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Abstract

We investigate the location of zeros of Bergman polynomials (orthogonal polynomials with
respect to area measure) for regular N-gons in the plane. In particular, we prove two
conjectures posed by Eiermann and Stahl. Furthermore, we give some consequences regarding
the asymptotic behavior of such Bergman polynomials.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Let G C be a bounded Jordan domain. Bergman polynomials for G are algebraic
polynomials Q,(z; G), degQ, =n, in the complex variable z satisfying the
orthogonality relation

//GQ,,,(Z)Q,,—(z)dxdy:(Sm,,, z=Xx+4iy. (1)

These polynomials play an important role in different aspects of approximation
theory. In particular, they have a close connection with the interior Riemann
mapping function ¢,(z) for (e G, that is, the conformal map of G onto the unit disk
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{w: [w|< 1} satisfying ¢ () =0, ¢}({)>0. Namely,

00 =\ [ee g K0, @

where K(z,() is the Bergman kernel, which has the representation

K(z0 =) 0Q0(z). (3)

We will be interested in the case when G = Gy is the regular N-gon with vertices at
ok, k=0,...,N -1, where oy = e*™/V is the first primitive Nth root of unity.
More precisely, we will investigate the properties of zeros of Q,(z; Gy). Note that the
convexity of Gy implies that all these zeros lie in the interior of Gy (for example, see
[10, Theorem 2.2]). Furthermore, from symmetry arguments, if n= N[+,
0<j< N — 1, we deduce that

Qn(Z; GN) = ZjQI(ZN)r deggq; = 1. (4)

In [3], Eiermann and Stahl presented numerical results which led them to pose the
following three conjectures.

(I) For N = 3, 4, the zeros of all the Q,’s are located exactly on the “diagonals”
rk.N of GNZ
Tky ={z: |z|<l, argz=2nk/N}u{0}, k=1,N.

However, for N=5 there are zeros of Q,’s that are not on the I'y y’s.

(IT) For N =3, 4 and fixed je{0, ..., N — 1}, the real zeros of the Qy;,’s interlace
on (0,1).

(IIT) For N =35, the only points of the boundary dGy of Gy that attract zeros of the

yp y

Q,’s are its vertices, i.e., if Z, denotes the set of zeros of Q,, then

(ﬁ U Zm) maGN = {wlzil}gz_ol-

n=1 m>n

It was shown by Andrievskii and Blatt [1] that (III) is false for each N =5 since, for
such N, ¢ blows up at the vertices of Gy. The following general result in this

direction is due to Levin, Saff, and Stylianopoulos [7].

Theorem 1. Let G be a bounded Jordan domain, Q, the Bergman polynomials for G,
and v, the normalized counting measure in the zeros of Q. Let pyq denote the
equilibrium (Robin) measure for 0G and let (€ G. Then there exists a subsequence
{n} =N such that

Vi — Mo AS Mg — 0O (5)

if and only if the interior conformal mapping ¢ cannot be analytically continued to a
domain G> G.
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The convergence in (5) is understood to hold in the weak-star topology.

Theorem 1 implies that, for N =35, every point of dGy attracts zeros of the Q,’s.
However, if N = 3 or 4, Theorem 1 yields no information about the zeros of the Q,’s
and, in this regard, it is a main purpose of the present note to show that (I) and (II)
are true statements (see Corollaries 5 and 7).

2. Proof of Conjectures (I) and (IT)

Regarding the orthogonality relation (1) for Gy, we first observe the following. Let
m=NIl+j, n=Nr+s, 0<j,s<N — 1, and suppose the polynomials P, and P,
have the form

P,(z) = Zpi(2Y), Pu(z) =2p(2V), where degp; = [, degp, =r.
Then, clearly, for any 4<=C,

//w\A P,(z)dxdy = cu’ // ' (2)P(2) dx dy. (6)

Let A denote the triangle region with vertices at 0, 1, and wy. Then
N-1

Gy = U (CU];\;A),
k=0

and using (6) we obtain

N
// dxdy—Z// P,(z) dx dy
Gx k=0
N-1
= wlfv(j 3// o (2)Po(z) dx dy.
k=0

i () = 0, if j#s,
N N, if j=s,

k=0

Since

=

we conclude that
//G i dxdy—O if m#n(modN).
So, (1) carries useful information only for m = n (mod N). In this case, for m#n,
J[ooaEaiay = [[ o=coEaaa =0 0
Next, we show that the orthogonality relation (7) implies that Qnyy;, 0<j<N — 1,

restricted to [0, 1], is orthogonal to a certain system of / polynomials that depend on
N and j.
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Forj=0,N—-1(.e.,j=0,1,....N—1)and m=0,1, ..., let

fN‘Nerj( ) Im[w]+l (x 1= )Nm+]+1]

