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Abstract 

A software developer has to deal with a lot of challenging requirements such as cost prediction, defect prediction, reliability 
prediction, testing effort prediction, safety prediction, and many more while developing quality software. However, it has been 
found that the most of the software development activity is performed by human beings. This may introduce various faults across 
the development, causing failures in near future. Therefore, prediction of software defect has been one of the major areas of 
concern. A number of the software defect prediction model using software metrics has been proposed in last two decades. 
However, predicting software defect by taking all the software metrics (traditional, object oriented and process) is 
computationally complex. Therefore, an intelligent selection of metrics plays a vital role in improving the software quality. In the 
early phases of the software development life cycle, software metrics are associated with uncertainty and can be assessed in 
linguistic terms. Construction of membership function is very important because the success of a method depends on the 
membership functions used.  Therefore, in this paper, a methodology has been proposed to construct the membership functions of 
software metrics.  
© 2014 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of organizing committee of the International Conference on Information and Communication 
Technologies (ICICT 2014). 
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1. Introduction 

Today, Computer is used in diverse areas such as air traffic control, nuclear reactors, real-time sensor networks, 
industrial process control, hospital health care, home appliances, shopping, auditing, web teaching, personal 
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entertainment, and so on. It is very essential to ensure that the underlying software will perform its intended 
functions correctly. Various historical events illustrate the effect of software failures encountered in and around the 
world1,2. The impact of these software failures can have a broad range of consequences starting from minor 
inconvenience to the loss of human life. Therefore, software defect prediction is unavoidable and it has become the 
most popular area of research nowadays. Many research industries started new projects in this field. 

A number of the software defect prediction model using software metrics has been proposed in last two decades 
3,8. The prediction of defect from these models may be useful for quality software development. Almost all existing 
defect prediction models have considered a considerable number of software metrics such as traditional software 
metrics, object oriented software metrics, process metrics9,10. Catal9 provided a systematic review of various 
software fault prediction models which state that most of the models uses method level metrics. In another review, it 
is explained that how the context of models, independent variables used and the modelling technique affect the 
various prediction accuracy11. Recently, Danijel Radjenovic et al.10 reported that object oriented metrics and process 
metrics are more successful in finding the faults compared to traditional size and complexity metrics.  

Drawbacks of software defect prediction by taking all the software metrics are as follows: 
 Computationaly complex 
 More expensive processing cost 
 There are many less important software metrics  
 Correlations among the software metrics  
 Increase time complexity 

It has been found that early phases software metrics are associated with uncertainty and can be assessed in 
linguistic terms. However, most of the research articles in journals dealing with fuzzy logic appear without using 
membership function. Developing membership functions of numerical data are one fundamental step in the design of 
a problem which is to be solved by fuzzy set theory. Therefore, membership functions play a very vital role in fuzzy 
inference system building. There are many problems that make membership function generation a non-trivial task. 

 Lack of knowledge and interpretation of membership function. 
 How to choose the appropriate fuzzy profile development technique? 

The rest of this paper is organized as follows: In section 2, related work is discussed. In section 3, a method for 
construction of a fuzzy profile of software metrics is presented. In section 4, an example is explained to demonstrate 
the proposed method. In section 5, result of the proposed methodology is discussed. In section 6, finally the 
conclusion and future scope are presented. 

2. Related work 

In the literature, the importance of static code metrics can be observed4,6-8,19. Software developers can select a 
subset of software metrics amongst the existing large set of software metrics. Prior studies show that the right 
selection of metrics plays a vital role in improving the defect prediction12-15.  Right selection of software metric 
could improve the prediction accuracy of the proposed model. For this study, static code metrics16,17 and line count 
metrics have been considered as the simplified metrics set because the defect prediction using static code metrics 
shows higher performance18. 

 The fuzzy set theory provides a way to capture the uncertainty, vagueness and imprecision present in the 
software metrics. Zadeh’s had provided a new way of the thinking about uncertainty19,20. Membership functions play 
a very important role in fuzzy expert system building. Triangular and trapezoidal shapes provide a convenient 
representation of domain expert knowledge and it also simplifies the process of computation22-24,34. Therefore, it is 
needful to clarify that how the membership function is derived. Many research articles have been proposed for 
generating fuzzy if- then rule from numeric data25-29. Hong and Lee28 proposed a method for membership function 
construction which needs predefine membership functions of the input variable. Ping and Chen proposed a new 
method for fuzzy profile generation based on α- cuts of equivalence relations. As the number of input variable 
becomes larger and the variable has a huge amount of values, the complexity of proposed algorithm will increase29. 
Dombi33 had pointed out some common features among these different approaches in every research article: 

 All membership functions are continuous. 
 All memberships functions map an interval [a, b] to [0, 1]. 
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 Membership functions are either monotonically increasing or monotonically decreasing or both increasing 
and decreasing. 

