DT + a2D2T+ ... + anDnT

= boQ + b,DQ + b2D2Q + ... bmDmQ (25)

where Q is the fiber length, T is the tension, and D denotes
the time derivative (D = d/dt). It is known that Eq. 25 is
too restrictive even to represent linear viscoelastic materi-
als (38). In a recent study, Thorson and White (39)
considered the sinusoidal data presented by Kawai and
Brandt (8) by using a lumped-bridge model. They have
concluded that the data can be interpreted in terms of the
Huxley and Simmons (9) mechanism of multiple configu-
rational states of myosin heads during attachment. How-
ever, the model used by these authors in interpreting the
data does not follow directly from the cross-bridge kinetic
model put forward by Huxley (1) or its more recent
extensions (9, 14). Because the model of Thorson and
White is based on the concept of interfilament shear force
produced by attached cross-bridges, their equations do not
contain the variable x. The fraction n = n(t) of attached
cross-bridges in Thorson and White's (39) notation is
proportional to the variable M = M(+) + M( ) + M(R) in
the present study. Furthermore, attachment and detach-
ment parameters f(t) and g(t) used by these authors can
be shown to be not equivalent to the position-dependent
rate constants f(x) and g(x) defined in Huxley (1). In
general f(t) is expected to be smaller than max[f(x)] and
g(t) is expected to increase with increasing speed of
shortening. Thorson and White (39) have concluded that if
the sinusoidal data are fitted with sums of first-order
signals as in Kawai and Brandt (8), the rate constants
obtained in these fits may have no discernible relationship
to those events at the cross-bridge level. Sinusoidal experi-
ments will now be considered by using the two-state kinetic
model described in the section Mathematical Formulation.
It is assumed that the fully activated muscle is oscillated
sinusoidally according to the relation

1 = 101I - (2ha*/s) sin 27rmfOt ], (26)

where 1 is the fiber length before oscillation, a* is the
dimensionless amplitude, and m is the dimensionless fre-
quency of oscillation. The parameter h was defined pre-
viously as the length of the attachment zone of a cross-
bridge (h = 110 A). The dimensionless speed of contrac-
tion corresponding to deformation (Eq. 26) is given by the
equation

(V/A) = 2ir m a cos( 27rmfot). (27)

Using Eq. 11, it can be shown that parameters nO and n2
representing the values of the number density distribution

at locations x = o, and x = h, respectively, are given by the
following equations

= [1 - D(d,)]/[I - B(q,, d,)D(d,)] forftt ER

= B(ql, dl)[I - D(d,)]/[1 - B(ql, dl)D(d,)]
forf,t e R2

n2 = [ -D(d2)] [B(q2, d2)]/[1 - B(q2, d2)D(d2)]

forft e RI
= [1 -D(d2)] /[1 - B(q2, d2)D(d2]
/[- B(q2, d2)D(d2)] forf0t R2

D(x) = exp (-x), B(y, x) = exp (-y*x)

di = d, (t) = (1/2m) + 2f0t forf0t e RI
= (3/2m) -2ft forf0tER2

d2= d2(t) = (1/m) - d,(t), (28)

where q,f and q2f are the rates of detachment in the zones
x < o, and x > h, respectively, and the time domains R,
and R2 are defined as R, = (- '/4m, '14m) and R2 = ('/4m,
3A4m). Eq. (28) is valid for steady state oscillations and
therefore consideration of a single period of oscillation is
sufficient for analysis. Once the parameters nO and n2 are
expressed as functions of time, muscle tension T can be
determined as a function of time by solving the ordinary
differential Eqs. 5 and 7. The closed form analytical
solutions are available for these equations in the case of
sinusoidal oscillations. Initial conditions are chosen such
that the dimensionless tension T assumes the same value
after a period of oscillation.

Numerical computations in this section have been car-
ried out for two different sets of the values of cross-bridge
parameters appearing in the equations. The first set corre-
sponds to the parameter values used in the previous
sections; in addition, time constant q2, which was not
assigned a value previously, is taken as q2 = 0.1 q2 = 1.0. In
the second set a slower rate of attachment is assumed (f3 =
100 s-'), and the detachment is considered to occur
considerably faster in the regions x < 0 and x > h (qI = 10,
q2 = 5). The second set of parameters yields qualitatively
similar results to Huxley's initial model (1). Our numerical
computations indicate that perturbation in muscle tension
as a result of sinusoidal oscillations is not sinusoidal even
for very small amplitudes (ah < 10 A). This nonlinearity is
most pronounced for frequencies at -10 Hz, and decreases
with increasing frequency. Fig. 10 shows fiber tension T as
a function of time for mf0 = 10 Hz. Note that the tension
response is quite different for the two sets of parameter
values defined above. The cross-bridge model with a high
rate of attachment predicts an increase in fiber tension
with increasing frequency of oscillation. The variation of
the number density of attached cross-bridges with the
frequency of oscillation is illustrated in Fig. 11. The
detachment is significant even for the model corresponding
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FIGURE 10 Fiber tension T as a function of dimensionless time mf0t
during a single period of oscillation is shown: (a) present model withf =
1,000 s-', q, = 0.014, b, = 1.14, q2 = 1/10; (b) model with low rate of
attachment and high rate ofdetachment withf0 = 100 s ', q1 = 10, q2 = 5,
b, = 1.14.

