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ABSTRACT 

The subject of each of the five sections of this paper is the planted plane trees 
discussed by Harary, Prins, and Tutte [7]. A description of the content of the 
present work is given in Section 1. Section 2 is devoted to a definition of plane 
trees in terms of finite sets and relations defined on  them--we hope this de- 
finition will replace the topological concepts introduced in [7]. A one-to-one 
correspondence between the classes of isomorphic planted plane trees with 
n + 2 vertices and the classes of isomorphic 3-valent planted plane trees with 
2n q- 2 vertices is given in Section 3. Sections 4 and 5 deal with enumeration 
problems. 

1. INTRODUCTION 

Harary, Prins, and Tutte [7] gave a complicated one-to-one corre- 
spondence between the set of classes of isomorphic planted plane trees 
with n Jr 2 vertices and the set of classes of isomorphic trivalent planted 
plane trees with 2n + 2 vertices. Also, they showed that the number of 
classes of isomorphic planted plane trees with n q- 2 vertices is (~n)/(n q- 1) 
for n = 0, 1 ..... Soon after the appearance of this paper a simpler corre- 
spondence was found [8], and De Bruijn and Morselt [3] provided three 
more simple correspondences between these sets. 

Briefly described the content of  this paper is as follows: In Section 2 
a new definition of plane trees is given in terms of binary relations on 
finite sets; using this definition it becomes possible to define isomorphism 
of plane trees in terms of  permutations o f  finite sets instead of  homeo- 
morphisms of the plane onto itself. Thus, the topological approach of  [7] has 
been abandoned here. In Section 3 we assign a binary sequence of length 
2n to each class of  isomorphic planted plane trees with n + 3 vertices; 
such a sequence (bl ..... b2,) contains exactly n units and is characterized 

t The editors regret that the publication of this paper has been delayed as a result 
of the change in editorial offices. 

* The paperwas written while the author was a postdoctoral fellow (1967) at McMaster 
University, Hamilton, Ontario, Canada. 
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by the property that bl + "'" + b2j > / j  for j = 1 ..... n. These binary 
sequences can also be assigned in a natural way to classes of isomorphic 
trivalent planted l~]ane trees with 2n + 4 vertices, and in this way a one-to- 
one correspondence between the two sets of  classes of isomorphic trees is 
achieved. Furthermore, it is shown that binary sequences of  length kn can 
be assigned to the classes of isomorphic (k + 1)-valent planted plane trees 
with kn + k q- 2 vertices; such a sequence (bl ..... bkn) contains exactly n 
units and is characterized by the property that bl + ... + bk~. ~ j for 
j ~- 1 ..... n. In Section 4 we describe a simple method for enumerating 
classes of  isomorphic planted plane trees in which the degrees of the vertices 
belong to a given set of natural numbers; for example, we show that the 
number  of  classes of isomorphic (k + 1)-valent planted plane trees with 
kn -k 2 vertices is (~n)/(kn -- n + 1). Also, we determine the number of 
ways of drawing plane trees so that the edges and vertices are mapped 
into the edges and vertices of certain networks. We conclude in Section 5 
with some combinatorial identities that are a by-product of the problems 
considered in the earlier sections. 

2. DEFINITIONS AND NOTATION 

Let (V, E) denote a tree; V and E denote the set of  vertices and the set 
of  edges of the tree, respectively; the edges of  the tree are 2-subsets of  the 
vertices. A rooted tree (V, E, v) is  a tree (V, E) with a distinguished vertex 
v e V called the root; a rooted tree is a planted tree if the degree of the 
root is 1. Suppose (V, E, v) is a rooted tree and let p(x) denote the length 
of  the path f rom v to x ~ V; in particular, p(v) = O. A planted plane tree 
(V, E, v, R) is a planted tree (V, E, v) with a linear order relation R defined 
on V possessing two properties: 

(i) I f  x, y s V and p(x) < p(y) ,  then (x, y) ~ R. 

(ii) I f  {r, s}, {x, y} ~ E with p(r) = p(x) = p(s) --  1 = p(y)  - -  1, and 
(r, x) ~ R, then (s, y) ~ R. 

Let P ( V )  denote the set of planted plane trees with vertex set V. 
The definition of  a planted plane tree suggests a complicated structure; 

however, all of  the information we need can be recorded in an elegant 
diagram. To draw a planted plane tree (V, E, v, R) we arrange the vertices 
in rows so that x E Vis in the row numbered p(x); also, the vertices in each 
row are ordered f rom left to right according to the linear order relation R. 
An edge {x, y} E E is indicated by drawing a straight line from x to y; it 
turns out that all of  the edges occur between consecutive levels of vertices, 
and no edges cross. An example of a diagram of  a planted plane tree 
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(V, E, a, R) is given in Figure 1; in this tree V = {a ..... g}, a is the root, 
E = {{a, b}, {b, c}, {b, d}, {d, e}, {d, f}, {d, g}}, and R is defined by 
a < b < " . < g .  

