Note

The minimum degree distance of graphs of given order and size

Orest Bucicovschi, Sebastian M. Cioabă*
Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112, United States

ARTICLE INFO

Article history:

Received 24 January 2008
Received in revised form 13 March 2008
Accepted 28 March 2008
Available online 8 May 2008

Keywords:

Degree
Distance
Wiener index

Abstract

In this note, we study the degree distance of a graph which is a degree analogue of the Wiener index. Given n and e, we determine the minimum degree distance of a connected graph of order n and size e.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Our graph notation is standard (see [11]). Let $\mathcal{g}_{n, e}$ denote the family of connected graphs on n vertices and e edges and $g_{n}=\cup_{e} g_{n, e}$. For $G \in g_{n, e}$, let $d(x, y)$ denote the distance between vertices x and y and let $d(x)$ denote the degree of x. Define $D(x)=\sum_{y \in V(G)} d(x, y)$ and

$$
\begin{aligned}
D^{\prime}(G) & =\sum_{x \in V(G)} d(x) D(x)=\sum_{x \in V(G)} d(x) \sum_{y \in V(G)} d(x, y) \\
& =\frac{1}{2} \sum_{x, y \in V(G)} d(x, y)(d(x)+d(y)) .
\end{aligned}
$$

The parameter $D^{\prime}(G)$ is called the degree distance of G and it was introduced by Dobrynin and Kochetova [4] and Gutman [6] as a weighted version of the Wiener index $D(G)=\sum_{x, y \in V(G)} d(x, y)$. Actually, when G is a tree on n vertices, these parameters are closely related as $D^{\prime}(G)=2 D(G)-n(n-1)$ in this case (see [6]).

In [9], Ioan Tomescu confirmed a conjecture of Dobrynin and Kochetova from [4] and proved the following result.
Theorem 1.1. For $n \geq 2$,

$$
\begin{equation*}
\min _{G \in g_{n}} D^{\prime}(G)=3 n^{2}-7 n+4 \tag{1}
\end{equation*}
$$

Also, $K_{1, n-1}$ is the only connected graph G on n vertices such that $D^{\prime}(G)=3 n^{2}-7 n+4$.
Recently, Alexandru Ioan Tomescu [10] determined the minimum value of $D^{\prime}(G)$ when $G \in \mathscr{G}_{n, e}$ and $e \in\{n, n+1\}$. In this note, we give a short proof of Theorem 1.1 and we extend the results of [10] for all n and e such that $1 \leq n-1 \leq e$.

For k a real number, let $\Sigma_{k}(G)$ denote the sum of the k-th powers of the degrees of G. This parameter has been studied in various contexts in [2,3,5,7]. We denote by $\sigma_{2}(n, e)$ the maximum value of $\Sigma_{2}(G)$ when G is a graph (not necessarily connected) with n vertices and e edges. Also, let $\Sigma_{2}(n, e)=\max _{G \in g_{n, e}} \Sigma_{2}(G)$. We discuss the connection between these two parameters in Section 3. This connection is already apparent in the next theorem which is our main result.

[^0]Theorem 1.2. If $1 \leq n-1 \leq e$ and G is a connected graph with n vertices and e edges, then

$$
D^{\prime}(G) \geq 4(n-1) e-\Sigma_{2}(n, e)=4(n-2) e-n^{2}+5 n-4-\sigma_{2}(n-1, e-n+1) .
$$

Equality happens if and only if G is a join of K_{1} and a graph G^{\prime} on $n-1$ vertices and $e-n+1$ edges with $\Sigma_{2}\left(G^{\prime}\right)=\sigma_{2}(n-1, e-n+1)$.
In Section 2, we give a short proof of Theorem 1.1. In Section 3, we present the proof of Theorem 1.2.

2. A short proof of Theorem 1.1

In this section we give a short proof of equality (1).
Proof. For $x \in V(G)$, we have that

$$
\begin{aligned}
D(x) & =\sum_{y \in V(G)} d(x, y)=\sum_{y: d(x, y)=1} d(x, y)+\sum_{y: d(x, y) \geq 2} d(x, y) \\
& \geq 1 \cdot d(x)+2 \cdot(n-d(x)-1)=2 n-2-d(x) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
D^{\prime}(G) & =\sum_{x \in V(G)} d(x) D(x) \geq \sum_{x \in V(G)} d(x)(2 n-2-d(x)) \\
& =\sum_{x \in V(G)} d(x)(2 n-3)-\sum_{x \in V(G)} d(x)(d(x)-1) \\
& =2 e(2 n-3)-\sum_{x \in V(G)} d(x)(d(x)-1) \\
& \geq 2 e(2 n-3)-\sum_{x \in V(G)}(n-1)(d(x)-1) \\
& =2 e(2 n-3)-(n-1)(2 e-n)=2 e(n-2)+(n-1) n .
\end{aligned}
$$

Since $e \geq n-1$, this proves inequality (1). Equality happens if and only if G has $n-1$ edges (which means G is a tree) and $d(x)=n-1$ for each vertex x with $d(x)>1$. This is equivalent to G being isomorphic to $K_{1, n-1}$ which finishes the proof.