Lemma 2. For N>3, j=0,N—1,and [ =1,2,...,

1
/ QN]_;,__,'(X; GN)fN,Nm-{—j(x) dx=0 fOV m = 0, I—1.
0

Proof. In this proof we denote, for convenience, w := wy and Q,(z) ==

©)

Qn(z§ GN)-

Let n>k and n (mod N) = k (mod N) = . Using Green’s formula (cf. [4, p. 10]) we

get from (7) that

/ 0,(2)7 M dz =0

where y denotes the positively oriented boundary of the triangle A. If y, = [0,1], 7,
= [1, w], and y; = [w, 0] denote the (oriented) sides of the triangle A, then we have on
y1:Z=1z,0n79,: 2= —a@(z — 1)+ 1, on y3: Z = &°z. Thus, using the Cauchy theorem

and the fact that Q,(w{) = 0¥ Q,({), we get
0= / 0,,(2)F dz

- ] 002 e | oot 1t [ o e

:/ 0,(z)Z! dz+/ 0,(2)(=(z — 1) + 1) dz
71 173
+ | 0u(2)(@%2) " dz

- / 0,2 = (olz — 1) + 1)) d=

/Q,, [~ (—a(z = 1) + 1)) dz

+ w/ 0, (@) [(~@ (ot — 1) + D' — (@0 de

:(_1)"+1/Qn(z)[d+l(z—1— OV — &z =1 - w) N dz

All that remains is to note that, for real x,

o x—1=a) — @ (x— 1 — ) =2ifyi(x). O
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Remark 3. Note that, for any N>3, je{0,1,...,N—1}, and /=0,1, ..., the
functions fi ni+;(x) have all real zeros and exactly / of them belong to (0, 1). Indeed,
the function

(UN(Z -1 - (A_)N)

"= g(Z) = (I)N(Z —1- (JJN)

maps the real axis Im z = 0 onto the unit circle |w| = 1, and the image of (0, 1) is the
(shorter) open subarc y, ~with endpoints 1 and wy. Now, in the w-plane, the
equation fy ni4;(z) = 0 is equivalent to

WN1+j+1 _ l,

which has the roots ¢™"/(N+i+1)  — 0, NI +j. One can easily check that / of these
roots belong to y,, .

Lemma 4. For N =3 or 4 and fixed j, 0<j<N — 1, the system {fyni;}, [ =
0,1,2, ..., is a Markov system on (0, 1), i.e., any polynomial
!

pi(x) = Z afN Ny (X)
r=0
over this system that is not identically zero has at most | zeros on (0,1), [=0,1,....

Moreover, for each N =5 and each j = 0, N — 1, the system { fx n1+j} =0 is not Markov
on (0,1).

Proof. We will prove the first part of the lemma by induction on /. First, for / =0
the conclusion of the lemma holds thanks to Remark 3. Next, assume that, for some
[=0, the system fy nr4;(x), ¥ =0, ..., [, is a Markov system on (0, 1), and suppose,
to the contrary, that a polynomial

I+1

Pi1(x) = Z afnnr+j(X), a1 #0,

r=0
has /4 2 zeros on (0, 1). On differentiating N times, we obtain

/41

[1+1
P (x) =aofy (x >+Z af e (X) =D @S n 1) ()
r=1

/
Z beNr+j —:pl(x),
r=0

where ¢,y = (Nr+j+ 1)!/(Nr+j+1—N)! and b, = a@yy1¢41y. We shall show
that p; has at least / + 1 zeros in (0, 1), which will yield the desired contradiction.
We remark that counting only interior zeros of a polynomial on [0, 1], i.e., its zeros
on (0, 1), we can guarantee only one less zero on (0, 1) for its derivative. At the same
time, each endpoint zero of this polynomial gives an additional zero for the derivative
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on (0,1). We claim that the polynomials
pg %(x), m=0,N—1, (10)

+
have at least N — 1 endpoint zeros in total, which would imply that p; has at least
[+ 1 zeros on (0, 1).

For fixed j = 0, N — 1, let us first investigate the endpoint zeros of f; ,S,m,)w H(x), r=
0,1, .... Clearly,

f]{l}jqjgfrﬂ'(x) = Crm Im[w]]\-&f-l (x _1- U-)N)NrJerrlme
Crm = (Nr+j+ DI/(Nr+j+1—m)l.

So, after some algebra, we get

it 7\ Nrtj+1-m i+ 14+m
Sy (0) = (=) (2 cos N) sin (]T n) (11)
and
m r+j+1—m r+j+1—m : 2
S (1) = (=N, Im(wl) = (=DM e, sin (i;n) (12)

For N>3, f\'%,.;(0) = 0 if and only if
i+ 1
sh1</*_Pé+’nn> —0 (13)

(for ¥ =0 and m>j, obviously f/(vm;(x) =0). But 0<j<N —1, 0<m<N —1 and
hence 1<j+ 1+ m<2N — 1. Thus, (13) holds only in the case j+m=N —1
regardless of r, i.e., for m=N—-1—j and any r=0,1, ..., ]f,'?’]\),,.H(O) =0 and,
therefore,

A0)=0 if m=N—1-j.

