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Genome-wide association studies (GWASs) have shown a large number of genetic variants to be associated with
complex diseases. The identification of the causal variant within an associated locus can sometimes be difficult
because of the linkage disequilibrium between the associated variants and becausemost GWAS loci containmul-
tiple genes, or no genes at all. Expression quantitative trait locus (eQTL) mapping is a method used to determine
the effects of genetic variants on gene expression levels. eQTLmapping studies have enabled the prioritization of
genetic variants within GWAS loci, and have shown that trait-associated single nucleotide polymorphisms
(SNPs) often function in a tissue- or cell type-specific manner, sometimes having downstream effects on
completely different chromosomes. Furthermore, recent RNA-sequencing (RNA-seq) studies have shown that
a large repertoire of transcripts is available in cells, which are actively regulated by (trait-associated) variants.
Future eQTL mapping studies will focus on broadening the range of available tissues and cell types, in order to
determine the key tissues and cell types involved in complex traits. Finally, large meta-analyses will be able to
pinpoint the causal variants within the trait-associated loci and determine their downstream effects in greater
detail. This article is part of a Special Issue entitled: From Genome to Function.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In the last few years, a large number of genome-wide association
studies (GWASs) have been performed in attempts to uncover the
genetic basis ofmany different complex diseases and traits. GWASs typ-
ically ascertain at least 300,000 common single nucleotide polymor-
phisms (SNPs) throughout the genome, and each of these variant
associations with the disease is tested. For many traits, this approach
has turned out to be highly successful; disease and trait associations
for over 12,000 SNPs from over 1700 publications have now been re-
ported (NHGRI Catalog of Published Genome-Wide Association studies)
[1]. However, it soon became clear that the identified genetic variants
typically explain only a very modest proportion of the total heritability
of these traits.

One plausible explanation was that these GWASs had only investi-
gated common SNPs (those with a minor allele frequency (MAF)
above 5%). As such, many rare variants had not been ascertained, and
it was therefore assumed that the common SNPs identified for a disease
were actually tagging rarer variants (MAF b 5%)with a larger effect size.
To test this hypothesis, fine-mapping studies were conducted, made
possible with the availability of the next generation sequencing (NGS)
methods: by sequencing candidate genes, whole exomes or genomes
nome to Function.
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it is possible to identify rare variants [2] and their association with
disease became testable through thedevelopment of dedicated oligonu-
cleotide arrays that specifically target these rare variants (e.g. the
ImmunoChip and MetaboChip). Although this helped to fine-map loci
for various diseases, few rare variants have so far been identified that
have a large effect size.

These results, along with the observation that many smaller-effect
loci became genome-wide significant upon increasing the sample
sizes used in many GWASs, suggested that the genetic architecture for
many traits could well be highly polygenic. This was further supported
by the availability of polygenic models in 2009 [3,4]: these methods
estimate the total proportion of variation that can be explained by all
genotyped common SNPs, without requiring that any of the SNPs indi-
vidually shows significant association (after correction formultiple test-
ing). Initial results on adult height (which has an estimated heritability
of 80% and is a phenotype that can be highly accurately quantified [4])
revealed that common genetic variants captured approximately 45% of
the total variation in height, whereas the 180 genome-wide significant
loci that had been found (when studying 180,000 samples) explained
less than 10% of the variation in height. These results suggested that
hundreds, or maybe even thousands, of genetic variants could well
play a causal role in many traits.

These observations have proven highly problematic in trying
to move from the discovery of these variants through GWAS to their
biological interpretation for various reasons: given that many of the
disease-causing variants are likely to be common, have small effect-
sizes, and are often in near-perfect linkage disequilibrium (LD) with
nearby SNPs. It is difficult to unequivocally identify the causal variant
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for each locus through traditional fine-mapping methods. This also
strongly impairs the ability to accurately pinpoint the causal gene(s)
in each locus. Additionally, the mechanisms and function of each of
these trait-associated variants are largely unknown, since many of the
trait-associated SNPs are not actually changing the protein structure
(i.e. are non-synonymous or nonsensemutations), but are often located
in non-coding regions of the genome. This suggests that these variants
have a regulatory function. A compounding problem is that often tens
of disease-associated variants have now been identified for many dis-
eases, making it infeasible to knock-down, knock-out or over-express
each of the genes within these loci.

