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Abstract

The authors consider the 2nth-order difference equation

�n
(
rt−n�nxt−n

) + f (t, xt ) = 0, n ∈ Z(3), t ∈ Z,

where f : Z × R → R is a continuous function in the second variable, f (t + T , z) = f (t, z) for all (t, z) ∈
Z × R, rt+T = rt for all t ∈ Z, and T a given positive integer. By the Linking Theorem, some new criteria
are obtained for the existence and multiplicity of periodic solutions of the above equation.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Nonlinear difference equations; Periodic solutions; Critical points

1. Introduction

In this paper we denote by N, Z, R the sets of all natural numbers, integers and real numbers,
respectively. For a, b ∈ Z, define Z(a) = {a, a + 1, . . .}, Z(a, b) = {a, a + 1, . . . , b} when a � b.

Consider the nonlinear 2nth-order difference equation

�n
(
rt−n�

nxt−n

) + f (t, xt ) = 0, n ∈ Z(3), t ∈ Z, (1.1)
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where � is the forward difference operator defined by �xt = xt+1 − xt , �2xt = �(�xt ) and the
real sequence rt and the function f satisfy the following conditions:

(a) rt+T = rt > 0, for a given positive integer T and for all t ∈ Z.
(b) f : Z × R → R is a continuous function in the second variable and f (t + T , z) = f (t, z) for

all (t, z) ∈ Z × R.

We may think of (1.1) as being a discrete analogue of the 2nth-order differential equation

dn

dmn

[
r(m)

dnx(m)

dmn

]
+ f

(
m,x(m)

) = 0, m ∈ R. (1.2)

As it is known to us, the development of the study of periodic solutions of differential equations
is relatively rapid. There have been many approaches to the study of periodic solutions of dif-
ferential equations, such as critical point theory, fixed point theory, coincidence degree theory,
Kaplan–Yorke method and so on. However, there are few known techniques for studying the
existence of periodic solutions of discrete systems. In some recent papers [4,5], the authors stud-
ied the existence of periodic solutions of second-order nonlinear difference equation by using
the critical point theory. These papers [4,5] show that the critical point method is an effective
approach to the study of periodic solutions of second-order difference equations. Compared to
one-order or second-order difference equations, the study of higher-order equations has received
considerably less attention (see, for example, [1,6,9] and references contained therein). In 1994,
Ahlbrandt and Peterson [1] studied the 2nth-order difference equation of the form

n∑
i=0

�i
(
ri(t − i)�iy(t − i)

) = 0 (1.3)

in the context of the discrete calculus of variations, and Peil and Peterson [9] studied the as-
ymptotic behavior of solutions of (1.3) with ri(t) ≡ 0 for 1 � i � n − 1. In 1998, D. Anderson
[2] considered (1.3) for t ∈ Z(a), and obtained a formulation of generalized zeros and (n,n)-
disconjugacy for (1.3). In 2004, M. Migda [8] studied an mth-order linear difference equation.
But to the best knowledge of the authors, results on existence of periodic solutions of (1.1) have
not been found in the literature. In this paper, by establishing the variational framework of (1.1)
and transferring the existence of periodic solutions of (1.1) into the existence of critical points
of some functional, we obtain some sufficient conditions for the existence of periodic solutions
of (1.1).

Now we state some basic notations and the main results in this paper. Let X be a real Hilbert
space, J ∈ C1(X,R), which means that J is a continuously Fréchet differentiable functional
defined on X. J is said to satisfy the Palais–Smale condition (P–S condition for short) if any
sequence {ut } ⊂ X for which {J (ut )} is bounded and J ′(ut ) → 0 as t → ∞, possesses a conver-
gent subsequence in X.

Let Bρ be the open ball in X with radius ρ and centered at 0 and let ∂Bρ denote its boundary.

Lemma 1.1 (Linking Theorem). (See [5,7,10].) Let X be a real Hilbert space, X = X1 ⊕ X2,
where X1 is a finite-dimensional subspace of X. Assume that J ∈ C1(X,R) satisfies the P–S
condition and

(C1) there exist constants σ > 0 and ρ > 0 such that J |∂Bρ∩X2 � σ ;
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(C2) there is e ∈ ∂B1 ∩ X2 and a constant R1 > ρ such that J |∂Q � 0, where Q = (B̄R1 ∩ X1)

⊕ {re | 0 < r < R1}.

Then J possesses a critical value c � σ, where c = infh∈Γ maxu∈Q I (h(u)), Γ = {h ∈
C(Q̄,X)|∂Q = id} and id denotes the identity operator.

Theorem 1.1. Assume that the following conditions are satisfied:

(A1) For all z ∈ R, one has
∫ z

0 f (t, s) ds � 0 and limz→0
f (t,z)

z
= 0.