Thus, to establish the claim it is enough to show that N — 2 polynomials in (10) have
a zero at x = 1, for which, according to (12), a sufficient condition is that

. (2mm
sm< N > =0 (14)
for N — 2 values of me{0,...,N — 1}. But 0<2m/N <2 and so there are at most
two values of m for which (14) is true. So, we should restrict ourselves to the case
N <4. For N = 3, we need just one zero at x = 1, and this happens when m = 0. For
N =4, the required two zeros occur when m = 0 and m = 2. This completes the
proof of the first part of the lemma.

Now we consider the case when N >5. As in the proof of Corollary 5 below, the
fact that, for some j€{0, ..., N — 1}, the system { fy ni+;}, [ =0,1, ..., is a Markov
system on (0, 1) implies that all the zeros of the On;1;(z; Gy)’s, I = 0,1, ..., lie on the
rays I'r vy, k= 1, N. Since, for such N, @¢(z) cannot be extended analytically to a
larger region, using Theorem 1 we conclude that {fyw;}, /=0,1,..., is not
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Markov at least for some je{0, ..., N — 1}. The fact that this system is not Markov

for every je{0, ..., N — 1} requires additional arguments, and we proceed as follows.
Using the representations (2)—(4) we get, for any (e Gy,
oL(2) = 9o(z",0) + 291 (2N, O + -+ + 2V g (Y, 0), (15)
where

/ Z QNk+j QN];/H( )

In particular, for { = 0, we have Qny4;(0) =0 for j =1, N — I, and so

Po(z) = = /n/K(0,0) Z Oni(0) Owi(z).

The regularity of the Lebesgue measure implies (cf. [§, Lemma 4.3]) that for the sup
norm || - ||GN on Gy,

lim ||Qule = (16)

n— oo
Since ¢}(z) does not have an analytic extension to a domain G> Gy, it follows that

lim sup |Qw,(0)|"M = 1. (17)

> o

As in the proof of Theorem 1.1 in [7] we invoke Theorem II1.4.1 in [11] to conclude
that, for some subsequence {lk},:i |, the normalized counting measures vy;, of the
zeros of Quy, (z; Gy) satisfy

VNI i>,uaGN as [ — oo. (18)

Consequently, { fy n4;}, /=0,1, ..., is not Markov for j = 0.
Next we observe that, for any integer k,

Po(wyz) = wyeo(z) and  g(wyz) = @y(2). (19)

Also note that, for any (e Gy,

Po(2) = ¢o(5) _ ;90— [20(O)1)
L= 09Oy (2) (1= 95(O)p0(2))*

Setting 7 (z,{) = (p%(z) and, forj=1,....N — 1,

Fj-1(2,0) — g1 (2N, 0)

z

¢r(z) =4 2| = 1. (20)

;o 0:(2)

‘0/71(2’ C) =
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and using (15), (19), and (20), after some algebra we get

N-1
Ngj(ZNaé’) - fj(a)lfvz)
k=0 |
= NA(1 ~ [oo0) )} (2) <M>

L+ == Do @ea)"
(1= (poDo(z)")

On differentiating this equation and using the facts that ¢f(z)— oo, (p6(2) is
bounded, and ¢,(z) > 1 as z— 1, ze Gy, one easily concludes that g;(z",{) cannot
be extended analytically to a larger domain for some {#0 in Gy. Taking into
account this fact, we now repeat the argument used for j = 0 to conclude from (16)
the analogs of (17) and (18); that is,

tim sup O, (0] = 1

— 00
and, for some subsequence {/},~, that depends on j,

VN[kJﬁjL/laGN as lk—>OO. (21)
Therefore, { fy n+;}, [ =0,1, ..., is not Markov for every j =0,...,N —1. O

We remark that (21) provides some new information regarding the asymptotic
behavior of the zeros of Q,(z; Gy) for the cases N >5.

Corollary 5. For N =3 or 4 and j =0,N — 1, the polynomials Qnij(x; Gn), | =
0,1, ..., have exactly [ simple zeros on (0, 1). Consequently, all zeros of Qni1j(z; Gn)
lie on the rays Ty n, k=1,N.

Proof. Using Lemma 4 and the orthogonality relation (9), we conclude from well-
known arguments originally given by Kellog [6] (see also [9, Proposition 3.1]) that
Oniy; has at least / sign changes on (0, 1). But it follows from the symmetry property
(4) that Quy4; cannot have more than / zeros on (0,1). O

Next, for fixed j, we establish the interlacing property of zeros of the Qp;y;’s. This
property is a consequence of the following general statement.