In order to identify which genes are regulated by genetic variation,
Jansen and Nap introduced the concept of ‘genetical genomics’ [5] in
2001: by correlating the genetic variants with intermediate molecular
quantitative traits (such as gene expression levels, protein levels or
methylation levels), it is possible to identify quantitative trait loci
(QTLs). The first product of the genome, mRNA levels, can be quantified
easily for thousands of genes at once, by either using microarrays or by
conducting RNA-sequencing. It soon became clear that gene expression
levels are strongly heritable: for all human genes the average heritabil-
ity was estimated to be around 0.25 [6–8]. Soon, expression QTL (eQTL)
mapping was conducted in humans [9–11] (andmodel organisms such
as Arabidopsis thaliana [12], Caenorhabditis elegans [13], mice and rats
[14]), resulting in the identification of many genetic variants that affect
gene expression levels.
2. eQTLs as a means to functionally annotate trait associated SNPs

eQTLs can be divided into those that have local effects (cis-eQTLs),
where the genetic variant is located near the affected gene (e.g. within
1 megabase), and those with distant effects (trans-eQTLs), where the ge-
netic variant is located further away from the affected gene (e.g. more
than 5 megabases away, or on a completely different chromosome;
Fig. 1).
Fig. 1. eQTLs can be either local effects (cis-eQTLs), or distant, indirect effects (trans-
eQTLs).
2.1. Cis-eQTLs

Since cis-eQTLs often have a large effect size [15], relatively modest
sample sizes permit the detection of cis-eQTLs for thousands of genes
[6,16–20]. Cis-eQTL effects appear to be mostly additive effects [21],
and cis-eQTL SNPs are often located close to the transcription start site
(TSS) of genes or within gene bodies [22–24]. As the distance between
the eQTL SNP and the TSS decreases, the eQTL effect size generally in-
creases. Cis-eQTL SNPs that are located close to the TSS may alter tran-
scription factor binding sites or other cis-regulatory elements (CREs),
which in turn may affect transcription. The observation that cis-eQTL
SNPs tend to be overlapping with activating CREs, such as DNAse-I hy-
persensitive sites (DHSs) and transcription factor binding sites, and
tend to be depleted for repressive CREs (such as CTCF binding sites)
strengthened this hypothesis [25]. Finally, trait-associated SNPs
have been shown to be enriched for cis-eQTL effects [20,26–28], which
further indicates that trait-associated SNPs are often regulatory. Cis-
eQTLs can aid in pinpointing the causal variant within a locus: after a
GWAS on red blood cell traits [29], cis-eQTL mapping was performed
in whole blood samples, which identified a cis-eQTL in the SMIM1
locus on chromosome 1. Subsequent functional annotation using a
gene expression co-regulation network suggested SMIM1was the caus-
al gene within the locus. A follow-up exome sequencing study and
knock down experiment in zebrafish revealed that SMIM1 underlies
the Vel blood group (Fig. 2A) [30].

Although cis-eQTLs, such as the SMIM1 example, can provide valu-
able information about the likely causal gene for trait-associated SNPs,
finding the causal gene underneath GWAS peaks is not always straight-
forward: LD might be so extensive that many candidate genes remain,
or the regulatory regions that are influenced by the genetic variants
may actually be located megabases away from the transcription start
site of the causal gene. This has recently been observed for intronic
variants within the FTO gene that have been found to be associated
with type 2 diabetes and obesity [31,32]. Surprisingly, these variants
do not show a cis-eQTL effect on FTO, but they do affect the gene expres-
sion levels of IRX3, which is locatedmegabases away from the FTO locus
[33]. Knocking-out IRX3 in mice results in a 30% weight decrease in
mice, confirming the importance of IRX3 in regulating weight. These
results illustrate that the genes that are located in very close proximity
to the associated variant are not always the causal gene and also that
variants associated with GWAS may have functional consequences on
genes located megabases away, which raises the question whether
such effects should be considered trans-eQTLs.

