
Available online at www.sciencedirect.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
ScienceDirect

Nuclear Physics B 887 (2014) 441–455

www.elsevier.com/locate/nuclphysb

Kinetic mixing and symmetry breaking dependent 

interactions of the dark photon

Biswajoy Brahmachari a, Amitava Raychaudhuri b

a Department of Physics, Vidyasagar Evening College, 39 Sankar Ghosh Lane, Kolkata 700006, India
b Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India

Received 12 June 2014; received in revised form 25 August 2014; accepted 31 August 2014

Available online 3 September 2014

Editor: Hong-Jian He

Abstract

We examine spontaneous symmetry breaking of a renormalisable U(1) × U(1) gauge theory coupled 
to fermions when kinetic mixing is present. We do not assume that the kinetic mixing parameter is small. 
A rotation plus scaling is used to remove the mixing and put the gauge kinetic terms in the canonical 
form. Fermion currents are also rotated in a non-orthogonal way by this basis transformation. Through 
suitable redefinitions the interaction is cast into a diagonal form. This framework, where mixing is absent, 
is used for subsequent analysis. The symmetry breaking determines the fermionic current which couples 
to the massless gauge boson. The strength of this coupling as well as the couplings of the massive gauge 
boson are extracted. This formulation is used to consider a gauged model for dark matter by identifying the 
massless gauge boson with the photon and the massive state to its dark counterpart. Matching the coupling 
of the residual symmetry with that of the photon sets a lower bound on the kinetic mixing parameter. 
We present analytical formulae of the couplings of the dark photon in this model and indicate some physics 
consequences.
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1. Introduction

In a non-abelian gauge theory the field tensor Fa
μν is gauge covariant and the kinetic term 

is L = − 1
4FaμνF a

μν , where μ, ν are Lorentz indices and a is a gauge index both of which are 
summed over. This form is determined by Lorentz and gauge invariance. For a U(1) gauge the-
ory, on the other hand, Fμν by itself is gauge invariant. Therefore, if there are several Ui(1)

(i = 1, . . . , n) factors in a theory the possibility of mixed terms in the Lagrangian of the form 
−αijF

iμνF
j
μν (i �= j ), where αij quantify the mixing (in a given basis), opens up. Indeed, such 

kinetic mixing has been noted in the literature [1] and its origin, especially in the context of 
grand unification where two U(1) factors are often encountered, examined [2]. If both the U(1)

are embedded in a grand unified theory (GUT) such as E6 then at the unification scale the mix-
ing will vanish but it could be generated at low energy where the GUT symmetry is not exact, 
by renormalisation group (RG) effects. Phenomenological applications in the context of dark 
matter have considered the kinetic mixing of a “dark sector” U(1) gauge field with the U(1)Y
of the standard model [3]. The detectability of a such a dark photon in a number of experiments 
using different approaches has been examined [4]. The alternative of the kinetic mixing of the 
“dark sector” U(1) with U(1)EM has also been proposed [5]. Possible tests of such a photon–
dark photon mixing scenario are available in the literature [6]. Consequences of mixing between 
several dark sector U(1) factors have been illustrated in [7].

In this work our endeavour has been to take a detailed look at the effect of spontaneous 
symmetry breaking on a theory with two kinetically mixed U(1) factors where the gauge bosons 
also couple to fermions, that is, when interaction terms are present. In the literature such models 
are usually analysed with the assumption that the coefficient of the mixing term, c, is small. 
We have not imposed this restriction.1 On the contrary, we show that depending on the two 
U(1) gauge coupling strengths, g1 and g2, a lower bound on the magnitude of c will exist if 
the coupling of the final unbroken gauge symmetry is to match that of electromagnetism, e. 
In particular, we show that in this case c must satisfy

1

4

∣∣∣∣g2
1 + g2

2

2e2
− 1

∣∣∣∣ ≤ |c| ≤ 1

4
. (1)

In the special case g1 = g2 = e the lower bound on c becomes zero. Also, if (g2
1 + g2

2) > 4e2

then there is no solution.
In general the presence of two U(1) symmetries will entail all particles to carry two distinct 

charges. Consequently there are two fermionic currents. These currents couple exclusively to the 
two gauge bosons of the theory without any cross terms. In this way the starting basis of our 
analysis is defined.

We proceed in the following stages. In the first the mixing term F 1
μνF

2μν is removed by 
a transformation of gauge bosons involving an orthogonal rotation and a scaling.2 The initial 
basis where kinetic mixing terms are present is denoted as the A basis and the second where 
non-diagonal terms are removed as the B basis. Thereafter spontaneous symmetry breaking of 
the type, U1(1) ×U2(1) → U3(1) takes place. This causes a further orthogonal rotation of gauge 
bosons taking the B basis to the mass eigenstates which we term as the X basis. One of the states, 

1 For a discussion of kinetic mixing of a dark photon with the hypercharge U(1)Y without the small mixing restriction 
see, for example, [8].