FIG. 1. Diagram of a planted plane tree. 

Certain subsets of  P(V) are of special interest. Let D denote a subset 
of  the natural numbers with 1 ~ D, and define P(V, D) to be the subset of 
P(V) containing trees wlaose vertices have degrees belonging to D. In 
particular, when D = {1, k} the elements of  P(V, D) are said to be 
k-valent; of course, when D is the set of all natural numbers we have 
P(V) = P(V, D). 

Now we define an equivalence relation on P(V) called isomorphism. 
Two planted plane trees (V, E, v, R) and (V, F, w, S) are isomorphic if 
and only if there exists a permutation rr of V such that 

( i )  ~ v  = w ,  

(ii) {Trx, try} E F for all {x, y} ~ E, and 

(iii) (Trx, ~ry) ~ S for all (x, y) ~ R. 

We let P*(V) and P*(V, 1:)) denote the classes of  isomorphic planted plane 
trees defined on the sets P(V) and P(V, D), respectively. 

Finally, in Section 3 we will need certain sets of  binary sequences. Let 
B(n, k) denote the set of all binary sequences (bl ..... b~,,) of length kn 
containing exactly n units such that b1 + ... + bk~ ~ j for j : 1 ..... n. 
The elements of  B(n, k) correspond in a natural way to voting records in 
which one candidate has always a score at least k - -  1 times larger than the 
score of his opponent. This generalization of the ballot problem was 
studied by Dvoretzky and Motzkin [4]. The case k = 2 appears in Feller 
[6], and a connection with lattice paths is established. Furthermore, Feller 
gives a simple proof  that 

2n 
[ B(n --1,  2)1 = ( n ) / ( n +  1). (1) 
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The Catalan numbers (~;")/(n + 1) appear in many combinatorial prob, 
lems; for example, Brown [1] has listed 46 references to papers involving 
these numbers. The earliest reference is to Euler. Mullin [12, 13, 14] 
encountered these numbers in his investigations of  triangular maps, 
which suggests a connection between plane trees and these planar 
graphs. 

3. SOME ONE-TO-ONE CORRESPONDENCES 

I t  is easy to prove (by induction for example) that the number of  vertices 
in a (k + 1)-valent planted plane tree must be congruent to 2 modulo k; 
thus, i f D  = { 1 ,  k + l } ,  then P ( V , D ) =  ;~ unless [ V[ = k n + 2  for 
some n. Suppose Vis a set with [ V[ = kn + 2, and D = {1, k + 1}; now 
we are going to construct a one-to-one correspondence ~ between the 
elements of  B(n - -  1, k) and P*(V,  D). 

I f  T = (V, E, v, R) ~ P(V,  D), then T has exactly n vertices with degree 
k § 1. (Again this is trivial and can be established by induction.) Let 
v~ ..... v,~ denote the vertices with degree k + 1 in T, and suppose 
(v i ,  vi+~)~ R for i = 1 ..... n - -  1. I f  p(vi) -~ r, then there are k vertices 
va ,..., v~ in T such that p(vil) - -  - -  p(vik) = r q- 1, and {vi, vi~} ~ E 
f o r j  = 1 ..... k; furthermore, we can suppose (v~j, vi(j+a)) e R f o r j  = 1 ..... 
k - -  1. Now a binary sequence ((T) = (b I ..... bnk-k) of length nk - - k  
can be assigned to T as follows: 

l l, if vii has degree k -k 1, 
bik-i+j = 0, otherwise. (2) 

I t  can be shown that, if T, T'  E P(V,  D) are isomorphic, then ~(T) = ~(T'), 
so, for a class X of isomorphic (k + 1)-valent planted plane trees, we can 
define ~(X) = ~(T) for any T ~  X. Also, it is easy to verify that ~(T) = 
(bl ..... b,~_~) ~ B ( n -  1, k)  since each vertex of degree k - ?  1 in T 
corresponds to a unit in the sequence (hence, ~(T) has exactly n units), and 
the partial sequence (bl ,..., bjT~) describes a (k § l)-valent planted 
plane tree having at least j vertices of  degree k § 1 in T (hence, 
bl § "" + b~-k >~ j).  Obviously, non-isomorphic trees are assigned different 
binary sequences by ~. Finally, there is a simple, obvious construction 
which shows that a given sequence (bl ,..., b,~k-k) ~ B(n - -  1, k)  correspondS 
to some tree in P(V,  D), so ~ is a one-to-one correspondence. 