2.2. Trans-eQTLs

In contrast to cis-eQTL effects, the effect sizes of trans-eQTLs are gen-
erally small [9,34]. As a consequence, the sample sizes required to detect
such effects are large, and as a result, the number of reported trans-
eQTLs has remained small [9,17,19,35–37] in comparison to the number
of reported cis-eQTLs. However, initial trans-eQTL studies have shown
that trans-eQTL analysis provides valuable insight into disease patho-
genesis. For example,multiple trans-eQTL geneswere previously identi-
fied that are affected by a single SNP that is associated with type 2
diabetes and high-density lipoprotein levels. SNPs associated with
these trans-genes also showed genetic association with various meta-
bolic phenotypes [37], indicating that trans-eQTL mapping is able to
identify coherent networks of genes that are likely to be causally in-
volved in disease pathogenesis. Similarly, trans-eQTL geneswere identi-
fied that are affected by a SNP in the IRF7 locus, associated with the
auto-immune disease type 1 diabetes. These downstream trans-genes
showed an association with viral response [36]. To detect more trans-
eQTL effects, sample-sizes were increased by performing meta-
analyses [19,20]: a meta-analysis of 1469 whole blood samples showed
that HLA SNPs were 10-fold enriched for showing trans-eQTL effects.
For a few different complex traits it was also shown that SNPs



Fig. 2. Functional genomic studies translateGWASfindings into clear biological insight. (A) A recentGWASconducted on red blood cell traits identified a locus on chromosome1 associated
with mean hemoglobin concentration. Through subsequent cis-eQTL mapping and gene function prediction (using a compendium of 80,000 microarrays), SMIM1 was identified as the
possibly causal gene in the locus on chromosome 1 that was predicted to be involved in hemoglobin metabolism. Subsequent exome-sequencing revealed this gene underlies the rare
Vel blood group, and knock-down of Vel1 in zebrafish resulted in a reduced number of red blood cells. (B) Through trans-eQTL mapping in healthy individuals the downstream effects
for the systemic lupus erythematosis (SLE) SNP rs4917014 were identified. These effects are identical to the key hallmarks of SLE: decreased complement 1q levels and an increased
type 1 interferon response. (C) SNPs that increase risk for the same disease ‘converge’ on the same downstream genes: two unlinked type 1 diabetes SNPs affect exactly the same down-
stream genes in trans (STAT1 and GBP4, both involved in the interferon-γ response).
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independently associated with these traits affected the expression of
exactly the same downstream genes in trans, creating functional con-
verging pathways that are relevant for the traits associated with these
SNPs [19]. A larger meta-analysis involving 5311 whole blood samples
further increased the number of reported trans-eQTL genes to 430 and
showed that trans-eQTLs can be informative of disease pathogenesis:
in two previous cross-sectional studies, several interferon response
genes had been identified that show strongly dysregulated expression
in the blood of systemic lupus erythematosus (SLE) patients (Fig. 2B).
The trans-eQTL study identified a single SNP, associatedwith SLE that af-
fected exactly these genes, indicating that dysregulation of these inter-
feron response genes is already detectable when a healthy individual
is carrying SLE susceptibility alleles [20]. Similar to the meta-analysis
in 1469 individuals, this larger meta-analysis provided information on
the convergence of functional pathways, including converging effects
originating from two type 1 diabetes associated variants, affecting the
well-known type 1 diabetes gene STAT1 (Fig. 2C).

2.3. Cell type and tissue specificity

Gene expression levels often vary considerably between different
tissues and cell types [38]. As such, eQTL mapping studies have now
been performed in various cell-types and tissues, such as fibroblasts,
liver [17,39–41], lung [42], brain [16], muscle [41], adipose tissue [41],
skin [43], various purified blood cell types (e.g. lymphoblastoid
cell-lines (LCLs) [10,40,43–45], B-cells [35], monocytes [35], and T-
cells [24]), and whole blood [19,20,46]. Early comparisons between
cell types showed that the number of shared eQTL effects varies widely
with the cell types or tissues under study. A comparison of skin and LCL
eQTLs showed that 70% of cis-eQTLs found in LCLs could also be detected
in skin [43], while a comparison of fibroblasts, T-cells and B-cells
showed an overlap of up to 12% of the detected cis-eQTLs in any combi-
nation of two of these three cell types [24]. However, these studies had
overestimated the cell-type specificity because of their small sample
size and the statistical methods employed to make these comparisons.
Amore recent comparison of B-cells andmonocytes in over 280 individ-
uals showed a higher overlap: 21.8% of the detected cis-eQTLs and 7% of
the detected trans-eQTLs were shared between both cell types [35],
which suggests that genetic regulation in trans is more cell-type-
specific than cis regulation. Only a small proportion of the identified
eQTL effects in this study could be replicated in whole blood (even
though blood is partly comprised of monocytes and B-cells), indicating
that eQTL mapping in a tissue that is composed of many cell types
may reduce the power to find cell-type-specific eQTL effects.