2 The scaling of the gauge fields is matched by an inverse scaling of the corresponding couplings.
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X1
μ, associated with the unbroken U3(1) remains massless while the other state X2

μ is massive. 
These mass eigenstates form an orthonormal basis. The original A basis where mixing terms 
are present and which is related to this mass basis X by orthogonal and scaling transformations 
cannot then be orthogonal. That leads us to no conflict as we can define charges of fermions and 
scalars consistently in the B basis which is orthogonal.

We evaluate the couplings of the massless and massive gauge boson states to fermions after 
symmetry breaking. The massless eigenstate, X1

μ, couples to one particular combination of the 
two fermion currents. We express this specific combination in terms of the direction of sym-
metry breaking in the U 1(1) × U2(1) space and further determine the coupling strength of the 
massless boson to the current related to the unbroken charge. The coupling of the massive gauge 
boson, X2

μ, is conveniently given in terms of the above current combination and another current 
which is orthogonal to it. We observe that the coupling of X2

μ to the unbroken combination is 
controlled by the kinetic mixing parameter c.

We have indicated how these results on couplings may offer a window on the physics of 
dark matter via a calculable ordinary matter–dark matter interaction strength. We have given 
two examples. In the first, ordinary matter does not have any dark charges and also, as expected, 
the dark matter does not have electric charge. In the second example, an extra U(1) of the dark 
sector is kinetically mixed with normal U(1)EM . Spontaneous symmetry breaking occurs in such 
a manner that the unbroken direction remains along U(1)EM . This means that only the dark U(1)

is broken. In such an event due to the presence of kinetic mixing in the unbroken theory we derive 
relations between gauge couplings in the broken theory. Such relations will not exist if kinetic 
mixing is absent.

Our paper is arranged as follows. In the next section we set up the notation and the transfor-
mation from the A (mixed) to the B (unmixed) basis. Symmetry breaking is considered in the 
following section and the X-basis is defined as the (orthogonal) mass basis for gauge bosons. An-
alytic expressions for the couplings of the gauge boson mass eigenstates to fermions are given 
in the next section. Possible application of these ideas in the context of dark matter are then 
considered. We end with our conclusions.

2. Removing kinetic mixing by rotation and scaling

In general, the kinetic terms for a gauge theory consisting of two U(1) groups can be writ-
ten as3

Lgauge = −1

4
F 1

μνF
1μν − 1

4
F 2

μνF
2μν − 2cF 1

μνF
2μν. (2)

Here the field strengths are expressed in terms of gauge fields by the usual formula

F r
μν = ∂μAr

ν − ∂νA
r
μ, where r = 1,2, (3)

and c is a real kinetic mixing parameter. Gauge invariance cannot fix the magnitude of c. In fact,
c has different values for different basis choices. Once we are able to fix the basis A1

μ, A2
μ using 

a set of physical arguments, then c becomes a meaningful parameter. The Lagrangian for the 
interaction of fermions with gauge bosons is

Lint = g1j
μ
1 A1

μ + g2j
μ
2 A2

μ = (
j

μ
1 j

μ
2

)(
g1 0
0 g2

)(
A1

μ

A2
μ

)
. (4)

3 The theory may have other non-abelian gauge symmetries which we suppress.
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Above, jμ
r (r = 1, 2), is the fermionic current due to the presence of U(1)r charge

jμ
r = q

f
r ψ̄γ μψ. (5)

gr is the corresponding coupling strength. We see that the initial basis, called A basis, is fixed by 
demanding that couplings of gauge bosons to fermions is diagonal.

Through an orthogonal rotation by π/4 in the A1
μ–A2

μ sector4 followed by scaling, by a factor 
which can always be chosen to be real, one can remove the kinetic mixing and bring the gauge 
Lagrangian in Eq. (2) to the canonical form. After these transformations one has

Lgauge = −1

4
G1

μνG
1μν − 1

4
G2

μνG
2μν. (6)

Here the redefined field strength tensors are

Gr
μν = ∂μBr

ν − ∂νB
r
μ, where r = 1,2. (7)

The new basis is defined by the transformation equation

(
A1

μ

A2
μ

)
= 1

2
√

2

(√
1
λ1

−
√

1
λ2√

1
λ1

√
1
λ2

)(
B1

μ

B2
μ

)
. (8)

In this new basis, here termed the B basis, there is no kinetic mixing, but we have lost the 
diagonal form of interaction with fermions. In the transformation matrix given in Eq. (8), the 
parameters λ1, λ2 are given by

λ1,2 = 1

4
± c. (9)

We observe that λ1, λ2 are the eigenvalues of a real symmetric matrix formed by the coefficients 
of terms in Eq. (2). If the scaling transformations in Eq. (8) are real then λ1 and λ2 must be 
positive, which results in the following inequalities5:

|c| < 1

4
, 0 < λ1,2 <

1

2
, subject to λ1 + λ2 = 1

2
. (10)

Under the transformation c ↔ −c we get λ1 ↔ λ2. So, we can keep c > 0 and λ1 > λ2 in this 
analysis with the understanding that the results for negative c can be obtained by the prescription 
noted above.