On the basis of above literature surveys and review, it has been found that, most of the previously developed method 
uses predefined membership functions. Fuzzy profile development of software metrics is very important because the 
success of a method depends on the membership functions used. Therefore, in this paper, we propose a general 
learning method for construction of membership function of software metrics. The key contribution of this research 
paper is as follows: 

 Selection of software metrics 
 Fuzzy profile development of selected software metrics 

3. Proposed methodology  

In this section, steps taken in the selection of software metrics and their fuzzy profile development are explained.  

3.1. Selection of Software metrics 

This paper makes use of KC2 data set available from the Promise data repository30. This data set consists of 21 
software metrics. However, from the studies31, it is clear that out of 21 only 13 metrics play an important role in 
defect prediction. These 13 metrics are shown in Table 1.  

 
Table 1. Selected software metrics 
Metrics Category  Metrics Name  

Halstead Metrics 

 

Total no. operator 
Total no. operands  
No. of unique operator   
No. of unique operands 
 

(N1) 
(N2) 
(n1) 
(n2) 

McCabe 
 

Cyclomatic complexity 
Essential complexity 
Design complexity 
 

 

Line of Code 
 
 
 
 
 
Branch Count Metric 

LOC blank 
LOC code and comments 
LOC comments 
Executable LOC 
Total Line of Code 
 
Branch count 

 

3.2. Construction of membership function 

In this section, we proposed a technique for construction of a fuzzy profile of static code software metrics. Let S 
denote a set of N training patterns (F1, F2, …., Fj, …., Fn) and Fj denote a feature. The feature Fj have n values v1j, 
v2j, …., vnj. Fj min and Fj max denote the minimum and maximum value of feature Fj.  When the input feature is 
quantitative value, then followings steps are performed for membership function generation. 

 
 
 
 
 
 
 
 

                                    1 
 
 
 
μ 
 
 
0 

Fjmin                                  ai                                       bi                                         ci                                                       Fjmax 
                                     Fig. 1.  A triangular membership functions 
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Step 1.  Sort the values of feature Fj  in ascending order. 
 
Step 2.   Perform K –means  clustering  algorithm  for  clustering  the  quantitative  values  of  the  feature  Fj  into k  

clusters ( y1, y2, …., yi , …., yk) where,  yi min and yi max  denote the minimum and maximum value of ith 
cluster (yi). 

 
Step 3.   Find out the cluster centers (b1, b2, …, bi,…, bk) of k clusters (y1, y2, …, yi, …, yk). 
 
Step 4.   Determine the membership value of two boundary points every cluster. 
 

Substep 4.1. Find the difference between adjacent data. For each pair vi and vi+1 (i=1, 2, ..., n-1) the 
difference is diffi = vi+1-vi.          

 
Substep 4.2. Find the similarity value between adjacent data of quantitative values of feature Fj. The 

similarity between adjacent data is obtained according to the following formula32.  
 

 

 
                      Where, 

                   Represents the similarity between adjacent data 
                                                     Standard derivation of deffi 
                            Control Parameter deciding the shape of membership functions. 
 

Substep 4.3.   The minimum value of  of ith cluster is chosen as the membership value of two boundary  
point’s  yi min and yi max of ith cluster. 

 
 Step 5.  Determine the left vertex point (ai, 0) by interpolation. 
 

 

 

 

 
 
 
 
Step 6.  Determine the Right vertex point (ci, 0) by interpolation. 

 

 

 

 
 Step 7.  Find the membership value of each quantitative values of feature Fj  
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4. An illustrative example 

In this section we demonstrate the proposed method with an example. The numeric value of Cyclomatic 
complexity software metrics has been considered for explaining the proposed algorithm which is shown in Table 2. 
 
Step 1.  The sorted values of Cyclomatic complexity metrics are shown in Table 2. 
 
Step 2. Let k=3, After applying k- means clustering algorithm we  get three clusters y1, y2, and  y3. Cluster y1  

contain 95 values (1, 1,…., 2.4), Cluster y2 contains 32 values (2.5, 2.5806,….., 4.5429), and cluster y3  
contain  18 values (5.1053, 5.25,……, 11.08) which is shown in Table 2. 