Another recent study, comparing five tissues (subcutaneous and vis-
ceral adipose tissue, muscle, liver, and whole blood), described how
28.7% of the cis-eQTLs show differences across tissues [41]. Of these,
33% had eQTL effects unique to one of the tissues, 47.9% showed eQTLs
originating from different SNPs in different tissues, and 4.4% unexpect-
edly showed a different direction of effect in one or more tissues, some-
thing that has recently been observed in other studies as well [35,47].
This study also showed cis-eQTL effects for 46.4% of the tested trait-
associated SNPs, and indicated that these SNPs are enriched for tissue-
dependent effects, compared to frequency matched SNPs. eQTLs that
are shared across tissues and cell types have larger effect sizes, and
their associated SNPs are located closer to the TSS [25,41] than tissue-
and cell-type specific eQTLs. On average, 29% of the cis-eQTL loci also ap-
pear to have multiple independent SNPs affecting the same transcript
[25]. Overall, these studies show that the genetic regulation of gene ex-
pression is complex and differs across cell-types and tissues, especially
for disease-associated genetic variants.

2.4. Context specificity

Apart from differences in cell types, a large fraction of gene expres-
sion variation is due to the effect of environmental factors, begging
the question whether some of these environmental factors might in-
duce eQTLs. Several environmental factors have now been assessed in
the context of eQTLs, which include response to radiation [48], geogra-
phy [49], different treatments for disease [50,51], response to influenza
vaccination [52], and infections with tuberculosis [53] and malaria [54].
However, the sample sizes for these studies have generally been rather
small (up to 194 individuals), due to the difficulties and costs involved
in acquiring samples that are relevant for the specific environmental
factor. More powerful studies have been published as well: a study in
monocytes from 1490 independent individuals showed 651 cis-eQTLs

image of Fig.�2
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that have interactions with either age, smoking status, gender, blood
pressure and lipid traits [55]. However, the early stage of the studies
of context-specific eQTLs has sometimes led to discrepant results
being observed: for example, a gender-stratified analysis in 379 LCLs
suggested that between 12% and 15% of the autosomal eQTLs function
in a sex-biasedmanner [56], and a larger study in peripheral blood sam-
ples from 1240 individuals showed interactions for 623 eQTLs with age
[57]. Although the large fraction of gender mediated effects in the LCLs
may be caused by (epi-)genomic alterations caused by the Epstein
Barr virus immortalization of these cell-lines [58], a subsequent, but
much larger study of 5254 peripheral blood samples showed only 14
and 10 eQTLs interacting with gender and age, respectively [59]. One
potential explanation for these discrepancies could be the statistical
challenges, associated with performing large-scale gene environment
interaction analysis: in order to get robust significance estimates of in-
teraction effects, heteroscedasticity-consistent standard errors should
be used [60] (e.g. available through the R package ‘Sandwich’).

Still, context-specific eQTL studies hold great promise. A recent
study in monocytes, comparing the effect sizes of eQTLs before and
after stimulation with interferon-γ and bacterial lipopolysaccharides
(LPS; which was measured at two different time-points), reported
that 51.4% of the eQTLs detected before stimulationwere not detectable
after stimulation, sometimes in a time-dependent manner [61]. Addi-
tionally, a study assessing the effect of the stimulation of dendritic
cells with LPS, influenza and interferon-β, showed 121 eQTLs associated
with changes in gene expression due to these stimuli (response-eQTLs;
cis-reQTLs) [62]. Like cell-type specific effects, stimulus dependent
eQTLs appeared to have a larger distance between the SNP and the tran-
script compared to effects shared with unstimulated cells [61], and can
affect specific transcription factor binding sites [62]. Both studies
showed that trait-associated SNPs can have stimulus dependent effects,
which provides further insight in the downstream effects of disease as-
sociated SNPs [61,62].