(A2) There exist R2 > 0 and β > 2 such that, for every z with |z| � R2 one has zf (t, z) �
β

∫ z

0 f (t, s) ds < 0.

Then (1.1) has at least two nontrivial T -periodic solutions.

If f (n, xn) ≡ qng(xn), Eq. (1.1) reduces to the following 2nth-order nonlinear equation

�n
(
rt−n�

nxt−n

) + qtg(xt ) = 0, t ∈ Z, (1.4)

where g ∈ C(R,R), qt+T = qt > 0 for all t ∈ Z. Then we have the following result.

Corollary 1.1. Assume that the following conditions are satisfied:

(A3) For all z ∈ R and t ∈ Z, one has
∫ z

0 g(s) ds � 0 and limz→0
g(z)
z

= 0.
(A4) There exist R3 > 0 and β > 2 such that, for every z with |z| � R3 one has zg(z) �

β
∫ z

0 g(s) ds < 0.

Then for a given positive integer T , there exist at least two nontrivial T -periodic solutions
for (1.4).

A brief sketch of the contents of the paper is as follows. In Section 2, we study some of the
functional analytic background which is needed in order to apply the Linking Theorem in critical
point theory and then establish the variational framework for (1.1). Section 3 gives the proof of
our main result for the existence of periodic solutions of (1.1)

2. Preliminaries

In order to study the existence of periodic solutions of (1.1) by applying the Linking Theorem,
we shall state some basic notations and lemmas, which will be used in the proofs of our main
results. Let S be the set of sequences

x = (. . . , x−t , . . . , x−1, x0, x1, . . . , xt , . . .) = {xt }+∞
t=−∞,

i.e., S = {x = {xt }: xt ∈ R, t ∈ Z}. For a given positive integer T , ET is defined as a subspace
of S by

ET = {
x = {xt } ∈ S: xt+T = xt , t ∈ Z

}
.

For any x, y ∈ S, a, b ∈ R, ax + by is defined by

ax + by := {axt + byt }+∞
t=−∞
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and then S is a vector space. Clearly, ET is isomorphic to RT , ET can be equipped with inner
product

〈x, y〉 =
T∑

i=1

xiyi, ∀x, y ∈ ET , (2.1)

by which the norm ‖ · ‖ can be induced by

‖x‖ :=
(

T∑
i=1

x2
i

) 1
2

, ∀x ∈ ET . (2.2)

It is obvious that ET with the inner product in (2.1) is a finite-dimensional Hilbert space and
linearly homeomorphic to RT .

Define the functional J on ET as follows

J (x) = 1

2

T∑
t=1

rt−1
(
�nxt−1

)2 −
T∑

t=1

F(t, xt ), ∀x ∈ ET , (2.3)

where F(t, z) = − ∫ z

0 f (t, s) ds. Clearly J ∈ C1(ET ,R) and for any x = {xt }t∈Z ∈ ET , by using
xi = xT +i for any i ∈ Z, and

�nxt−1 =
n∑

k=0

(−1)k
(

n

k

)
xt+n−k−1,

we can compute the partial derivative as

∂J

∂xt

= �n
(
rt−n�

nxt−n

) + f (t, xt ), t ∈ Z(1, T ).

Then, x = {xt }t∈Z is a critical point of J on ET (i.e., J ′(x) = 0) if and only if

�n
(
rt−n�

nxt−n

) + f (t, xt ) = 0, t ∈ Z(1, T ).

By the periodicity of xt and f (t, z) in the first variable t , we have reduced the existence of
periodic solutions of Eq. (1.1) to the existence of critical points of J on ET . In other words, the
functional J is just the variational framework of (1.1). For convenience, we identify x ∈ ET with
x = (x1, x2, . . . , xT )T .

Denote W = {(x1, x2, . . . , xT )T ∈ ET : �n−1xi ≡ 0, i ∈ Z(1, T )}, then there exists W⊥ = Y

such that ET = Y ⊕ W. Define the norm ‖ · ‖β on ET as follows (see, for example, [3]):

‖x‖β =
(

T∑
i=1

|xi |β
) 1

β

,

for all x ∈ ET and β > 1. Clearly, ‖x‖2 = ‖x‖. Since ‖ · ‖β and ‖ · ‖ are equivalent, there exist
constants C1, C2 such that C2 � C1 > 0, and

C1‖x‖ � ‖x‖β � C2‖x‖, ∀x ∈ ET . (2.4)

3. Proofs of the main results

In this section, we shall prove our main result stated in Section 1 by using Lemma 1.1. First
we prove two lemmas which are useful in the proof of theorem.
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Lemma 3.1. Assume that f (t, z) satisfies condition (A2) of Theorem 1.1, then the functional

J (x) = 1

2

T∑
t=1

rt−1
(
�nxt−1

)2 −
T∑

t=1

F(t, xt )

is bounded from above on ET .

