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Abstract

We investigate the location of zeros of Bergman polynomials (orthogonal polynomials with

respect to area measure) for regular N-gons in the plane. In particular, we prove two

conjectures posed by Eiermann and Stahl. Furthermore, we give some consequences regarding

the asymptotic behavior of such Bergman polynomials.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Let GCC be a bounded Jordan domain. Bergman polynomials for G are algebraic
polynomials Qnðz;GÞ; deg Qn ¼ n; in the complex variable z satisfying the
orthogonality relationZZ

G

QmðzÞQnðzÞ dx dy ¼ dm;n; z ¼ x þ iy: ð1Þ

These polynomials play an important role in different aspects of approximation
theory. In particular, they have a close connection with the interior Riemann
mapping function jzðzÞ for zAG; that is, the conformal map of G onto the unit disk
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fw: jwjo1g satisfying jzðzÞ ¼ 0; j0
zðzÞ40: Namely,

j0
zðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

Kðz; zÞ

r
Kðz; zÞ; ð2Þ

where Kðz; zÞ is the Bergman kernel, which has the representation

Kðz; zÞ ¼
XN
k¼0

QkðzÞQkðzÞ: ð3Þ

We will be interested in the case when G ¼ GN is the regular N-gon with vertices at

ok
N ; k ¼ 0;y;N 
 1; where oN :¼ e2pi=N is the first primitive Nth root of unity.

More precisely, we will investigate the properties of zeros of Qnðz;GNÞ: Note that the
convexity of GN implies that all these zeros lie in the interior of GN (for example, see
[10, Theorem 2.2]). Furthermore, from symmetry arguments, if n ¼ Nl þ j;
0pjpN 
 1; we deduce that

Qnðz;GNÞ ¼ zjqlðzNÞ; deg ql ¼ l: ð4Þ

In [3], Eiermann and Stahl presented numerical results which led them to pose the
following three conjectures.

(I) For N ¼ 3; 4; the zeros of all the Qn’s are located exactly on the ‘‘diagonals’’
Gk;N of GN :

Gk;N :¼ fz: jzjo1; arg z ¼ 2pk=Ng,f0g; k ¼ 1;N:

However, for NX5 there are zeros of Qn’s that are not on the Gk;N ’s.

(II) For N ¼ 3; 4 and fixed jAf0;y;N 
 1g; the real zeros of the QNlþj’s interlace

on ð0; 1Þ:
(III) For NX5; the only points of the boundary @GN of GN that attract zeros of the

Qn’s are its vertices, i.e., if Zn denotes the set of zeros of Qn; then\N
n¼1

[
m4n

Zm

 !\
@GN ¼ fok

Ng
N
1
k¼0 :

It was shown by Andrievskii and Blatt [1] that (III) is false for each NX5 since, for
such N; j00

z blows up at the vertices of GN : The following general result in this

direction is due to Levin, Saff, and Stylianopoulos [7].

Theorem 1. Let G be a bounded Jordan domain, Qn the Bergman polynomials for G;
and nn the normalized counting measure in the zeros of Qn: Let m@G denote the

equilibrium (Robin) measure for @G and let zAG: Then there exists a subsequence

fnkgDN such that

nnk
!� m@G as nk-N ð5Þ

if and only if the interior conformal mapping jz cannot be analytically continued to a

domain G̃* %G:

V. Maymeskul, E.B. Saff / Journal of Approximation Theory 122 (2003) 129–140130



The convergence in (5) is understood to hold in the weak-star topology.
Theorem 1 implies that, for NX5; every point of @GN attracts zeros of the Qn’s.

However, if N ¼ 3 or 4; Theorem 1 yields no information about the zeros of the Qn’s
and, in this regard, it is a main purpose of the present note to show that (I) and (II)
are true statements (see Corollaries 5 and 7).