2.5. RNA-sequencing

So far, most eQTL mapping studies have measured gene expression
levels using microarray technology. With the advent of NGS, the
sequencing of RNA molecules (RNA-seq) has also become feasible.
RNA-seq has a much larger dynamic range than microarray based
gene expression quantification, and as such, a smaller amount of RNA
molecules is required to accurately quantify gene expression levels
[63,64]. The initial eQTL mapping studies performed using RNA se-
quencing data on LCLs have shown that the gene expression measure-
ments between micro-arrays and RNA sequencing data generally
correlated well (with correlations ranging between 0.6 and 0.781)
[65]. As such, cis-eQTLs detected using RNA-seq replicated well when
using microarray data, with up to 70% of the cis-eQTLs detected on mi-
croarrays being replicated in the Nigerian HapMap population [65],
and up to 81% being replicated in a Central European HapMap popula-
tion [66]. RNA-seq allows for a higher resolution of gene expression
quantification than microarrays, since RNA-seq is not limited to a
predefined set of oligonucleotide probes. Consequently, the RNA-seq
studies on LCLs showed that cis-eQTL effects are not limited to annotat-
ed genes: in the Nigerian HapMap population, for example, the expres-
sion of 4031 unannotated transcripts was reported [65]. The higher
resolution of RNA-seq also allows for better estimation of the correla-
tion structure between exons and can thus be used to impute missing
gene expression data for exons or transcripts [66], and it allows for
better mapping of cis-eQTLs within exons. Comparing RNA-seq with
an earlier microarray-based study on the same samples, RNA-seq-
based eQTL mapping was better able to detect exon cis-eQTLs, most of
whichwere located in geneswith a high level of transcription,which in-
dicates that RNA-seq is less prone to saturation of the gene expression
signal, and that splicing complexity is not properly picked up by
microarray-based studies [66]. Apart from exon-based cis-eQTLs, the
relative ratios of different transcript isoforms can also beused as a quan-
titative trait in RNA-seq-based studies, in order to detect splicing-QTLs
(sQTLs): 187 and 110 significant sQTLs were detected in the Nigerian
and Central European HapMap populations, respectively [65,66], 639
genes were detected with significant sQTLs in a more recent LCL based
study of 462 individuals [67], and 2851 sQTLs were detected in a
whole blood study of 922 individuals [68], which indicates SNPs also
regulate gene expression through altering different transcript isoforms.
sQTLs appear to originate from different regulatory variants than eQTLs,
since sQTL SNPs show less enrichment near the 5′ end of genes
compared to cis-eQTLs [68], but more enrichment in splice sites, 3′ un-
translated regions (3′ UTR) and promoters [67]. Additionally, 57% of
the eQTL genes that also showed an sQTL had an independent effect
when conditioning for sQTLs, further indicating the independence
between eQTL and sQTL regulation [67]. Overall, these studies show
that genetic variation has a smaller influence on splicing than on overall
gene expression. Finally, different RNA sequencing strategies can be
used to answer different biological questions. For example, DeepSAGE,
a sequencing strategy that uses primer sequences that specifically target
the 3′ ends of genes, is more suitable for detecting gene expression
variation near the 3′ ends than conventional RNA-seq, which, due to
its random hexamer library design, shows larger fragmentation near
the ends of genes [69]. A study applying the DeepSAGEmethod showed
12 poly-adenylationQTLs that transcriptmore often and have an altered
3′UTR length, but also showed that different RNA-seq strategies can be
successfully meta-analyzed [69].

2.6. Allele-specific expression

Becausemicroarrays are only able tomeasure gene expression levels
as an average over all alleles in diploid organisms, local eQTL effects
were previously annotated as being cis-eQTL effects, while the cis anno-
tation conventionally implies that the gene expression variation origi-
nates from the same allele as the genetic variant (i.e. allelic imbalance
of transcription, or allele specific expression (ASE)). The traditional
way to measure ASE was through RT-PCR, precluding genome-wide
assessment of ASE. By assessing the number of reads in heterozygote in-
dividuals, and by inferring haplotypes from reference datasets, RNA-seq
is now able to determine ASE on a large scale: out of the 929 eQTLs from
the NigerianHapMap population, 222 had informative SNPs in exons, of
which 88% showed ASE [65], while a more recent RNA-seq study found
that 73.8% of the genes with ASE also showed an eQTL, most often orig-
inating from a high frequency variant, although 21% of the detected ASE
instances did not overlapwith any local eQTL [68]. ASEwithout an over-
lapping eQTL signal suggests that the ASE variants are rare and can
thus be applied to detect local eQTL effects originating from rare vari-
ants [67,68]. A hypothesis that was further strengthened by the obser-
vation of larger regions of homozygosity surrounding ASE SNPs, when
the ASE signal is shared by fewer than four individuals [66]. When
eQTLs andASE overlap, the number of reads in theASE signal is correlat-
ed with the effect size of the eQTL [66], with stronger effect sizes for
lower frequency genetic variants [68]. The mechanisms behind ASE
are still unclear, as one study suggested that ASE is mediated by CREs
[66], while another study suggested that ASE is genetic rather than epi-
genetic, or that itmay bemediated by transcript structure variation [67].
ASE can also be assessed as a quantitative trait, in order tomap aseQTLs:
641 SNPs with an eQTL also showed an aseQTL, some of which were
located more than 1 megabase away from the TSS [68].