Proof. By (A2) [5], there exist constants a1 > 0 and a2 > 0 such that, for all z ∈ R,

−
z∫

0

f (t, s) ds � a1|z|β − a2.

Set

v1 = min
t∈Z(1,T )

rt , v2 = max
t∈Z(1,T )

rt .

Clearly vi > 0, for i = 1,2.

For every x ∈ ET , we have

J (x) � v2

2

T∑
t=1

(
�n−1xn − �n−1xn−1

)2 − a1

T∑
t=1

|xt |β + a2T

� v2

2

T∑
t=1

2
[(

�n−1xn

)2 + (
�n−1xn−1

)2] − a1‖x‖β
β + a2T

= 2v2

T∑
t=1

(
�n−1xn

)2 − a1‖x‖β
β + a2T

� 8v2

T∑
t=1

(
�n−2xn

)2 − a1‖x‖β
β + a2T

� v24n

2
‖x‖2 − a1(C1)

β‖x‖β + a2T .

By β > 2 and the above inequality, there exists a constant M > 0 such that, for every x ∈ ET ,
J (x) � M . The proof is complete. �
Lemma 3.2. Assume that f (t, z) satisfies (A2) of Theorem 1.1, then J satisfies the P–S condition.

Proof. Let x(k) ∈ ET , k ∈ Z(1), be such that {J (x(k)} is bounded. Then there exists M1 > 0 such
that, for every k ∈ N,∣∣J (

x(k)
)∣∣ � M1.

By the proof of Lemma 3.1, we have for every k ∈ N,

−M1 � J
(
x(k)

)
� v24n

2

∥∥x(k)
∥∥2 − a1(C1)

β
∥∥x(k)

∥∥β + a2T .

That is,

a1(C1)
β
∥∥x(k)

∥∥β − v24n ∥∥x(k)
∥∥2 � M1 + a2T , ∀k ∈ N.
2
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By β > 2, there exists M2 > 0 such that for every k ∈ N,∥∥x(k)
∥∥ � M2.

Thus {x(k)} is bounded on ET . Since ET is finite-dimensional, there exists a subsequence of
{x(k)}, which is convergent in ET , and the P–S condition is verified. �
Proof of Theorem 1.1. By (A1), we have f (t,0) = 0, then {xt } = 0, i.e., xt ≡ 0 (t ∈ Z) is a
trivial T -periodic solution of Eq. (1.1). By Lemma 3.1, J is bounded from above. We denote by
C0 the supremum of {J (x), x ∈ ET }. The proof of Lemma 3.1 implies lim‖x‖→+∞ J (x) = −∞,

−J is coercive. By continuity of J on ET , there exists x̄ ∈ ET such that J (x̄) = C0, and x̄ is a
critical point of J. We claim that C0 > 0. In fact, by condition (A1), we have

lim
z→0

F(t, z)

z2
= 0.

Then for any ε > 0, there exists η > 0 such that for every z with |z| � η,

F (t, z) � εz2.

For any x = (x1, x2, . . . , xT )T ∈ Y with ‖x‖ � η, |xt | � η, t ∈ Z(1, T ). When T > 2, we have

J (x) � v1

2

T∑
t=1

(
�n−1xt − �n−1xt−1

)2 −
T∑

t=1

F(t, xt )

� v1

2
yT Ay − ε

T∑
t=1

|xn|2,

where y = (�n−1x1,�
n−1x2, . . . ,�

n−1xT )T ,

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −1
−1 0 0 · · · −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

T ×T

.

Clearly, 0 is an eigenvalue of A and ξ = (v, v, . . . , v)T ∈ ET is an eigenvector of A corresponding
to 0, where v �= 0 and v ∈ R. Let λ1, λ2, . . . , λT −1 be the other eigenvalues of A. By matrix
theory, we have λj > 0, ∀j ∈ Z(1, T − 1). Without loss of generality, we assume that 0 < λ1 �
λ2 � · · · � λT −1, then

J (x) � v1

2
λ1‖y‖2 − ε‖x‖2.

In view of

‖y‖2 =
T∑

t=1

(
�n−2xt+1 − �n−2xt

)2 � λ1

T∑
t=1

(
�n−2xt

)2 � λn−1
1 ‖x‖2,

we get

J (x) � v1
λn

1‖x‖2.

2
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Take ε = v1
4 λn

1 and δ = v1
4 λn

1η
2, then

J (x) � δ > 0, ∀x ∈ Y ∩ ∂Bη.