It is to be borne in mind that Eq. (8) is not an orthogonal transformation so if the B basis is 
orthogonal6 the A basis is not. We will define the U(1) × U(1) charges in the B basis which 
is orthonormal keeping in mind that in this basis off-diagonal interactions with fermions are 
present. However, the mixing parameter c, defined in the A basis can still be constrained as we 
discuss now.

4 This rotation angle is determined by the equality of the coefficients of the two diagonal terms, F i
μνF iμν (i = 1, 2), 

in Eq. (2) and is independent of the magnitude of c. In the absence of c the rotation through any angle would yield an 
equivalent basis.

5 We show later that physical processes are well defined in the c → 1/4 limit.
6 It is shown in the following that the B basis is related to the physical mass eigenstates by an orthogonal transforma-

tion.



B. Brahmachari, A. Raychaudhuri / Nuclear Physics B 887 (2014) 441–455 445
Let us rewrite Eq. (4) as

Lint = 1

2
√

2

(
j

μ
1 j

μ
2

)( g1√
λ1

−g1√
λ2

g2√
λ1

g2√
λ2

)(
B1

μ

B2
μ

)
. (11)

It is amply evident now that these are two equivalent formulations of the same phenomenon. 
The first description corresponds to Eq. (2) and Eq. (4) where there is kinetic mixing among the 
U(1) gauge field strengths (i.e., c �= 0) and the currents couple only to the corresponding gauge 
bosons, i.e., jμ

r to Ar
μ for r = 1, 2. In the second picture given by Eq. (6) and Eq. (11) there is 

no kinetic mixing among gauge boson fields, B1,2
μ , but the currents jμ

1,2 couple to both gauge 
bosons. It is to be noted that in Eq. (11) a change of c only affects the scaling within the matrix 
and in the limit c → 0 we have

Lint = 1√
2

(
j

μ
1 j

μ
2

)(
g1 −g1
g2 g2

)(
B1

μ

B2
μ

)
. (12)

From Eq. (8) we can easily see that in this limit B1
μ and B2

μ have equal admixtures of A1
μ and A2

μ. 
This result is reminiscent of degenerate perturbation theory.

An alternate but useful way of rewriting interactions in Eq. (11) is to express it in terms of a 
redefined set of currents Jμ

1,2 which couple diagonally to the gauge bosons B1,2
μ . One then has

Lint = (
J

μ
1 J

μ
2

)(
g̃1 0
0 g̃2

)(
B1

μ

B2
μ

)
. (13)

In this process, currents involving fermions are scaled and rotated now, as,(
J

μ
1

J
μ
2

)
=

(
cosφ sinφ

− cosφ sinφ

)(
j

μ
1

j
μ
2

)
, (14)

which is a non-orthogonal transformation, and

cosφ = g1√
g2

1 + g2
2

, sinφ = g2√
g2

1 + g2
2

,

g̃1 =
√

g2
1 + g2

2

2
√

2λ1
, g̃2 =

√
g2

1 + g2
2

2
√

2λ2
. (15)

For c > 0 we have λ1 > λ2 which leads to g̃2 > g̃1.
In the special case g1 = g2 ≡ g, which we consider in an example later, the relations in 

Eq. (15) become

cosφ = sinφ = 1√
2
, g̃1 = g

2
√

λ1
, g̃2 = g

2
√

λ2
. (16)

It is to be noted that though Eq. (13) bears a strong resemblance to Eq. (4) a major difference 
is that the currents jμ and Jμ are related by a non-orthogonal rotation.

3. Spontaneous symmetry breaking

At this point we are in a position to consider symmetry breaking of the U1(1) ×U2(1) theory. 
For a scalar field Φ with U1,2(1) charges qs

1,2 the covariant derivative is

DμΦ = [
∂μ − ig1q

sA
μ − ig2q

sA
μ]

Φ = [
∂μ − ig̃1Q

sB
μ − ig̃2Q

sB
μ]

Φ. (17)
1 1 2 2 1 1 2 2
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In our convention, we have assigned charges Qi in the B basis and the qi charges are in the A
basis. They are related through Eq. (14). Thus(

Q1
Q2

)
=

(
cosφ sinφ

− cosφ sinφ

)(
q1
q2

)
. (18)

We can now consider spontaneous breaking of the U1(1) × U2(1) symmetry by the scalar field 
developing a vacuum expectation value 〈Φ〉 = v/