3. Future perspectives

GWASs continue to identify ever smaller effects from common vari-
ants and larger effect sizes from rare variants, using sample sizes that
now exceed 100,000 individuals for various traits. eQTL studies have
been successful in identifying cis-eQTL effects for many of the trait-
associated variants and, to a lesser extent, in identifying downstream



1900 H.-J. Westra, L. Franke / Biochimica et Biophysica Acta 1842 (2014) 1896–1902
effects through trans-eQTL mapping. However, although eQTL study
sizes are increasing as well, sample sizes are still limited to detect
eQTL effects for rare variants, although ASE analysis can help in this re-
spect. Additionally, because the range of available eQTL studies on dif-
ferent cell types and tissues is limited, the question about the effects
of trait-associated SNPs in different tissues remains largely unanswered.
Future eQTL studies should therefore focus on three different levels in
order to find the downstream effects of trait-associated variants
(Fig. 3): 1) they should focus on increasing the sample size by meta-
analysis to identify small-effect cis- and trans-eQTLs in bulk tissues
(such as blood), 2) they should then determine in which specific
cell types these eQTLs show larger effects, and 3) should further zoom
in using single-cell RNA sequencing to identify the specific context
(e.g. when a blood cell has been activated by a viral trigger) in which
these eQTLs show particularly strong effects.
3.1. Larger meta-analyses

Current eQTL studies have identified cis-eQTL effects for themajority
of genes. However, it is likely that trans-eQTL effects are even more nu-
merous, although their effects are likely to be very small: of the 430
trans-eQTLs detected in the largest eQTL meta-analysis to date, more
than 70% explained less than 1% of the gene expression variation [20].
Thus, in order to find more trans-eQTLs with even smaller effect size,
eQTL studies should be scaled up, similar to what was done for GWAS.
Such meta-analyses will also permit us to more accurately fine-map
existing eQTL loci, will provide a higher-resolution overview of the
downstream effects of both common and rare SNPs, and will permit
causal inference. Additionally, because the cumulative sample size for
a single tissue or cell type may not approach an adequate meta-
analysis sample size to find small-effect eQTLs, several methods have
now been developed that allow meta-analysis over different tissues
simultaneously [70,71]. These large-scale meta-analyses will likely
generate important biological insights into the downstream effects of
trait-associated variants.

An important issue that remains ismultiple testing.When performing
trans-eQTL analyses, billions of statistical tests need to be conducted.
However, with ever increasing knowledge on the genes that are involved
in specific pathways, it will also become possible to leverage external
biological knowledge on these pathways to improve the statistical
power. By averaging the expression levels of multiple genes that work
in a specific pathway, wewill improve signal-to-noise ratios and thereby
Fig. 3. Future eQTL mapping studies will be focused on: 1) increasing the sample size
through meta-analysis, in order to find more small-effect size eQTLs, 2) increasing the
array of available tissues and cell types, in order to find cell-type-specific effects that are
larger, and 3) single cell sequencing in order to identify context specific eQTLs that have
large effect sizes.
will need to perform fewer statistical tests. While such pathway-based
eQTL methods have already been proposed [72], few studies have used
them so far in a human setting [73].