to the first set of cross-bridge parameters when the
frequency of oscillation is small. We have also expanded
the computed tension-time curves into Fourier series to be
able to compare them with the data presented by Kawai
and Brandt (8). Present computations indicate that the
amplitude ratio increases and the phase lag decreases with
increasing frequency of oscillation. If the computational
data are represented as a Nyquist plot as in Kawai and
Brandt (8), the two models would predict semicircles in the
upper right quadrant. Our computations show that for all
frequencies, the first harmonic of the tension-time curve is
most sensitive to cross-bridge parameters qjf, defining the
rate of detachment after a step stretch. This is illustrated in
Fig. 12 for the present model with q2 = 0.1 and q2 = 1. In
this figure, viscous modulus, Av, is plotted as a function of
the elastic modulus, AE. The figure shows that the radius of
the semicircle in Nyquist plot increases with increasing q2.
The zeroth harmonic (mean tension) is larger for cross-
bridge models with high rates of attachment and the
second and third harmonics also depend strongly on the
values of the rate parameters assumed in the computations.
Note also that at least three rate constants (f, ql, q2) are
used in the analysis of sinusoidal oscillation; however, the
Nyquist plot corresponding to the first harmonic of the
computed tension-time curve yields only a single time
constant. Our computations indicate that significant infor-
mation about cross-bridge kinetics may be lost when the
data are expanded in Fourier series and only the first term
is considered. As a result, correspondence between oscilla-
tory experiments and step change experiments can not be
modeled with that of a simple linear, isotropic response.
However, these observations do not deny the usefulness of
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FIGURE 1 I The variables nO (a) and n2 (b) given by Eq. 28 as a function
of time during a period of oscillation for the present model with parameter
values given in Fig. I (1: mf0 = 10, II: mf0 = 1, q2 = 0-1)-

the sinusoidal method. This treatment may be considered
as a first step in analysis of such data by using a cross-
bridge model.

CONCLUSION

Constitutive equations of skeletal muscle fibers are derived
on the basis of an assumed cross-bridge mechanism. As an
end result, fiber tension is expressed in terms of peak
isometric tension, time history of speed of contraction and
the level of activation. The internal variable x, denoting
cross-bridge extension, has been eliminated in the final
equations by the method of integration described in the
section entitled Mathematical Formulation. Parameters of
the proposed cross-bridge mechanism have been deter-
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TABLE I

Model predictions

Experiments Huxley Podolsky and Huxley and Eisenberg Present
(j)* Nolan (12) Simmons (9) et al. (14) study

Steady isotonic force-ve-
locity relation; Hill (3) + + ? + +
Isometric transients TI,
T2; Ford et al. (23) - + + +
Isotonic transients; Civan
and Podolsky (5) + ? ? +
Sinusoidal oscillations; ? ? ? ?(+)
Kawai and Brandt (18) (-)

*The numbers in parentheses refer to the corresponding reference.

I0.8

FIGURE 12 The variation ofcomplex dynamic viscosity A, as a function
of the elastic modulus, AE, for the present model with parameter values
given in Fig. 1 (1: q2 = 1, II: q2 = 0.1).

mined by fitting experimental data on the transient tension
and isotonic-force velocity relation. The resulting cross-
bridge model is quite similar to the one proposed by
Podolsky and Nolan (12). However, in the present study
cross-bridge compliance and the rate functions are allowed
to change values at only three x locations. Cross-bridges
are assumed to be more compliant in the region of detach-
ment (- b,h < x < o) than in the region of attachment (o <
x < h). Furthermore, all cross-bridges extended beyond
x < -b,h are assumed to break instantaneously as a result
of a mechanical process. During isotonic contraction, esti-
mated fiber stiffness for the proposed model is less than the
prediction of Podolsky and Nolan model, but greater than
corresponding experimental data. However, the recent
electron microscopy data (39) indicate that thin filaments
may be quite compliant during contraction. Filament
compliance was neglected in the present analysis. The
proposed constitutive equations satisfactorily predict the
mechanical behavior of skeletal muscle fibers during
steady isometric and isotonic contraction. The transient
mechanical response to quick releases (step shortening,
step decrease in load) is also described accurately with the

present model. The relationship between the present study
and previous models is summarized in Table I, which
compares the results of this work with that of other
theoretical studies and with experimental data. The pres-
ent study provides considerable mathematical simplifica-
tion in the mechanical analysis of contraction with arbi-
trarily prescribed external conditions, such as oscillatory
motion and isotonic transients. This type of analysis may
provide additional insight on the influence of cross-bridge
parameters to the mechanical behavior of muscle fibers.

The author would like to thank Doctors Murray Eden, Richard J.
Podolsky, and Mark Schoenberg for useful discussions.
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