3. Proof of Theorem 1.2

In this section, we show how to find the minimum $D^{\prime}(G)$ over all connected graphs G with n vertices and e edges.
Proof. From the proof of the previous theorem, we obtain that for any vertex $x \in V(G)$,

$$
D^{\prime}(x) \geq(2 n-2) d(x)-d^{2}(x)
$$

Summing up over all $x \in V(G)$, we get

$$
\begin{aligned}
D^{\prime}(G) & =\sum_{x \in V(G)} D^{\prime}(x) \geq \sum_{x \in V(G)}\left((2 n-2) d(x)-d^{2}(x)\right) \\
& =4(n-1) e-\Sigma_{2}(G)
\end{aligned}
$$

Since $\Sigma_{2}(G) \leq \Sigma_{2}(n, e)$, the first inequality follows immediately. Equality happens if and only the diameter of G is 2 and $\Sigma_{2}(G)=\Sigma_{2}(n, e)$.

We claim that if G is a connected graph on n vertices and e edges such that $\Sigma_{2}(G)=\Sigma_{2}(n, e)$, then G contains a vertex of degree $n-1$.

Assume otherwise and let u be a vertex of G of maximum degree with $d(u)<n-1$. This implies that there exist vertices v and w such that $u v, v w \in E(G)$, but $u w \notin E(G)$. Consider the graph H obtained from G by adding the edge $u w$ and removing the edge $v w$. It is easy to see that $H \in \mathscr{G}_{n, e}$. Also, we have that

$$
\begin{aligned}
\Sigma_{2}(H)-\Sigma_{2}(G) & =(d(u)+1)^{2}+(d(v)-1)^{2}-d^{2}(u)-d^{2}(v) \\
& =2(d(u)-d(v))+2 \geq 2
\end{aligned}
$$

This inequality contradicts the fact that $\Sigma_{2}(G)=\Sigma_{2}(n, e)$ and proves our claim.
Thus, the equality condition is equivalent to G being a join of K_{1} and a graph G^{\prime} on $n-1$ vertices and $e-n+1$ edges and $\Sigma_{2}(G)=\Sigma_{2}(n, e)$. Note that the graph G^{\prime} is not necessarily connected.

A simple calculation yields that

$$
\begin{aligned}
\Sigma_{2}(G) & =(n-1)^{2}+\sum_{x \in V\left(G^{\prime}\right)} d^{2}(x) \\
& =(n-1)^{2}+\sum_{x \in V\left(G^{\prime}\right)}\left((d(x)-1)^{2}+2(d(x)-1)+1\right) \\
& =(n-1)^{2}+\sum_{x \in V\left(G^{\prime}\right)}(d(x)-1)^{2}+2 \sum_{x \in V\left(G^{\prime}\right)} d(x)-(n-1) \\
& =(n-1)^{2}+\Sigma_{2}\left(G^{\prime}\right)+2(2 e-n+1)-(n-1) \\
& =n^{2}-5 n+4+4 e+\Sigma_{2}\left(G^{\prime}\right) .
\end{aligned}
$$

This implies that $\Sigma_{2}\left(G^{\prime}\right)=\sigma_{2}(n-1, e-n+1)$ as well as that

$$
\begin{equation*}
\Sigma_{2}(n, e)=n^{2}-5 n+4+4 e+\sigma_{2}(n-1, e-n+1) \tag{2}
\end{equation*}
$$

The proof of Theorem 1.1 is now complete.
When $e=n$ or $e=n+1$, we obtain the main results of [10].
Given n and $e \geq n-1$, we have seen that determining $\Sigma_{2}(n, e)$ is equivalent to finding $\sigma_{2}(n-1, e-n+1)$. Ahlswede and Katona [1] have determined $\sigma_{2}(n-1, e-n+1)$ and the extremal graphs attaining this bound. This problem has a long history and its solution is nontrivial (see [1,8] for more details). For the sake of completeness, we outline the result of Ahlswede and Katona below.