Finally, another important issue is to have access to the large
amounts of eQTL datasets that have been produced so far. For instance,
humanwhole blood eQTL data is now available for over 20,000 samples.
Joint re-analysis of this data will likely yield important biological insight
into the downstreameffects ofmany trait-associated variants. Addition-
ally, it is possible to use such whole blood eQTL datasets to make infer-
ences about the specific cell-types in which eQTLs manifest themselves
(by using the abundance of such cell types as an interaction term and by
performing meta-analysis across different datasets). However, while
gene expression data is generally available (through databases such as
the Gene Expression Omnibus, ArrayExpress, and more recently the
European Nucleotide Archive), genotype data is available for only a lim-
ited number of eQTL datasets. This impedes progress on integrative ap-
proaches that can fully exploit such eQTL datasets to increase statistical
power to identify smaller, but potentially very meaningful biological
downstream eQTL effects. Initiatives such as dbGAP are therefore laud-
able, because they provide ways of sharing raw genotype data in a con-
trolled and secure manner [74]. This might help to convince more
researchers tomake their data available to others (although researchers
need to ensure that they have ethical approval and informed consent
from their patients that raw genotype data can be exchanged). When
(legal) hurdles preclude such sharing, alternative strategies, such as
performing eQTL meta-analyses [20] (where no raw genotype data,
but only summary statistics are being exchanged), might provide
ways to share such data for gaining novel biological insight.

3.2. Larger tissue- and cell-type specific datasets

Although current studies have shown that numerous trait-
associated variants act in a cell-type-specific way, it is likely that many
cell-type-specific eQTLs have so far been missed. Additionally, current
studies often lack the sample size that is necessary to determine the
cell type specificity of trans-eQTL effects. As such, the question about
what is the causal tissue or cell type for many diseases remains unan-
swered. To provide insight into this issue, large-scale studies are cur-
rently underway to assess many different tissues or cell types from
the same individuals. The Genotype-Tissue Expression project (GTEx)
[75], for example, aims to sample a range of tissues from a maximum
of 900 samples. Gene expression is quantified using RNA-seq, which
will enable the GTEx project to answer questions about the tissue spec-
ificity of cis- and trans-eQTLs, butwill also provide insight into transcript
isoform differences, ASE and differential exon usage between tissues,
and their regulation by genetic variants. One of the aims of the GTEx
project is to sample similar tissues to those used in the ENCODE project,
which will add information about the tissue-specific epigenetic signals
underlying the regulation of gene expression caused by genetic variants
(e.g. DNASe-I hypersensitivity, various histone modifications, etc.) to
the eQTL results.While the GTEx project focuses on tissues, the ImmVar
project (http://www.immvar.org/) is focusing on a number of purified
immunological cell types from approximately 600 individuals; it
will be extended by an additional 28 cell types for approximately 60
individuals.

3.3. Single-cell eQTL analysis

So far, nearly every QTL study has been conducted while interrogat-
ing multiple cells per sample at once. Since many eQTL papers have
moved from studying whole tissues to individual cell types, the next
logical step would be to study individual cells. This is particularly inter-
esting, because it will permit the identification of eQTLs that could well
depend on the specific context in which a cell operates. Some effects of
genetic variants on gene expression levels might manifest themselves
only within those cells that have just been activated by a certain

http://www.immvar.org/
image of Fig.�3
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external stimulus (e.g. viral, bacterial, or any other relevant trigger). If
disease-associated SNPs only work in such a context, it could well be
that such effects are not detectable when studying cells in bulk. The
first paper to study this used single-cell RNA-seq and concentrated on
1440 single cells from 15 individuals [76]. They observed that many
eQTLs are only detectable when studying single cell, and these would
have been missed when the expression is averaged over multiple cells.
Another attractive property of single-cell RNA-seq is that it might
address a long-standing question in biology: how many different cell
types are there for a given tissue (e.g. blood)? This can be addressed
by performing single-cell RNA-seq and generating expression profiles
on thousands of individual cells, with subsequent comparison of the ex-
pression profiles (e.g. through principal component analysis). Although
many challenges still exist on how to generate and analyze single-cell
RNA seq data reliably and robustly [77,78], this technology will likely
mature quickly, leading to much lower prices and permitting many
research groups to initiate single-cell eQTL studies in the near future.

3.4. Post-eQTL functional genomics

eQTL studies have now provided functional interpretation of many
trait-associated SNPs and, with the various strategies outlined here
and that are now being taken, future eQTL studies will likely yield sub-
stantial biological insights intomany diseases. To gain an even better in-
sight into the pathogenesis of these diseases, future integrative
approaches that also ascertain the effect of trait-associated variants on
different molecular levels (e.g. epigenetic levels, effects on protein
levels, metabolite levels, or on the composition of the microbiome),
and their possible interactions, will likely provide detailed mechanistic
insights into the pathogenesis of many diseases.
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