√
2 �= 0. The gauge boson mass matrix in the 

B1,2 basis is

M2
gauge = v2

(
(g̃1Q

s
1)

2 (g̃2Q
s
2)(g̃1Q

s
1)

(g̃2Q
s
2)(g̃1Q

s
1) (g̃2Q

s
2)

2

)
. (19)

The mass eigenstates are denoted by X1
μ, X2

μ. One eigenstate has a zero eigenvalue while the 
other one is massive.7 Because X1

μ and X2
μ are eigenvectors of a real symmetric matrix with 

distinct eigenvalues, they are orthogonal. Furthermore, we know that the diagonalising matrix is 
an orthogonal matrix.(

X1
μ

X2
μ

)
=

(
cos θ − sin θ

sin θ cos θ

)(
B1

μ

B2
μ

)
. (20)

The mixing angle is

cos θ = 1

N

[
g̃2Q

s
2

]
, sin θ = 1

N

[
g̃1Q

s
1

]
, (21)

where the normalisation factor is given by,

N2 = (
g̃2Q

s
2

)2 + (
g̃1Q

s
1

)2
. (22)

The two eigenvalues of the mass matrix are,

m2
1 = 0, m2

2 = N2v2. (23)

Interactions of the mass eigenstates X1
μ and X2

μ can now be written neatly. From Eq. (13) one has

Lint = (
J

μ
1 J

μ
2

)(
g̃1 0
0 g̃2

)(
cos θ sin θ

− sin θ cos θ

)(
X1

μ

X2
μ

)
. (24)

When U(1) × U(1) symmetry is spontaneously broken to a residual U(1), there is an associated 
conserved charge which is a linear combination of Q1 and Q2. This conserved charge can be 
written in a normalised form as

Q = α1Q1 + α2Q2
(
α2

1 + α2
2 = 1

)
, (25)

such that the scalar field Φ which acquires a vacuum expectation value triggering the symmetry 
breaking satisfies8

α1Q
s
1 + α2Q

s
2 = 0. (26)

7 The complex scalar field Φ provides the longitudinal mode for X2
μ and also results in a real scalar boson. The latter 

can couple to the SM Higgs boson through quartic terms in the scalar potential leading to a ‘Higgs portal’ for the dark 
matter [9].

8 This direction is independent of whether we choose the Aμ
1,2 basis or the Bμ

1,2 basis. Here we have used the Bμ
1,2

basis.
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This implies (up to an overall sign)

α1 = Qs
2√

Qs2
1 + Qs2

2

, α2 = − Qs
1√

Qs2
1 + Qs2

2

. (27)

One can also define another charge, which is not conserved, and is orthogonal in direction to Q:

Q′ = −α2Q1 + α1Q2. (28)

The non-conservation of Q′ is due to the fact that the corresponding U(1) symmetry is broken.
One can use Eq. (27) to express the mass of X2

μ in terms of α1,2. From Eqs. (15), (22), and 
(23) one has

m2
2 = (g2

1 + g2
2)(Qs2

1 + Qs2
2 )

8

(
α2

1

λ2
+ α2

2

λ1

)
v2. (29)

4. Fermion interactions

Recall that we had originally defined fermionic currents in Eq. (5) in the presence of kinetic 
mixing. These currents had a diagonal interaction with gauge bosons in the A basis. A combi-
nation of jμ

1,2 was identified in Eq. (14) to form Jμ
1,2 which had a diagonal form of interaction 

in the B basis. These currents will now be further mixed during spontaneous symmetry break-
ing. We can express fermionic interactions of the gauge boson mass eigenstates in terms of the 
currents defined through the charges Qf and Q′ f as

Ĵ
μ
1 = Qf ψ̄γ μψ = (

J
μ
1 α1 + J

μ
2 α2

)
, Ĵ

μ
2 = Q′ f ψ̄γ μψ = (−J

μ
1 α2 + J

μ
2 α1

)
. (30)

It is convenient to write the interaction Lagrangian of massive and massless gauge bosons as

Lint =
∑

i,j=1,2

gij Ĵ
μ
i Xj

μ. (31)

Here X1
μ corresponds to the surviving U(1) and it couples only to Ĵ μ

1 . On the contrary X2
μ

couples to both Ĵ μ
1 as well as the orthogonal combination, namely, Ĵ μ

2 . To determine the coupling 
strengths gij we reexpress Eq. (24) as

Lint = [{
g̃1J

μ
1 cos θ − g̃2J

μ
2 sin θ

}
X1

μ + {
g̃1J

μ
1 sin θ + g̃2J

μ
2 cos θ

}
X2

μ

]
. (32)

In particular, using Eqs. (21) and (27) the interaction of the massless gauge boson X1
μ is

LX1 = g̃1g̃2√
g̃2

1α2
2 + g̃2

2α2
1

(
J

μ
1 α1 + J

μ
2 α2

)
X1

μ = g11Ĵ
μ
1 X1

μ. (33)