2. Proof of Conjectures (I) and (II)

Regarding the orthogonality relation (1) for GN ; we first observe the following. Let
m ¼ Nl þ j; n ¼ Nr þ s; 0pj; spN 
 1; and suppose the polynomials Pm and Pn

have the form

PmðzÞ ¼ zjplðzNÞ; PnðzÞ ¼ zsprðzNÞ; where deg pl ¼ l; deg pr ¼ r:

Then, clearly, for any ACC;ZZ
oN A

PmðzÞPnðzÞ dx dy ¼ oj
s
N

ZZ
A

PmðzÞPnðzÞ dx dy: ð6Þ

Let D denote the triangle region with vertices at 0; 1; and oN : Then

GN ¼
[N
1

k¼0

ðok
NDÞ;

and using (6) we obtainZZ
GN

PmðzÞPnðzÞ dx dy ¼
XN
1

k¼0

ZZ
ok

N
D

PmðzÞPnðzÞ dx dy

¼
XN
1

k¼0

okð j
sÞ
N

ZZ
D

PmðzÞPnðzÞ dx dy:

Since

XN
1

k¼0

ðoj
s
N Þk ¼

0; if jas;

N; if j ¼ s;

(

we conclude thatZZ
GN

PmðzÞPnðzÞ dx dy ¼ 0 if man ðmod NÞ:

So, (1) carries useful information only for m ¼ n ðmod NÞ: In this case, for man;ZZ
D

Qmðz;GNÞQnðz;GNÞ dx dy ¼ 1

N

ZZ
GN

Qmðz;GNÞQnðz;GNÞ dx dy ¼ 0: ð7Þ

Next, we show that the orthogonality relation (7) implies that QNlþj; 0pjpN 
 1;

restricted to ½0; 1
; is orthogonal to a certain system of l polynomials that depend on
N and j:
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For j ¼ 0;N 
 1 (i.e., j ¼ 0; 1;y;N 
 1) and m ¼ 0; 1;y; let

fN;NmþjðxÞ :¼ Im½ojþ1
N ðx 
 1 
 oNÞNmþjþ1
: ð8Þ

Lemma 2. For NX3; j ¼ 0;N 
 1; and l ¼ 1; 2;y;Z 1

0

QNlþjðx;GNÞfN;NmþjðxÞ dx ¼ 0 for m ¼ 0; l 
 1: ð9Þ

Proof. In this proof we denote, for convenience, o :¼ oN and QnðzÞ :¼ Qnðz;GNÞ:
Let n4k and n ðmod NÞ ¼ k ðmod NÞ ¼ j: Using Green’s formula (cf. [4, p. 10]) we
get from (7) thatZ

g
QnðzÞ%zkþ1 dz ¼ 0;

where g denotes the positively oriented boundary of the triangle D: If g1 :¼ ½0; 1
; g2 :
¼ ½1;o
; and g3 :¼ ½o; 0
 denote the (oriented) sides of the triangle D; then we have on

g1: %z ¼ z; on g2: %z ¼ 
 %oðz 
 1Þ þ 1; on g3: %z ¼ %o2z: Thus, using the Cauchy theorem

and the fact that QnðozÞ ¼ okQnðzÞ; we get

0 ¼
Z
g

QnðzÞ%zkþ1 dz

¼
Z
g1

QnðzÞzkþ1 dz þ
Z
g2

QnðzÞð
 %oðz 
 1Þ þ 1Þkþ1
dz þ

Z
g3

QnðzÞð %o2zÞkþ1
dz

¼
Z
g1

QnðzÞzkþ1 dz þ
Z

g1
g3

QnðzÞð
 %oðz 
 1Þ þ 1Þkþ1
dz

þ
Z
g3

QnðzÞð %o2zÞkþ1
dz

¼
Z
g1

QnðzÞ½zkþ1 
 ð
 %oðz 
 1Þ þ 1Þkþ1
 dz

þ
Z

g3

QnðzÞ½ð
 %oðz 
 1Þ þ 1Þkþ1 
 ð %o2zÞkþ1
 dz

¼
Z
g1

QnðzÞ½zkþ1 
 ð
 %oðz 
 1Þ þ 1Þkþ1
 dz

þ o
Z
g1

QnðozÞ½ð
 %oðoz
 1Þ þ 1Þkþ1 
 ð %ozÞkþ1
 dz

¼ð
1Þkþ1

Z
g1

QnðzÞ½ojþ1ðz 
 1 
 %oÞkþ1 
 %ojþ1ðz 
 1 
 oÞkþ1
 dz:

All that remains is to note that, for real x;

ojþ1ðx 
 1 
 %oÞkþ1 
 %ojþ1ðx 
 1 
 oÞkþ1 ¼ 2ifN;kðxÞ: &
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Remark 3. Note that, for any NX3; jAf0; 1;y;N 
 1g; and l ¼ 0; 1;y; the
functions fN;NlþjðxÞ have all real zeros and exactly l of them belong to ð0; 1Þ: Indeed,

the function

w ¼ gðzÞ :¼ oNðz 
 1 
 %oNÞ
%oNðz 
 1 
 oNÞ

maps the real axis Im z ¼ 0 onto the unit circle jwj ¼ 1; and the image of ð0; 1Þ is the
(shorter) open subarc goN

with endpoints 1 and oN : Now, in the w-plane, the

equation fN;NlþjðzÞ ¼ 0 is equivalent to

wNlþjþ1 ¼ 1;

which has the roots e2pir=ðNlþjþ1Þ; r ¼ 0;Nl þ j: One can easily check that l of these
roots belong to goN

:

Lemma 4. For N ¼ 3 or 4 and fixed j; 0pjpN 
 1; the system f fN;Nlþjg; l ¼
0; 1; 2;y; is a Markov system on ð0; 1Þ; i.e., any polynomial

plðxÞ ¼
Xl

r¼0

arfN;NrþjðxÞ

over this system that is not identically zero has at most l zeros on ð0; 1Þ; l ¼ 0; 1;y:

Moreover, for each NX5 and each j ¼ 0;N 
 1; the system f fN;NlþjgNl¼0 is not Markov

on ð0; 1Þ:

Proof. We will prove the first part of the lemma by induction on l: First, for l ¼ 0
the conclusion of the lemma holds thanks to Remark 3. Next, assume that, for some
lX0; the system fN;NrþjðxÞ; r ¼ 0;y; l; is a Markov system on ð0; 1Þ; and suppose,

to the contrary, that a polynomial

plþ1ðxÞ ¼
Xlþ1

r¼0

arfN;NrþjðxÞ; alþ1a0;

has l þ 2 zeros on ð0; 1Þ: On differentiating N times, we obtain

p
ðNÞ
lþ1ðxÞ ¼ a0f

ðNÞ
N; j ðxÞ þ

Xlþ1

r¼1

arf
ðNÞ

N;NrþjðxÞ ¼
Xlþ1

r¼1

arcr;NfN;Nðr
1ÞþjðxÞ

¼
Xl

r¼0

brfN;NrþjðxÞ ¼: plðxÞ;

where cr;N :¼ ðNr þ j þ 1Þ!=ðNr þ j þ 1 
 NÞ! and br :¼ arþ1crþ1;N : We shall show

that pl has at least l þ 1 zeros in ð0; 1Þ; which will yield the desired contradiction.
We remark that counting only interior zeros of a polynomial on ½0; 1
; i.e., its zeros

on ð0; 1Þ; we can guarantee only one less zero on ð0; 1Þ for its derivative. At the same
time, each endpoint zero of this polynomial gives an additional zero for the derivative
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on ð0; 1Þ: We claim that the polynomials

p
ðmÞ
lþ1ðxÞ; m ¼ 0;N 
 1; ð10Þ

have at least N 
 1 endpoint zeros in total, which would imply that pl has at least
l þ 1 zeros on ð0; 1Þ:

For fixed j ¼ 0;N 
 1; let us first investigate the endpoint zeros of f
ðmÞ

N;NrþjðxÞ; r ¼
0; 1;y: Clearly,

f
ðmÞ

N;NrþjðxÞ ¼ cr;m Im½ojþ1
N ðx 
 1 
 %oNÞNrþjþ1
m
;

cr;m :¼ ðNr þ j þ 1Þ!=ðNr þ j þ 1 
 mÞ!:

So, after some algebra, we get

f
ðmÞ

N;Nrþjð0Þ ¼ ð
1ÞNrþjþ1
mþr
cr;m 2 cos

p
N


 �Nrþjþ1
m

sin
j þ 1 þ m

N
p

� 

ð11Þ

and

f
ðmÞ

N;Nrþjð1Þ ¼ ð
1ÞNrþjþ1
m
cr;m Imðom

NÞ ¼ ð
1ÞNrþjþ1
m
cr;m sin

2pm

N

� 

: ð12Þ

For NX3; f
ðmÞ

N;Nrþjð0Þ ¼ 0 if and only if

sin
j þ 1 þ m

N
p

� 

¼ 0 ð13Þ

(for r ¼ 0 and m4j; obviously f
ðmÞ

N; j ðxÞ � 0). But 0pjpN 
 1; 0pmpN 
 1 and

hence 1pj þ 1 þ mp2N 
 1: Thus, (13) holds only in the case j þ m ¼ N 
 1

regardless of r; i.e., for m ¼ N 
 1 
 j and any r ¼ 0; 1;y; f
ðmÞ

N;Nrþjð0Þ ¼ 0 and,

therefore,

p
ðmÞ
lþ1ð0Þ ¼ 0 if m ¼ N 
 1 
 j:

Thus, to establish the claim it is enough to show that N 
 2 polynomials in (10) have
a zero at x ¼ 1; for which, according to (12), a sufficient condition is that

sin
2pm

N

� 

¼ 0 ð14Þ

for N 
 2 values of mAf0;y;N 
 1g: But 0p2m=No2 and so there are at most
two values of m for which (14) is true. So, we should restrict ourselves to the case
Np4: For N ¼ 3; we need just one zero at x ¼ 1; and this happens when m ¼ 0: For
N ¼ 4; the required two zeros occur when m ¼ 0 and m ¼ 2: This completes the
proof of the first part of the lemma.

Now we consider the case when NX5: As in the proof of Corollary 5 below, the
fact that, for some jAf0;y;N 
 1g; the system f fN;Nlþjg; l ¼ 0; 1;y; is a Markov

system on ð0; 1Þ implies that all the zeros of the QNlþjðz;GNÞ’s, l ¼ 0; 1;y; lie on the

rays Gk;N ; k ¼ 1;N: Since, for such N; jzðzÞ cannot be extended analytically to a

larger region, using Theorem 1 we conclude that f fN;Nlþjg; l ¼ 0; 1;y; is not
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Markov at least for some jAf0;y;N 
 1g: The fact that this system is not Markov
for every jAf0;y;N 
 1g requires additional arguments, and we proceed as follows.

Using the representations (2)–(4) we get, for any zAGN ;

j0
zðzÞ ¼ g0ðzN ; zÞ þ zg1ðzN ; zÞ þ?þ zN
1gN
1ðzN ; zÞ; ð15Þ

where

gjðzN ; zÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
Kðz; zÞ

r XN
k¼0

QNkþjðzÞ
QNkþjðzÞ

zj
:

In particular, for z ¼ 0; we have QNkþjð0Þ ¼ 0 for j ¼ 1;N 
 1; and so

j0
0ðzÞ ¼ g0ðzN ; 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=Kð0; 0Þ

p XN
l¼0

QNlð0Þ QNlðzÞ:

The regularity of the Lebesgue measure implies (cf. [8, Lemma 4.3]) that for the sup
norm jj � jjGN

on GN ;

lim
n-N

jjQnjj1=n
GN

¼ 1: ð16Þ

Since j0
0ðzÞ does not have an analytic extension to a domain G̃* %GN ; it follows that

lim sup
l-N

jQNlð0Þj1=Nl ¼ 1: ð17Þ

As in the proof of Theorem 1.1 in [7] we invoke Theorem III.4.1 in [11] to conclude

that, for some subsequence flkgNk¼1; the normalized counting measures nNlk of the

zeros of QNlkðz;GNÞ satisfy

nNlk !
�
m@GN

as lk-N: ð18Þ

Consequently, f fN;Nlþjg; l ¼ 0; 1;y; is not Markov for j ¼ 0:

Next we observe that, for any integer k;

j0ðok
NzÞ ¼ ok

Nj0ðzÞ and j0
0ðok

NzÞ ¼ j0
0ðzÞ: ð19Þ

Also note that, for any zAGN ;

jzðzÞ ¼ l
j0ðzÞ 
 j0ðzÞ
1 
 j0ðzÞj0ðzÞ

; j0
zðzÞ ¼ l

j0
0ðzÞð1 
 jj0ðzÞj

2Þ
ð1 
 j0ðzÞj0ðzÞÞ

2
; jlj ¼ 1: ð20Þ

Setting F0ðz; zÞ :¼ j0
zðzÞ and, for j ¼ 1;y;N 
 1;

Fjðz; zÞ :¼
Fj
1ðz; zÞ 
 gj
1ðzN ; zÞ

z
;

V. Maymeskul, E.B. Saff / Journal of Approximation Theory 122 (2003) 129–140 135



and using (15), (19), and (20), after some algebra we get

NgjðzN ; zÞ ¼
XN
1

k¼0

Fjðok
NzÞ

¼Nlð1 
 jj0ðzÞj
2Þj0

0ðzÞ
j0ðzÞj0ðzÞ

z

 !j

� j þ 1 þ ðN 
 j 
 1Þðj0ðzÞj0ðzÞÞ
N

ð1 
 ðj0ðzÞj0ðzÞÞ
NÞ2

:

On differentiating this equation and using the facts that j00
0ðzÞ-N; j

0
0ðzÞ is

bounded, and j0ðzÞ-1 as z-1; zAGN ; one easily concludes that gjðzN ; zÞ cannot

be extended analytically to a larger domain for some za0 in GN : Taking into
account this fact, we now repeat the argument used for j ¼ 0 to conclude from (16)
the analogs of (17) and (18); that is,

lim sup
l-N

jQNlþjðzÞj1=ðNlþjÞ ¼ 1

and, for some subsequence flkgNk¼1 that depends on j;

nNlkþj !
�
m@GN

as lk-N: ð21Þ

Therefore, f fN;Nlþjg; l ¼ 0; 1;y; is not Markov for every j ¼ 0;y;N 
 1: &

We remark that (21) provides some new information regarding the asymptotic
behavior of the zeros of Qnðz;GNÞ for the cases NX5:

Corollary 5. For N ¼ 3 or 4 and j ¼ 0;N 
 1; the polynomials QNlþjðx;GNÞ; l ¼
0; 1;y; have exactly l simple zeros on ð0; 1Þ: Consequently, all zeros of QNlþjðz;GNÞ
lie on the rays Gk;N ; k ¼ 1;N:

Proof. Using Lemma 4 and the orthogonality relation (9), we conclude from well-
known arguments originally given by Kellog [6] (see also [9, Proposition 3.1]) that
QNlþj has at least l sign changes on ð0; 1Þ: But it follows from the symmetry property

(4) that QNlþj cannot have more than l zeros on ð0; 1Þ: &

Next, for fixed j; we establish the interlacing property of zeros of the QNlþj’s. This

property is a consequence of the following general statement.

Lemma 6. Let fgkðtÞgNk¼0 be a Markov system of continuous functions on ða; bÞ; and

suppose that polynomials PnðtÞ; deg Pnpn; n ¼ 1; 2;y; are orthogonal to gkðtÞ; k ¼
0; n 
 1; on ða; bÞ; i.e.,Z b

a

PnðtÞgkðtÞ dt ¼ 0: ð22Þ
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Then between any two consecutive zeros of PnðtÞ on ða; bÞ there is a (unique) zero of

Pn
1ðtÞ:

Although similar results are known (cf. [5]) for the case when the Pn’s are in the
span of the gk’s, the authors could not find the needed form in the literature, so we
provide a simple proof.

Proof. First of all, we note that all zeros of PnðtÞ; n ¼ 1; 2;y; are simple, and lie on
ða; bÞ: Suppose now, to the contrary, that a and b are two consecutive zeros of
Pnþ1ðtÞ and PnðtÞ has no zeros on ða; bÞ: We can assume without loss of generality
that PnðtÞX0 and Pnþ1ðtÞX0 on ½a; b
: Consider the polynomial

Rnþ1ðtÞ :¼ cPnðtÞ 
 Pnþ1ðtÞ;

where the constant c40 is chosen as follows:

(i) if PnðtÞ ¼ 0 either at a or at b; denote this point by t� and set

c :¼
P0

nþ1ðt�Þ
P0

nðt�Þ
;

clearly, Rnþ1ðtÞ has a zero at t� of multiplicity at least two.
(ii) otherwise, PnðtÞ40 on ½a; b
 and, with

c :¼ minfC: CX0; CPnðtÞ 
 Pnþ1ððtÞÞX0 on ½a; b
g;
the polynomial Rnþ1ðtÞ has a zero t�Aða; bÞ of even multiplicity.

With such a choice for c; the polynomial Rnþ1ðtÞ=ðt 
 t�Þ2 has no more than n 
 1
zeros on ða; bÞ; and so no more than n 
 1 sign changes. Hence, Rnþ1ðtÞ has no more
than n 
 1 sign changes on ða; bÞ; and one can find a function

GnðtÞ ¼
Xn
1

s¼0

asgsðtÞ

over the system fgsgn
1
s¼0 such that the product Rnþ1ðtÞGnðtÞ is nonnegative on ða; bÞ:

On the other hand, the orthogonality relation (22) givesZ b

a

Rnþ1ðtÞGnðtÞ dt ¼ 0:

This implies that either Rnþ1ðtÞ or GnðtÞ must be identically zero on ða; bÞ; which is
impossible. &