Let n denote a natural number,  and let W denote a set with I W I = 
n q- 2. Now we construct a one-to-one correspondence X between P * ( W )  
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and B ( n - -  1, 2). Suppose  T e P ( W )  with T = ( W , E , w , R ) ,  let 
W = {w, wt ..... wn+x}, and suppose R is defined by w < w 1 < ... < wn+l. 
Let  d~ denote the degree o f  wi for  i = 1,..., n 4- 1, and note that  dl ~ 2 
while d,~+l = 1. We associate a binary sequence (bil ,..., bia,) o f  length di 
with w~ for i ~ -  1 ..... n 4 -  1 where bit = 1 for  j----- 1,..., di - - 1 ,  and 
bia, = 0. A binary sequence ~(T) = ( b l ,  .., b2~_~) can now be defined by 
putting (bo , bl ,..., b~n) ~ (b~ .... , b~a 1 ..... b(~+~)~ ..... b(,+~)d,+). Note  that  
bo ~- 1, b2~-1 = b~a, -= 0, and  bzn ~ b(n+l)a,+~ -~ 0 for  all T ~  P ( W ) ,  so 
these bits do not  appear in ~(T). It  is easy to see that  the length of  the 
sequence ~(T) is indeed 2n - -  2 since dt 4- "-. 4- dn+l - -  3 = 2(n --  1). 
Also, the zeros in ~(T) correspond one-to-one to the vertices w I ..... w,~_l, 
so ~(T) has exactly n --  1 units which correspond one-to-one to the edges 
in the set E' ~- El{{w, wl}, {wa, w~}}: Finally, note that  bl -4- "'" 4- b~. > / j  
because (ba ..... b2j) describes a port ion of  T involving at leas t j  edges o f  T 
belonging to E' .  Thus, ;~ is a mapping  of  P ( W )  into B(n - -  1, 2); further- 
more, it is obvious f rom our  construct ion that  ~ is onto. I f  T, T '  e P ( W ) ,  
then we have ~(T) = x(T ' )  if and only if T and T '  are isomorphic.  Thus, 
for every X e  P * ( W ) w e  can define x (X)  = y~(T)for any T ~  X, and X is 
a one-to-one correspondence between P * ( W )  and B(n - -  1, 2). 

Let n denote a natural number,  and let V, W denote sets with I V] ---- 
2n 4- 2, I W I ---- n § 2. We have a one-to-one correspondence X between 
P * ( W )  and B(n - -  1, 2); also, we have a one-to-one correspondence 
between P*(V,  {1, 3}) and B(n - -  1, 2). Combining ~ and X in the usual 
way  we obtain a one-to-one correspondence between P*(V,  {1, 3}) and 
P*(W) .  In  Figure 2 we have drawn diagrams representing the classes of  
isomorphic trivalent planted plane trees with eight vertices, and the classes 
o f  isomorphic planted plane trees with five vertices; the binary sequences 
assigned to these trees by ~ and X have also been indicated. 

(1,0,1,0) (1,0,0.1) (0,1,1,0) (0,1,0,1) (1,1,0,0) 

FIG. 2. Correspondence between trivalent and ordinary planted plane trees. 
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4. ENUMERATION 

For  the moment we let D denote a fixed subset of the natural numbers 
with l e D ;  also, let V denote a set with I v I  = n q - 1  and define 
t(n, D) = I P*(V, D)[. Since D is fixed we can abbreviate t(n, D) to t(n), 
and let T ( x ) ~  t(1)x + t(2)x2 + . . . .  For a given d s D ,  d v6 1, let 
Pa*(V, D) denote the set of elements of P*(V, D) involving trees such that 
the degree of the vertex joined to the root is d. It is clear that 

#-*(V, D)[ ----- ~ t (n l ) ' "  t(na-1), (3) 

where the sum extends over all compositions (na ,..., n~-l) of n -- 1 into 
exactly d -- 1 positive parts. Thus, I Pa*(V, D)[ is the coefficient of x ~ in 
the power series xTa-~(x), so we have 

T(x)  = x + x Y T~-~(x). (4) 
a~ D 

I f D  = {1, 2,...}, then P*(V, D) = P*(V), and (4) implies 

T(x) = x 4- xT(x)/(1 -- T(x)); (5) 

that is, 

T2(x) -- T(x) + x = 0. (6) 

Solving for T in (6) and using the fact that t(1), t(2) .... are positive we have 

1 2 - - 2  1(1 - - (1  -- 4x) 1/2) = ~ ~( : 1) X n '  (7) T(x )  = 

so the number of  classes of non-isomorphic planted plane trees with n q- 2 
vertices is (~")/(n 4- 1). 