Thus there exists x ∈ ET such that J (x) � δ > 0, and C0 = supx∈ET
J (x) � δ > 0, which im-

plies that J satisfies condition (C1) of the Linking Theorem, and the critical point of C0 is a
nontrivial T -periodic solution of Eq. (1.1). Now, we need to verify other conditions of the Link-
ing Theorem. By Lemma 3.2, J satisfies the P–S condition. So it suffices to verify the condition
(C2). Take e ∈ ∂B1 ∩ Y. For any w ∈ W and r ∈ R, let x = re + w, one has

J (x) � v2

2

T∑
t=1

(
�n(ret + wt)

)2 −
T∑

t=1

F(t, ret + wt)

� v2

2

T∑
t=1

r2(�n−1et+1 − �n−1et

)2 − a1

T∑
t=1

|ret + wt |β + a2T

� v2

2
4nT r2 − a1(C1)

β

(
T∑

t=1

|ret + wt |2
) β

2

+ a2T

= v2

2
4nT r2 − a1(C1)

β

(
T∑

t=1

(
r2e2

t + w2
t

)) β
2

+ a2T

= v2

2
4nT r2 − a1(C1)

β
(
r2 + ‖w‖2) β

2 + a2T

� v2

2
4nT r2 − a1(C1)

βrβ − a1(C1)
β‖w‖β + a2T .

Let g1(z) = v2
2 4nT z2 − a1(C1)

βzβ, g2(z) = −a1(C1)
βzβ + a2T . We have limz→+∞ g1(z) =

−∞ and limz→+∞ g2(z) = −∞, and g1(z), g2(z) are bounded from above. Thus there exists a
constant R4 > η such that

J (x) � 0, ∀x ∈ ∂Q,

where Q = (B̄R4 ∩ W) ⊕ {re | 0 < r < R4}. By the Linking Theorem, J possesses critical value
c � δ > 0, where

c = inf
h∈Γ

max
u∈Q

J
(
h(u)

)
,

Γ = {
h ∈ C(Q̄,ET ): h|∂Q = id

}
.

Let x̃ ∈ ET be a critical point associated to the critical value c of J , i.e., J (x̃) = c. If x̃ �= x̄,
then the proof is complete; if x̃ = x̄, then C0 = J (x̄) = J (x̃) = c, that is,

sup
x∈ET

J (x) = inf
u∈Γ

sup
u∈Q

J
(
h(u)

)
.

Choosing h = id, we have supx∈Q J(x) = C0. Since the choice of e ∈ ∂B1 ∩ Y in Q is arbitrary,
we can take −e ∈ ∂B1 ∩ Y. By a similar argument, for any x ∈ ∂Q1, we have that there exists
R5 > δ such that J (x) � 0, where

Q1 = (B̄R5 ∩ W) ⊕ {−re | 0 < r < R5}.
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Again by using Lemma 1.1, J possesses critical value c′ � δ > 0, where

c′ = inf
h∈Γ1

max
u∈Q1

J
(
h(u)

)
,

where Γ1 = {h ∈ C(Q̄1,ET ): h|∂Q1 = id}.
If c′ �= C0, the proof is complete; otherwise c′ = C0, then supx∈Q1

J (x) = C0. Due to the fact
that J |∂Q � 0 and J |∂Q1 � 0, J attains its maximum at some points in the interior of the sets Q

and Q1. On the other hand, Q ∩ Q1 ⊂ W and for any x ∈ W, J (x) � 0. This shows that there
must be a point x̂ ∈ ET such that x̂ �= x̃ and J (x̂) = c′ = C0.

The above argument implies that, if c < C0, Eq. (1.1) possesses at least two nontrivial T -
periodic solutions; otherwise c = C0, Eq. (1.1) possesses infinitely many nontrivial T -periodic
solutions. The proof of Theorem 1.1 is completed. �
Remark 3.1. When T = 1, solution of Eq. (1.1) is trivial; for the case T = 2, A has a different
form, namely,

A =
(

2 −2
−2 2

)
.

However, in this case, the argument need not to be changed and we leave it to the readers.

The techniques of the proof of Corollary 1.1 are just the same as those carried out in the proof
of Theorem 1.1. We do not repeat them here.

Finally, we have the following example to illustrate Theorem 1.1.

Example. Assume that

f (t, z) = −(
az|z| + bz|z|)(ϕ(t) + M

)
,

where a � 0, b > 0, M > 0, ϕ(t) is a continuous T -periodic function and |ϕ(t)| � M.

Consider the 2nth-order difference equation

�2nxt−2 + f (t, xt ) = 0, t ∈ Z,

it is easy to verify that the conditions of Theorem 1.1 are satisfied, thus this equation possesses
at least two nontrivial T -periodic solutions.
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