Discrete Applied Mathematics 156 (2008) 3518-3521

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note
The minimum degree distance of graphs of given order and size

Orest Bucicovschi, Sebastian M. Cioaba *
Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112, United States

ARTICLE INFO ABSTRACT
Arfic{e history: In this note, we study the degree distance of a graph which is a degree analogue of the
Received 24 January 2008 Wiener index. Given n and e, we determine the minimum degree distance of a connected

Received in revised form 13 March 2008
Accepted 28 March 2008
Available online 8 May 2008

graph of order n and size e.
© 2008 Elsevier B.V. All rights reserved.

Keywords:
Degree
Distance
Wiener index

1. Introduction

Our graph notation is standard (see [11]). Let §, . denote the family of connected graphs on n vertices and e edges and
Gn = Ue Gne. FOI G € G0, let d(x, y) denote the distance between vertices x and y and let d(x) denote the degree of x. Define
D(X) = Zer(G) d(X5 y) and

D'(G) = ) dxDx) = Y dx Y dxy)

xeV(G) xeV(G) yev(G)
1
=5 Do dx,y)(dX) +dy)).
x,yeV(G)

The parameter D' (G) is called the degree distance of G and it was introduced by Dobrynin and Kochetova [4] and Gutman [6]
as a weighted version of the Wiener index D(G) = 3, ,cy(c) d(x, ¥). Actually, when G is a tree on n vertices, these parameters
are closely related as D'(G) = 2D(G) — n(n — 1) in this case (see [6]).

In [9], Ioan Tomescu confirmed a conjecture of Dobrynin and Kochetova from [4] and proved the following result.

Theorem 1.1. Forn > 2,

minD'(G) = 3n® — 7n + 4. (1
GEGn

Also, Ky ,_1 is the only connected graph G on n vertices such that D'(G) = 3n?> — 7n + 4.

Recently, Alexandru loan Tomescu [10] determined the minimum value of D'(G) when G € §,. and e € {n, n + 1}. In this
note, we give a short proof of Theorem 1.1 and we extend the results of [10] forallnand esuchthat1 <n—1<e.

For k a real number, let % (G) denote the sum of the k-th powers of the degrees of G. This parameter has been studied
in various contexts in [2,3,5,7]. We denote by o, (n, e) the maximum value of X,(G) when G is a graph (not necessarily
connected) with n vertices and e edges. Also, let X, (n, e) = maxgey, . 22(G). We discuss the connection between these two
parameters in Section 3. This connection is already apparent in the next theorem which is our main result.
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Theorem 1.2. If 1 < n— 1 < eand G is a connected graph with n vertices and e edges, then
DG >4(n—1e— S(n,e) =4(n—2)e—n*+5n—4—oy(n—1,e —n+1).
Equality happens if and only if Gis ajoin of K, and a graph G' on n— 1 vertices and e—n+1 edges with 3, (G') =o3(n—1, e—n+1).

In Section 2, we give a short proof of Theorem 1.1. In Section 3, we present the proof of Theorem 1.2.

2. A short proof of Theorem 1.1

In this section we give a short proof of equality (1).

Proof. For x € V(G), we have that

D) = Y dx,y)= )Y dxy+ Y dxy)

yev(G) yid(x,y)=1 yid(x,y)=2

>1-dx)+2-(n—dx) —1) =2n—-2—d(x).
It follows that
DG = Y dxD(X) > Y d(x)2n—2—d()
xeV(G) xeV(G)
= > d@n-3)— Y dx)(dx) —1)
xeV(G) xeV(G)
=2(2n—3)— ) dXdx -1
xeV(G)
>2e(2n—3)— ) (n—1(dkx) —1)
xeV(G)

=2e(2n—3)—(n—1)(2e —n) =2e(n —2) + (n — Nn.

Since e > n — 1, this proves inequality (1). Equality happens if and only if G has n — 1 edges (which means G is a tree) and
d(x) = n— 1 for each vertex x with d(x) > 1. This is equivalent to G being isomorphic to K1 ,—; which finishes the proof. O

3. Proof of Theorem 1.2

In this section, we show how to find the minimum D’(G) over all connected graphs G with n vertices and e edges.

Proof. From the proof of the previous theorem, we obtain that for any vertex x € V(G),
D'(x) > (2n — 2)d(x) — d*(x).

Summing up over all x € V(G), we get

DGO = Y 0wz Y (@n-2dw - )

xeV(G) xeV(G)

=4 — 1)e — 2,(G).

Since ¥, (G) < X,(n, e), the first inequality follows immediately. Equality happens if and only the diameter of G is 2 and
2 (G) = Za(n, e).

We claim that if G is a connected graph on n vertices and e edges such that X, (G) = 2, (n, e), then G contains a vertex of
degreen — 1.

Assume otherwise and let u be a vertex of G of maximum degree with d(u) < n — 1. This implies that there exist vertices
vand w such that uv, vw € E(G), but uw ¢ E(G). Consider the graph H obtained from G by adding the edge uw and removing
the edge vw. It is easy to see that H € ... Also, we have that

S (H) — £(6) = (dw) + 1)* + (d(v) - 1)* = d*(w) — &*(v)
=2(dW) —dv)) +2 > 2.
This inequality contradicts the fact that ,(G) = X, (n, e) and proves our claim.