I f D  = {1, k 4- 1}, then P*(V, D) denotes the set of classes of isomorphic 
(k 4- 1)-valent planted plane trees; in this case (4) becomes 

T(x) =- x + xTk(x). (8) 

Making the substitution T(x) = xU(xk), x k = y in (8), we obtain a relation 
equivalent to 

yUk(y) -- U(y) + 1 = 0. (9) 

It is known (see P61ya and Szeg6 [15, p. 125] that 

(10) 
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so it follows that  the number  of  classes of  i somorphic  (k + 1)-valent 
planted plane trees with k n  + 2 vertices is 

= - .  

Let k denote a natural  number  with k > I, and suppose D = {I ..... k}, 
the elements of  P * ( V ,  D)  involve planted plane trees in which each vertex 
has degree 1,..., k; in this case (4) becomes 

T(x )  = x + x ( T ( x )  -+- "" + Tk-l(x)), (11) 

which implies 

T(x)(1 - -  T(x))  = x(1 - -  Tk(x)).  (12) 

We have  been unable to determine a p leasant  fo rmula  for  the coefficient o f  
x '~ in the power  series which satisfies (12). For  example,  consider the case 
k = 3, then (11) becomes 

x r ~ ( x )  - (1 - x )  r ( x )  + x = 0, (13) 

and this implies 

T(x )  = (1 - -  x - -  (1 - -  3x) l/z (1 + x)l /~)/ax.  (14) 

Using (14), an explicit fo rmula  for  t(n), the coefficient o f  x"  in the power  
series representat ion of  T(x) ,  can be found,  but  this expression does not  
appear  to have a simple form. Using (13), we can find a recurrence relation 
satisfied by the sequence {t(n) : n = 1, 2,..}; this is done by differentiating 
th rough  (13) and then replacing xT~(x )  with ( 1 -  x ) T ( x ) -  x; the 
resulting relation implies t(0) = 0, t(1) = 1, and 

t(n) = {(2n - -  1) t(n - -  1) -? 3(n - -  2) t(n - -  2)}/(n + 1) (15) 

for  n = 2, 3 . . . . .  Thus,  t(n) is 1, 1, 2, 4, 9 .... for  n = 1, 2, 3, 4, 5 .... respec- 
tively. Diagrams  representing the nine classes of  i somorphic  planted plane 
trees with six vertices such that  the degree o f  each vertex is 1, 2, or 3 are 
given in Figure 3. 

FI6. 3. Planted plane trees in which vertices have degree 1, 2, or 3. 
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Now we consider a problem concerning the number of embeddings of 
certain planted plane trees in networks. We begin with an example. Let 
I denote the set of  Gaussian integers, let U = {{x, y} : x, y E I, ] x - y ] = 1}, 
then C = (I, U, {0, 1}) is an example of an edge-rooted linear graph; I is 
the vertex set, U is the edge set, and {0, 1} ~ U is the rooted edge of  C. Let 
T = (V, E, v, R) denote a planted plane tree, then, if {v, w} ~ E, (V, E, 
{v, w}) is another example of an edge-rooted linear graph. A mapping 
50 sending V into I is an embedding of T in C if 

(i) 50v = 0, 50w = 1, 

(ii) {a, b} E E implies {50a, 50b} ~ U, and 

(iii) {a, b}, {a, e} ~ E with b =~ e implies 50b @ 50c. 

Note that an embedding 50 induces a mapping cp' sending edges of T into 
the edges of C; also, 50' sends adjacent edges of T to adjacent edges in C; 
finally, 50' is not necessarily one-to-one. Thus, T can be embedded in C 
if and only if every vertex in T has degree 1, 2, 3, or 4. Embeddings of 
planted plane trees such that each vertex of Thas  degree 1, 2, 3, or 4 arise 
naturally in Eden's [5] investigations of the cell growth problem. (An 
exposition of  Eden's work also appears in [9].) Two-dimensional lattice 
walks can be viewed as embeddings of the planted plane tree in which 
every vertex has degree 1 or 2. 