For a given order p and size $q \leq\binom{ p}{2}$, the quasi-complete graph C_{p}^{q} is the graph with vertex set $\{1, \ldots, p\}$ and q edges defined as follows: i is adjacent to j for any $i, j \in\{1, \ldots, a\}$ and $a+1$ is adjacent to $1, \ldots, b$ where a and b are the unique integers such that $q=\binom{a}{2}+b$ and $0 \leq b<a$. The quasi star S_{p}^{q} is the complement of the $C_{p}^{\binom{n}{2}-q}$.

In [1], Ahlswede and Katona showed that

$$
\begin{aligned}
\sigma_{2}(p, q) & =\max \left(\Sigma_{2}\left(C_{p}^{q}\right), \Sigma_{2}\left(S_{p}^{q}\right)\right) \\
& =\max \left(2 q(a-1)+b(b+1),(n(n-1)-2 q)(a-1)+b(b+1)+4 q(n-1)-(n-1)^{2} n\right)
\end{aligned}
$$

for any p and q with $q \leq\binom{ p}{2}$. They also proved that

$$
\sigma_{2}(p, q)= \begin{cases}\Sigma_{2}\left(S_{p}^{q}\right), & \text { if } 0 \leq q \leq \frac{\binom{p}{2}}{2}-p \\ \Sigma_{2}\left(C_{p}^{q}\right), & \text { if } \frac{\binom{p}{2}}{2}+p \leq q \leq\binom{ p}{2}\end{cases}
$$

Ahlswede and Katona also showed that in the range $\frac{\binom{p}{2}}{2}-p<q<\frac{\binom{p}{2}}{2}+p$, it is more difficult to determine which one of C_{p}^{q} or S_{p}^{q} attains the maximum. More precisely, they proved that there are infinitely many p 's for which $\sigma_{2}(p, q)=\Sigma_{2}\left(S_{p}^{q}\right)$ for all $q<\frac{1}{2}\binom{p}{2}$ and $\sigma_{2}(p, q)=\Sigma_{2}\left(C_{p}^{q}\right)$ for all $q>\frac{1}{2}\binom{p}{2}$. Also, there are infinitely many p 's for which the previous statement is not true (see [1], Lemma 8).

In [9], Ioan Tomescu disproved a conjecture from [4] and showed that

$$
\begin{equation*}
\frac{n^{4}}{27}+O\left(n^{3}\right) \leq \max _{G \in \mathscr{q}_{n}} D^{\prime}(G) \leq \frac{2 n^{4}}{27}+O\left(n^{3}\right) \tag{3}
\end{equation*}
$$

Tomescu conjectured that the lower bound is the exact value of $\max _{G \in g_{n}} D^{\prime}(G)$. This conjecture seems difficult at present time.

Acknowledgments

The authors dedicate this note to Professor Ioan Tomescu on the occasion of his 65-th birthday. The authors thank the referee for her or his comments. The second author's research is partially supported by an NSERC postdoctoral fellowship.

References

[1] R. Ahlswede, G.O.H. Katona, Graphs with maximal number of adjacent pairs of edges, Acta Math. Acad. Sci. Hungar. 32 (1978) $97-120$.
[2] B. Bollobás, V. Nikiforov, Degree powers in graphs with forbidden subgraphs, Electron. J. Combin. 11 (2004) R42.
[3] S.M. Cioabă, Sums of powers of the degrees of a graph, Discrete Math. 306 (2006) 1959-1965.
[4] A.A. Dobrynin, A.A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994) $1082-1086$.
[5] Z. Füredi, A. Kündgen, Moments of graphs in monotone families, J. Graph Theory 51 (2006) 37-48.
[6] I. Gutman, Selected properties of the Schulz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994) 1087-1089.
[7] Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index, Discrete Appl. Math. 155 (2007) 1044-1054.
[8] V. Nikiforov, The sum of squares of the degrees: Sharp asymptotics, Discrete Math. 307 (2007) 3187-3193.
[9] I. Tomescu, Some extremal properties of the degree distance of a graph, Discrete Appl. Math. 98 (1999) 159-163.
[10] A.I. Tomescu, Unicyclic and bicyclic graphs having minimum degree distance, Discrete Appl. Math. 156 (2008) 125-130.
[11] D.B. West, Introduction to Graph Theory, second ed., Prentice Hall, 2001.

[^0]: * Corresponding author. Tel.: +1 858534 2623; fax: +1 8585345273.

 E-mail addresses: obucicov@math.ucsd.edu (O. Bucicovschi), scioaba@math.ucsd.edu (S.M. Cioabă).