We can now read off the coupling strengths g11 and g21 from Eq. (33). We see that

g11 = g̃1g̃2√
g̃2

1α2
2 + g̃2

2α2
1

, g21 = 0. (34)

By a rearrangement of terms, one obtains the more familiar expression

1

g2
= α2

1

g̃2
+ α2

2

g̃2
. (35)
11 1 2
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An interesting consequence of Eq. (35) is that

g̃1 ≤ g11 ≤ g̃2. (36)

As X1
μ corresponds to a surviving U(1) symmetry, it couples only to Ĵ 1

μ. The interaction of X2
μ

can be expressed as

LX2 = 1√
g̃2

1α2
2 + g̃2

2α2
1

[−α1α2
(
g̃2

1 − g̃2
2

)
Ĵ

μ
1 + (

α2
2 g̃2

1 + α2
1 g̃2

2

)
Ĵ

μ
2

]
X2

μ, (37)

whence, we can again read off the couplings of the heavy gauge boson X2
μ with the two cur-

rents, viz.

g22 =
√

g̃2
1α2

2 + g̃2
2α2

1 =
√

g2
1 + g2

2

2
√

2

√(
α2

2

λ1
+ α2

1

λ2

)
, (38)

g12 = − α1α2(g̃
2
1 − g̃2

2)√
g̃2

1α2
2 + g̃2

2α2
1

= −α1α2

√
g2

1 + g2
2

2
√

2

(
λ2 − λ1√

(λ1λ2)(α
2
1λ1 + α2

2λ2)

)
. (39)

Here we emphasise that X2
μ couples to both Ĵ μ

1 as well as Ĵ μ
2 because there is no symmetry 

which can force it to couple to Ĵ μ
2 only.

5. Applications

Even though the existence of dark matter was known for a long time [10], in fact since the 
1930s, recent satellite-based experiments such as COBE and WMAP have brought the issue 
to the foreground [11]. Analysis of temperature anisotropies of Cosmic Microwave Background 
(CMB) data found in the PLANCK experiment has shown that in the universe 26.8% of all matter 
and energy is dark matter [12]. Dark matter interacts with the visible sector by gravitational 
interactions. Other possible interactions of the dark sector with the visible one has to be tightly 
controlled in order for it to qualify as dark matter. Any such interaction, if it exists at all, cannot be 
stronger than the weak interactions, i.e., the candidate dark matter could be a weakly interacting 
massive particle (WIMP) [13]. Here we examine the possibility of gauge kinetic mixing between 
the ordinary photon and a dark counterpart being at the origin of such an interaction. This can 
also account for the fact that halo properties of galaxies, studied in cosmological simulations, 
hint towards dark matter self-interactions [14,15].

The idea of a “dark photon” kinetically mixed with the ordinary photon has been invoked 
before in theories of dark matter [5,6]. In these theories the dark matter (DM) coupling to the dark 
photon is of comparable strength as the coupling of the ordinary photon to standard model (SM) 
matter. Though the dark matter does not couple to the ordinary photon, the SM matter develops 
a tiny coupling to the dark photon through the small kinetic mixing. This leads to an effective 
interaction between the dark and SM sectors whose strength is controlled by kinetic mixing. 
In the subsections below we examine how our calculations can be useful for such considerations 
without the assumption of a small kinetic mixing. In other words in the following discussions the 
value of the mixing parameter is not necessarily small.
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5.1. Couplings and charges of dark photons

In a realistic theory the residual unbroken U(1) group has to be identified with U(1)EM , 
i.e., the massless gauge boson, X1

μ, has to be the photon. The immediate consequence of this 
identification is that g11 is related with the fine structure constant by

g11 = e = √
4παEM. (40)

As g11 is now expressed in terms of e, we can rewrite Eq. (35) as,

α2
1

(
e2

g̃2
1

)
+ α2

2

(
e2

g̃2
2

)
= 1. (41)

This is a key equation, arising from the identification of X1
μ with the photon, which relates 

symmetry breaking parameters (α1,2) with the kinetic mixing strength c and gauge couplings 
g̃1,2 of X1,2

μ which are mass basis states. Using Eq. (15) along with (9) one can rewrite it as:(
g2

1 + g2
2

) = 2e2[1 + 4c
(
α2

1 − α2
2

)]
. (42)

Eq. (41) results in a lower bound on the kinetic mixing parameter c. To see this, using Eq. (15)
we express the couplings g̃1 and g̃2 in units of e as

g̃i/e =
√

g2
1 + g2

2

2
√

2e

1√
λi

=
√

ξ

λi

(i = 1,2). (43)

Here we have defined a new quantity ξ :

ξ = 1

8

(g2
1 + g2

2)

e2
. (44)