Suppose V i s a  set with I V] = n q- 1, let D = {1, 2, 3, 4}, and consider 
the set of trees P(V, D). We let A(T) denote the number of embeddings of 
T e  P(V, D) in C. It is clear that, if  T, T ' e  P(V, D) are isomorphic, then 
A(T) = ;~(T'). Thus, for a given X e  P*(V, O), we can define A(X) --= A(T) 
for any T E X. Finally, we define 

a(n) = ~ A(X), (16) 
XeP*(V,D) 

and let A(x) = a(1)x q- a(2)x z + "". Clearly, 

A(x) = x + 3xA(x) + 3xA~(x) + xA3(x), (17) 

so, after setting B(x) = 1 + A(x), (17) becomes 

xB~(x) -- B(x) + 1 = O. 

Using (i0), we see that (18) implies 

(18) 

1 3n 
A(x) = ~ n ( n -  1) xn' (19) 
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SO 

3n (2n a(n) = ( n ) /  + 1). 

Incidentally, this shows that a(n) is also the number of classes of isomorphic 
planted plane trees with 3n + 2 vertices. Diagrams representing t h e  
embeddings of the classes of isomorphic planted plane trees with 4 vertices 
are shown in Figure 4. 

El I 0 I 0 I 0 1 

O I 0 1 0 I 

0 I 0 I 0 I 

FIG. 4. 

0 1 

Embeddings of planted plane trees in the square lattice. 

If  we have D = { 1 , . . . , k +  1}, an element T ~ P ( V , D )  can be 
"embedded" in the plane so that the edges of T are all one unit long and 
parallel to one of the lines which makes an angle of 2rrj/(k + 1) with the 
x-axis f o r j  -~ 0,..., k. The number of embeddings of P*(V, D) in the sense 
of(16) turns out to be (~'~)/(kn -- n + 1)--this is also the number of classes 
of isomorphic (k + 1)-valent planted plane trees with kn + 2 vertices. 

5. Two COMBINATORIAL IDENTITIES 

It was shown in the last section that the number of classes of  
isomorphic (k + 1)-valent planted plane trees with kn + 2 vertices is 
(~) / (kn --  n + 1); however, this set of trees can be enumerated in a second 
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way to obtain the identity 

k n - - n §  = ~  "'" \ n ~ / \ n 3 /  ~ n j  ] '  
(20) 

where the sum extends over all compositions ( / /1  . . . .  , nj) of  n into an unres- 
tricted number of  positive parts with n~ ~-- 1. We prove (20) as follows: 
Let S(n~ .... , nj) denote the set o f  classes of isomorphic (k + 1)-valent 
planted plane trees in which the number  of vertices x such that p(x)  = i + 1 
is k//i for i ~- 1 ..... j. In drawing representative elements of S(n~ ..... //5) 
we note that the kni  vertices in the i-th level can be joined to the kni+l 
vertices in the (i + 1)-st level in exactly (kn~ ~ ways for i = 1 ..... j - -  1. \ni+l~' 
Thus, 

I s(n  ..... n,)l = . . .  (21)  
\ n 2 / \ n a /  I nj }' 

and summing over appropriate compositions of n gives (20). 
It was also shown in Section 4 that  the number of  classes of isomorphic 

planted plane trees with n + 2 vertices is (~n)/(n + 1), but this set can 
also be enumerated in a second way to obtain the identity 

1 + n2- 1)(n2-+-n3- 1) (F/j_ 1 -~-nj- 1), (22) 
(n + 1) ( 2 2 ) =  }-~'( H1 1/2 / /3 " "  / /J  

where the sum extends over all compositions ( n  I . . . . .  n~) of  n § 1 into an 
unrestricted number of  positive parts with nl = 1. To prove (22) let 
P(nl  ..... n~) denote the number of  classes of  isomorphic planted plane 
trees in which there are exactly ni vertices x such that p(x) = i for 
i = 1,...,j. To draw the representative elements of P(ni  ..... nj) note that 
the ni vertices in the i-th level can be joined to the ni+l vertices in the 
(i + 1)-st level in just 

n i -]- hi+ 1 - -  1) 
/ / i + i  

ways. Thus, 

~ ' " ~  17 2 /7 3 / / j  
(23) 

and summing (23) over the appropriate compositions of  n + 1 yields (22). 
All of  the results presented in this paper formed a par t  of the author 's  

thesis [8]; also, a theory for sums having the form of (20) or (22) appears 
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in [10]. Recently, the paper of  Carlitz [2] which deals with Riordan's [16] 
results on chromatic trees stimulated me to use the methods of Section 3 
to obtain a one-to-one correspondence between certain chromatic trees 
and (k q- 1)-valent plane trees; see [11]. 
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