Corollary 7. For N ¼ 3 or 4 and fixed jAf0;y;N 
 1g; between any two consecutive

zeros of QNlþjðx;GNÞ; l ¼ 2; 3;y; on ð0; 1Þ there is a (unique) zero of

QNðl
1Þþjðx;GNÞ:
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Proof. We apply Lemma 6 to the polynomials PlðtÞ :¼ qlðtÞ; l ¼ 0; 1;y; with qlðtÞ
defined in (4) and the system gkðtÞ :¼ tð jþ1
NÞ=NfN;Nkþjðt1=NÞ; k ¼ 0; 1;y; with

fN;NkþjðxÞ given by (8), which, by Lemma 4, is a Markov system on ð0; 1Þ (since j is

fixed). The orthogonality relation (22) follows immediately from (9) with the

substitution t ¼ xN : &

Corollaries 5 and 7 establish the truth of assertions (I) and (II).
Let FNðzÞ denote the exterior Riemann mapping function for GN ; i.e.,

FN : %C\ %GN/fjwj41g; FNðNÞ ¼ N; F0
NðNÞ40: Using, for each side of GN ; the

Schwarz reflection principle, we can extend FN to a function *FNðzÞ that is analytic

and one-to-one in C\ð
SN

k¼1
%Gk;NÞ:

Corollary 8. For N ¼ 3 or 4,

lim
n-N

Qnðz;GNÞ1=n ¼ *FNðzÞ

locally uniformly in C\ð
SN

k¼1
%Gk;NÞ; where x1=n denotes the branch that is positive for

x40:

Proof. Indeed, the fact that all the zeros of Qnðz;GNÞ’s are located on the rays

Gk;N ; k ¼ 1;N; makes it possible to define single-valued analytic branches of the

functions Qnðz;GNÞ1=n; n ¼ 1; 2;y; in the domain C\ð
SN

k¼1
%Gk;NÞ: These functions

form a normal family in this domain and, moreover, it is well-known [12, Chapter 3]
that

lim
n-N

Qnðz;GNÞ1=n ¼ FNðzÞ

locally uniformly in C\ %GN : Thus, the assertion follows from standard uniqueness
theorems. &

Theorem 9. For N ¼ 3 or 4, let lðlÞN; j be the normalized counting measure of the zeros of

QNlþjðzÞ that lie in ð0; 1Þ; i.e.,

lðlÞN; j ¼
1

l

X
xAZNlþj

x40

dx;

where dx is the unit point mass at x: Then there exists a measure mN such that for each

j ¼ 0;N 
 1

lðlÞN; j !
�
mN as l-N:

Moreover, mN is the unique measure supported on ½0; 1
 that satisfies the equation

lnj *FNðzÞj ¼
1

N

Z
ln jzN 
 xN j dmNðxÞ þ ln

1

cN

ð23Þ

for all ze
SN

k¼1
%Gk;N ; where cN is the logarithmic capacity of GN :
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Proof. For any positive measure l let Uðz; lÞ denote its logarithmic potential

Uðz; lÞ :¼
Z

ln
1

jz 
 tj dlðtÞ:

First we observe that the regularity of the Lebesgue measure over GN implies that

for each j ¼ 0;N 
 1

Uðz; nNlþjÞ-Uðz; m@GN
Þ; ze %GN ; ð24Þ

where nNlþj is the normalized counting measure of ZNlþj; the set of all zeros of QNlþj :

Note by symmetry, that

nNlþjð�Þ ¼
1

Nl þ j
jd0ð�Þ þ l

XN
1

k¼0

lðlÞN; jðok
N �Þ

( )
:

Hence from (24) it follows that if l is any limit measure of flðlÞN; jg
N

l¼0; then

Uðz; m@GN
Þ ¼ U z;

1

N

XN
1

k¼0

lðok
N �Þ

 !
for ze %GN :

Writing

Uðz; m@GN
Þ ¼ ln

1

cN


 lnjFNðzÞj;

we obtain (23) for ze %GN and mN ¼ l: Since suppðlÞC½0; 1
 Eq. (23) holds by

harmonic continuation for all zAC\
SN

k¼1
%Gk;N :

Finally, we can use the unicity theorem for logarithmic potentials (cf. [11,
Theorem II.2.1]) to deduce that (23) uniquely determines the measure mN and so
every limit measure l must equal mN : &

We remark that for convex domains G; results concerning the asymptotic behavior
of the balayages (to the boundary of G) of the zeros of the Bergman polynomials
were obtained in [2].
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