In terms of ξ , Eq. (41) takes the shape of

λ1α
2
1 + λ2α

2
2 = ξ. (45)

We may recall that λ1,2 are determined by the kinetic mixing parameter c in Eq. (9). Using 
α2

1 + α2
2 = 1 one can solve for α1,2,

α1 =
√

c + (ξ − 1
4 )

2c
, α2 =

√
c − (ξ − 1

4 )

2c
. (46)

Now since 0 ≤ α2
1 ≤ 1 and 0 ≤ α2

2 ≤ 1 we arrive at

|c| ≥ |ξ − 1/4|. (47)

Using Eq. (44) one immediately arrives at the inequality (1) stated in the Introduction. We see 
that c can vanish only for ξ = 1/4, i.e., (g2

1 + g2
2) = 2e2. In general, when this condition will not 

be met, we obtain a lower bound on c depending on the value of ξ .
From Eqs. (38) and (39) the two other couplings g12 and g22 can be expressed in this nota-

tion as

g12 = −eα1α2

(√
λ2

λ1
−

√
λ1

λ2

)
, g22 = e

ξ√
λ1λ2

. (48)
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Fig. 1. The couplings g12 (left panel) and g22 (right panel) of the dark photon Xμ
2 as a function of the strength of kinetic 

mixing c when g11 = e and g21 = 0. In both panels curves for several choices of ξ (indicated in the legend) are shown. 
The allowed ranges are |c| ≤ 1

4 and 0 ≤ ξ ≤ 1
2 . However, as ξ increases a more limited range of c remains consistent. 

(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

As is evident from the above discussion both g12 and g22 are determined once c and ξ are 
fixed. Choosing several values of ξ within the permitted range, we display in Fig. 1 the depen-
dence of g22 and g12 on c. We have taken the central value of ξ = 1/4 and also other values 
equidistantly at higher and lower sides of this central value. We have presented the results for 
five values of ξ = 1/12 (red solid), 1/6 (green dotted), 1/4 (blue dot-dashed), 1/3 (magenta dot-
ted), and 5/12 (blue solid). It is seen that for large c ∼ 1/4 the two couplings are of comparable 
size. At the small c end g12 tends to zero while g22 tends to a non-zero limiting value.

Both couplings diverge as c tends towards 1/4. This is a reflection of the factor 
√

λ1λ2 in the 
denominator in the expressions for g12 and g22 in Eq. (48) since from Eq. (9):

λ1λ2 = 1

16
− c2. (49)

Nonetheless physical processes remain finite in the c → 1/4 limit as the mass of Xμ
2 also di-

verges. Using Eqs. (29) and (45) one has:

m2
2 = e2ξ2(Qs2

1 + Qs2
2

) 1

λ1λ2
v2. (50)

For any δ between 0 and 1/4 when ξ changes from 1/4 −δ to 1/4 +δ α1 and α2 are exchanged, 
as can be seen from Eq. (46). Because g12 depends on the product α1α2, the curves for g12 for 
these cases overlap. For a given value of c, larger g22 corresponds to a higher ξ . Since α1,2 ≤ 1, 
we see from Eq. (46) that for larger values of ξ the kinetic mixing strength c can take values in a 
restricted range. Here we have considered only positive values of c since, as noted, for negative c

one has α1 interchanged with α2 whereas λ1 and λ2 are exchanged. This will take g12 to −g12, 
while g22 will be unaffected.

We observe that once α1 is fixed by c and ξ , the electric charge of a fermion, Q, is given 
by Eq. (25) in terms of the U(1) × U(1) charges Q1,2. The orthogonal charge combination, Q′, 
is similarly defined in Eq. (28).

In the next two subsections we present two illustrative models. In the first one U(1)sm ×
U(1)dm breaks to U(1)EM . Here suffixes sm and dm indicate visible and dark sectors respectively 
whereas the suffix EM denotes electromagnetism. In the second example U(1)EM × U(1)dm
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Fig. 2. The interactions due to Xμ
2 exchange: between SM particles and dark matter (left) and between SM particles 

themselves (right).

breaks to U(1)EM . In the first example gauge bosons of U(1)sm and U(1)dm mix during the 
spontaneous symmetry breaking process, whereas in the second case the mixing between photon 
and the dark gauge boson is solely due to the kinetic mixing.