Thus, the equality condition is equivalent to G being a join of K; and a graph G’ on n — 1 vertices and e — n + 1 edges and
35 (G) = 2,(n, e). Note that the graph G’ is not necessarily connected.
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A simple calculation yields that

50 =0-1D*+ ) &P®

xeV(G')

=@m-12+ Y ((d(x) —1D2+2dx) —1) + 1)
xeV(G')

=@m-1D+ Y @x-1D*+2 Y dx)—(n—1)
xeV(G) xeV(G')

=1 +5G)+2Qe—n+1)—(@m—-1)
=n’—5n+4+4e+ 5(G).

This implies that 2,(G') = 02(n — 1,e — n+ 1) as well as that
S(,e)=n>—5n+4+4e+0o,(n—1,e—n+1). (2)
The proof of Theorem 1.1 is now complete. [

When e = nore =n+ 1, we obtain the main results of [10].

Givennand e > n— 1, we have seen that determining %, (n, e) is equivalent to finding o, (n — 1, e — n+ 1). Ahlswede and
Katona [1] have determined o, (n— 1, e—n+ 1) and the extremal graphs attaining this bound. This problem has a long history
and its solution is nontrivial (see [ 1,8] for more details). For the sake of completeness, we outline the result of Ahlswede and
Katona below.

For a given order p and size q < (‘2’) the quasi-complete graph Cj is the graph with vertex set {1, ..., p} and q edges

defined as follows: i is adjacent toj forany i,j € {1,...,a} and a + 1is adjacent to 1, ..., b where a and b are the unique

integers such that g = (;) +band 0 < b < a. The quasi star S} is the complement of the CP(Z)ﬂ.
In [1], Ahlswede and Katona showed that

02(p7 q)

max(2;(Cl), 2(S3))
max (2q(a — 1) + b(b+ 1), (n(n — 1) = 2)(a — 1) + b(b + 1) + 4q(n — 1) — (n — 1)n).

for any p and g with g < (‘2’) They also proved that
. (3)
22(53)7 if0<qg< TN =D
02(p,q) = (,, )
o\ 2 p
(), lfT +p=<q=< <2>
Ahlswede and Katona also showed that in the range (g;) —-p<q< (%) + p, it is more difficult to determine which one of
Cl or S] attains the maximum. More precisely, they proved that there are infinitely many p’s for which o (p, q) = 2,(S}) for

allg < % (g) and 03(p, q) = 2»(C}) for all g > % (g) Also, there are infinitely many p’s for which the previous statement is

not true (see [1], Lemma 8).
In [9], loan Tomescu disproved a conjecture from [4] and showed that

" o) < maxD'G) < 2 4 o) (3)
- n -_— n’).

27 = GEGn - 27

Tomescu conjectured that the lower bound is the exact value of maxceg, D'(G). This conjecture seems difficult at present

time.
Acknowledgments

The authors dedicate this note to Professor loan Tomescu on the occasion of his 65-th birthday. The authors thank the
referee for her or his comments. The second author’s research is partially supported by an NSERC postdoctoral fellowship.

References

[1] R. Ahlswede, G.0.H. Katona, Graphs with maximal number of adjacent pairs of edges, Acta Math. Acad. Sci. Hungar. 32 (1978) 97-120.

[2] B. Bollobas, V. Nikiforov, Degree powers in graphs with forbidden subgraphs, Electron. ]. Combin. 11 (2004) R42.

[3] S.M. Cioaba, Sums of powers of the degrees of a graph, Discrete Math. 306 (2006) 1959-1965.

[4] A.A.Dobrynin, A.A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994) 1082-1086.
[5] Z. Fiiredi, A. Kiindgen, Moments of graphs in monotone families, J. Graph Theory 51 (2006) 37-48.

[6] I. Gutman, Selected properties of the Schulz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994) 1087-1089.



0. Bucicovschi, S.M. Cioabd / Discrete Applied Mathematics 156 (2008) 3518-3521 3521

[7] Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n, m)-graphs with minimum and maximum zeroth-order general Randi¢ index, Discrete Appl. Math. 155 (2007)
1044-1054.
[8] V. Nikiforov, The sum of squares of the degrees: Sharp asymptotics, Discrete Math. 307 (2007) 3187-3193.
[9] I. Tomescu, Some extremal properties of the degree distance of a graph, Discrete Appl. Math. 98 (1999) 159-163.
[10] A.L Tomescu, Unicyclic and bicyclic graphs having minimum degree distance, Discrete Appl. Math. 156 (2008) 125-130.
[11] D.B. West, Introduction to Graph Theory, second ed., Prentice Hall, 2001.



	The minimum degree distance of graphs of given order and size
	Introduction
	A short proof of Theorem 1.1
	Proof of Theorem 1.2
	Acknowledgments
	References