 
Step 3.  Cluster center of y1, y2, and y3 cluster is b1=1.443, b2=3.419, and b3= 6.090 respectively.  
 
Step 4.  In this step, we determine the membership value of two boundary points of every cluster by applying the  

Substep 4.1 to Substep 4.3. In order to get a similarity value between adjacent values of Cyclomatic 
complexity metrics, first of all the difference between adjacent data is calculated e.g. (v2-v1=1-1=0). The 
calculated values of diffi’s are shown in Table 2. 

 
Let constant C=4. The standard deviation is calculated as 0.324. The value of similarity (sm) is calculated using 

the formula 1 as follows: 
  
 

 

 

 

 
        ............................................. 
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Table 2. Selected software metrics 
Sr. No Cyclomatic 

Complexity 
Value (vi) 

diffi's 
(vi+1-vi) 

Standard 
Deviation 
(  

Constant 
(C) 

Value of 
similarity 
(sm) 

Clusters(yi) Cluster 
Centre 
(b1) 

Cluster 
Centre 
(b2) 

Cluster 
Centre 
(b3) 

1 1 0 0.324 4 1 y1 1.443 3.419 6.09 

2 1 0   1 y1    

…………… ………….. …………..  ………….. ………..    

94 2.381 0.019   0.985319 y1    

95 2.4 0.1   0.922733 y1    

96 2.5 0.0806   0.937723 y2    

97 2.5806 0.0861   0.933473 y2    

………… ………… ………..   ………. ………….    

126 4.5 0.0429   0.966852 y2    

127 4.5429 0.5624   0.565449 y2    

128 5.1053 0.1447   0.888194 y3    

129 5.25 0   1 y3    

…………. …………. …………   ………… ………..    

143 7 0.2632   0.796632 y3    

144 7.2632 3.8168   0 y3    

145 11.08     y3    

 
 

It is clear from table 2 that the minimum similarity value of cluster y1, y2, and y3 are 0.922, 0.565, and 0 
respectively. Therefore the membership value of the two boundary points yi min and yi max of yi (i=1, 2, 3) is 0.922, 
0.565, and 0 respectively.  
 
Step 5.   Determine the left vertex point (ai, 0) by interpolation. 

For cluster y1, b1=1.443, y1 min=1, μ(y1 min)=0.922, For cluster y2, b2=3.419, y2 min=2.5, μ(y2 min)=0.565, and   
for cluster y3 , b3=6.09, y3 min=5.105, μ(y 3 min)=0. The value of left vertex point is calculated using formula 2  
and   3 as follows:             

 

 
 

            a1=0 

 

   
 a2=1.443 
 

 

  
 a3=5.11 
                                             
Step 6.   Determine the Right vertex point (ci, 0) by interpolation. 

For cluster y1, b1=1.443, y1 max=2.4, μ(y1 max)=0.922, For cluster y2, b2=3.419, y2 max=4.54, μ(y2 max)=0.565, 
and  for cluster y3 , b3=6.09, y3 max=11.08, μ(y 3 max)=0.The value of left vertex point is calculated using 
formula 4  and 5 as follows:      
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 c1=3.419 

 

 
 c2=5.99 

 

 c3=11.08 
       

Step 7.  In this step, membership value of each quantitative value of feature Fj is calculated using formula 6.  
 

5. Result of  Proposed Methodology  

After the operation of step 1 to 7, the fuzzy profile of Cyclomatic complexity software metrics of KC2 data sets is 
derived as shown in Fig. 2. It is clear that, the range of linguistic variable “Cyclomatic complexity” is 1 to 11.08. 
The metrics are grouped into three category y1, y2, and y3. The right and left vertex of y1, y2, and y3 is (0, 3.419), 
(1.44, 5.99), and (5.11, 11.08) respectively.  

 
 
 
 
 
 
 
 
 
 

Fig. 2.  Cyclomatic complexity membership functions 

6. Conclusions 

In this paper, a new approach is proposed to construct the fuzzy profile of software metrics for numerical data. 
The proposed method is better than Hall et al. algorithm28, because no need to predefine fuzzy profile of input and 
output variables. The proposed algorithm helps researchers in fuzzy profile development of software metrics.  
Therefore, the proposed algorithm reduces the time and effort needed for it. This algorithm significantly helps 
researchers and software practitioners to develop a fuzzy rule based system for early software defect prediction. This 
provides a guideline to the software developer for early identification of cost overruns, schedules mismatch, 
software development process issues, software resource allocation and release decision making. 
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