5.2. Example 1. A toy model for dark matter

In this model there are two sectors, a visible sector denoted by U(1)sm and a dark sector de-
noted by U(1)dm. Even though this model is not realistic as it stands, key features of our analysis 
can be demonstrated by this simplified version. Symmetry breaking is along the following line,

U(1)sm × U(1)dm −→ U(1)EM (51)

To apply this formulation of kinetic mixing to models of dark matter we consider two classes 
of particles specified in terms of the nature of their charges Q and Q′. Of these, Q corresponds 
to the current Ĵ μ

1 which is associated with U(1)EM . It is a conserved charge unlike Q′ which 
corresponds to the orthogonal broken direction. The photon (Xμ

1 ) couples through only Q while 
the dark photon (Xμ

2 ) couples to both Q – coupling g12 – as well as Q′ – coupling g22.
There are two classes of particles, namely, (a) Dark matter which is decoupled from the photon 

by having Qdm = 0, and (b) Normal matter which has Q′ sm = 0. By choice, we have the photon 
coupling only to the SM sector. It will be of our interest to discuss the coupling of SM with dark 
matter through the dark photon, Xμ

2 , mediated interactions. This is shown in the left panel of 
Fig. 2. For momentum transfers small compared to mX2 from Eqs. (48) the probability amplitude 
will be

Msm–dm ∝ g12Q
smg22Q

′ dm

m2
X2

= −
[
e2QsmQ′ dmα1α2

(√
λ2

λ1
−

√
λ1

λ2

)
ξ√
λ1λ2

]
1

m2
X2

, (52)

where Qsm and Q′ dm are respectively the electric charge of the SM particle and the dark charge 
of the DM particle.

One can readily extract the dependence of the above amplitude on c. One finds

Msm–dm ∝
√

16c2 − (4ξ − 1)2. (53)

By a suitable choice of ξ near the limiting values

ξ → 1/4 ± c, (54)

the right-hand-side of Eq. (53) can be made arbitrarily small. Hence, a small and controllable 
interaction cross section between the standard and dark sectors is a natural consequence of the 
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model. On the other hand, one may be tempted to think that for large values of the mixing param-
eter |c| ∼ 1/4 this interaction can be enhanced. However, this will also modify cross sections of 
purely standard processes such as e−e− → e−e− and is very tightly constrained. For example, 
the Xμ

2 coupling to SM fermions will result in interactions within the SM sector as depicted in 
the right panel of Fig. 2. This leads to the probability amplitude

Msm–sm ∝ (g12Q
sm)2

m2
X2

=
[
eQsmα1α2

(√
λ2

λ1
−

√
λ1

λ2

)]2 1

m2
X2

. (55)

The dependence of the above amplitude on c is

Msm–sm ∝ (
16c2 − (4ξ − 1)2). (56)

Needless to say, one can similarly calculate scattering within the dark matter sector via 
X

μ
2 -exchange.

5.3. Example 2. Realistic U(1)dm mixing with QED

A simple and realistic model which appears in the literature of kinetic mixing is one in which 
the photon mixes with a U(1)dm gauge field. Because the other gauge boson is not yet detected 
experimentally, U(1)dm symmetry is broken and the dark photon is massive. Usually the mixing 
term is considered as a perturbation and its effects examined.

In our approach, which is exact, one must identify the remaining unbroken symmetry as QED 
which is also one of the two initial U(1) symmetries. Thus, one must demand Xμ

1 ≡ A
μ
1 . From 

Eqs. (18), and (25) we can write

Q = q1(α1 − α2) cosφ + q2(α1 + α2) sinφ. (57)

The requirement that Q = q1 can be achieved by

Either

(
α1 = −α2 = 1√

2
and φ = π

4

)
or (φ = 0 and α2 = 0). (58)

Of these, the second option is untenable as it implies g2 = 0 as a consequence of Eq. (15).
This result identifies electric charge as the coupling of one of the factor groups that existed 

before symmetry breaking. From Eq. (15) it implies

g1 = g2 ≡ g, g̃1 = g

2
√

λ1
, g̃2 = g

2
√

λ2
. (59)

Thus, in the A basis where gauge bosons have diagonal couplings with fermions, gauge coupling 
must be identical for the two U(1) factors. To the best of our knowledge this is a new result. 
Then from Eqs. (34), (38) and (39),

g11 = g ≡ e, (60)

g22 = e
1√

1 − 16c2
, (61)

g12 = −e
4c√

1 − 16c2
. (62)

Using Eq. (44) we get ξ = 1/4 for which as shown earlier |c| ≥ 0.
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Two noteworthy features here are that g22, the coupling within the dark matter sector mediated 
by X2

μ, is stronger than normal electromagnetism. Also dark matter couples to ordinary matter 
via the coupling g12 which goes to zero as the kinetic mixing parameter c → 0.

Before moving on we would like to draw attention to another mode of handling kinetic mixing 
that is often used. It is common in the literature to define the mixing in the basis in which the 
gauge bosons are already the mass eigenstates, one of which is massless while the other has a 
non-zero mass typically through a Stückelberg mechanism. In such scenarios the removal of the 
kinetic mixing is enabled through the transformation(

A1
μ

A2
μ

)
=

(
1 −4c√

1−16c2

0 1√
1−16c2

)(
X1

μ

X2
μ

)
. (63)

Note that this leads precisely to the couplings in Eqs. (62) for X1
μ and X2

μ.

6. Summary and conclusion

When a theory has two (or more) U(1) symmetries then the possibility of gauge kinetic mixing 
opens up. We have examined kinetic mixing in a generic model with two U(1) factors where 
the symmetry is spontaneously broken as U1(1) × U2(1) → U3(1). These models are usually 
considered in the literature using various approaches that commonly assume a small mixing 
parameter, c, and study physical effects by varying it. In this paper in contrast we have focused
on c without restricting it to be small. We show that in certain cases the range of c is bounded.

Here, as a first step the kinetic mixing term is removed by an orthogonal rotation and a scaling. 
It is convenient to use the charges, Q1,2, of fermions and scalars in this new orthonormal basis 
to discuss the spontaneous symmetry breaking. The symmetry breaking identifies a charge, Q =
α1Q1 +α2Q2, corresponding to the unbroken gauge symmetry. The interactions are then readily 
expressed in terms of Q and an orthogonal charge Q′. While the massless gauge boson couples 
only to Q (with coupling g11) the heavy gauge boson has a coupling to Q′ of strength g22 and 
also to Q given by g12. We derive analytical formulae for these couplings and show that both 
g12 and g22 are controlled by the mixing parameter c. An important result, which can be seen 
from Fig. 1 is the following. To be able to identify the unbroken U(1) coupling with that of 
electromagnetism for a fixed ξ = (g2

1 + g2
2)/8e2 there is a lower bound on the magnitude of c

given in Eq. (47). The bound is quoted in a basis where couplings of fermions to gauge bosons 
is diagonal.

As noted, a nonzero g12 is responsible for interactions between the dark and ordinary sectors. 
The coupling g22 leads to interactions within the dark sector which have been suggested as an 
ingredient for the explanation of the halo structure of satellite galaxies [16]. We note that g22 need 
not be a small coupling unlike g12, which is controlled by kinetic mixing. Such self-interaction 
is also needed to resolve conflicts between observation and simulation at the galactic scale and 
smaller [14]. Self-interaction in the dark sector is also needed to explain signals obtained in the 
DAMA experiment [15].

We have illustrated this theory by two examples related to dark matter. In both cases we have 
identified the unbroken U(1) as the electromagnetic group U(1)EM . In the first example, ordinary 
matter has only the Q charge, which is now the electric charge, whereas dark matter has only the 
Q′ charge. The heavy gauge boson is identified with the dark photon and it couples to visible as 
well as dark matter. We have shown the manner in which the coupling of the dark photon to the 
ordinary matter depends on the mixing parameter c. In the limit of no kinetic mixing the dark 
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photon does not interact with the ordinary matter at all (except by gravity) and therefore cannot 
be searched easily in scattering experiments. In the second example we have examined the case 
where U(1)EM is kinetically mixed with another U(1). This situation can occur only when the 
two gauge groups have same gauge couplings initially. In this model also we have given analytical 
formulae for the coupling strengths of heavy and massless gauge bosons. In both cases we have 
derived analytical expressions for the dark matter self-coupling strengths.

The dark photon has been considered here as an intermediary in interactions linking dark mat-
ter with ordinary matter. There is also the possibility that a dark photon may be produced on-shell 
in physical processes, e.g., in dark matter annihilation. In the literature it has been proposed to 
look for comparatively light dark photon signals using e+e− colliders or electron beam dump 
experiments where an emitted dark photon could decay to a pair of lighter dark matter [17]. 
If the dark photon coupling to dark matter is enhanced to large values by an appropriate choice 
of the mixing parameter c, as indicated in Section 5.3, decays to dark matter will become more 
prominent. This will permit the dark photon to be detected through these proposed tests.

If the dark photon is relatively light, having mass around 10 MeV, then it can decay to e+e−
pairs only, i.e., with branching ratio unity, with a lifetime which goes as 1/c2. Detection of 
electron–positron pairs with invariant mass matching the dark photon mass would be a clear 
signal. If the mass is such that μ+μ− decays are kinematically possible then that too could be an 
alternate detection channel. As formulated, the dark photon coupling to all SM particles should 
be proportional to the respective electric charges. So, the branching ratio to muons and electrons 
will differ simply due to the phase space considerations. Electrons and muons of such energy can 
be observed in neutrino detectors, e.g., SuperKamiokande. If the dark photons are produced in 
the annihilation of much heavier dark matter particles then one can expect them to be relativistic. 
In such an event, the decay products will be collimated in the forward direction. A magnetic 
field will help in separating the decay products and also determine their energy–momentum. 
A sufficiently high-energy charged particle, e.g., at an accelerator, will emit dark photons by 
bremsstrahlung which, needless to say, will be suppressed compared to similar γ emission by 
a factor of (O(c2)). There are therefore several avenues for testing the scenario of kinetic mixing 
discussed in this paper.
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