Lemma 6. Let {gi(1)},—, be a Markov system of continuous functions on (a,b), and
suppose that polynomials P,(t), deg P,<n, n=1,2, ..., are orthogonal to g;(t), k =
0,n—1, on (a,b), ie.,

/ P (gl di = 0. (22)
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Then between any two consecutive zeros of P,(t) on (a,b) there is a (unique) zero of
P,Fl(l).

Although similar results are known (cf. [5]) for the case when the P,’s are in the
span of the g;’s, the authors could not find the needed form in the literature, so we
provide a simple proof.

Proof. First of all, we note that all zeros of P,(¢), n= 1,2, ..., are simple, and liec on
(a,b). Suppose now, to the contrary, that o and f are two consecutive zeros of
P,.1(2) and P,(¢) has no zeros on (o, f). We can assume without loss of generality
that P,(z)>0 and P, (r)=>0 on [, f]. Consider the polynomial

Ry i1(1) = cPy(t) — Pnyi(2),

where the constant ¢>0 is chosen as follows:

(i) if P,(¢) = 0 either at o or at f3, denote this point by 7* and set
P ()

Pye)
clearly, R,1(?) has a zero at ¢ of multiplicity at least two.
(i) otherwise, P,(t)>0 on [«, ] and, with
¢ =min{C: C=0, CP,(t) — P,+1((¢)) =0 on [, ]},

the polynomial R,(¢) has a zero *€ (o, ) of even multiplicity.

With such a choice for ¢, the polynomial R,(7)/(t — ¢*)* has no more than n — 1
zeros on (a,b), and so no more than n — 1 sign changes. Hence, R, (¢) has no more
than n — 1 sign changes on (a,b), and one can find a function

n—1
Gn([) = Z asgs([)
s=0

over the system {g,}"_) such that the product R, (r)G,(r) is nonnegative on (a, b).
On the other hand, the orthogonality relation (22) gives

/b R, 1(0)G,(t)dt = 0.

This implies that either R,.;(#) or G,(¢) must be identically zero on (a,b), which is
impossible. [

Corollary 7. For N = 3 or 4 and fixed je {0, ..., N — 1}, between any two consecutive
zeros of Oniyj(x;Gn), 1=2,3,..., on (0,1) there is a (unique) zero of
ON(-1)+i(x; GN).
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Proof. We apply Lemma 6 to the polynomials P;(¢) = ¢;(¢), / =0,1, ..., with ¢;(¢)
defined in (4) and the system gi(¢) = tUH=M/Nfy e (V) k=0,1, ..., with
S nk+i(x) given by (8), which, by Lemma 4, is a Markov system on (0, 1) (since j is
fixed). The orthogonality relation (22) follows immediately from (9) with the
substitution t = xV. O

Corollaries 5 and 7 establish the truth of assertions (I) and (II).

Let ®y(z) denote the exterior Riemann mapping function for Gy, i.e.,
Oy: C\Gy = {|w|>1}, Oy(00) = oo, Py (c0)>0. Using, for each side of Gy, the
Schwarz reflection principle, we can extend @y to a function (i)N(z) that is analytic
and one-to-one in C\(Uy_, Trw).

Corollary 8. For N =3 or 4,
lim Q,(z:Gy)'" = du(2)

locally uniformly in (E\(Uf(\]:1 Tkn), where x'/" denotes the branch that is positive for
x>0.

Proof. Indeed, the fact that all the zeros of Q,(z; Gy)’s are located on the rays
I'tn, k=1,N, makes it possible to define single-valued analytic branches of the
functions Q,(z; Gy)"", n=1,2, ..., in the domain C\({Jy_, Tx). These functions
form a normal family in this domain and, moreover, it is well-known [12, Chapter 3]
that

lim Qu(z; Gy)'"" = dy(2)

locally uniformly in C\Gy. Thus, the assertion follows from standard uniqueness
theorems. [

Theorem 9. For N = 3 or 4, let /1%)7_/ be the normalized counting measure of the zeros of
Oni+j(z) that lie in (0,1), ie.,

1
! 2 :
;\.gv)‘j - 7 5)”

XEZNiyj
x>0

where 8y is the unit point mass at x. Then there exists a measure uy such that for each
j=0,N—-1
)»Y,)’jLMN as [— 0.
Moreover, iy is the unique measure supported on [0, 1] that satisfies the equation
. 1 1
In|®y(z)| = —/ln 12V — XN | duy (x) +1n — (23)
N CN

for all z¢ U,{Y:] Cx.n, where cy is the logarithmic capacity of Gy.
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Proof. For any positive measure 4 let U(z; 1) denote its logarithmic potential
1
Ulz;A) = |1
i) = [
First we observe that the regularity of the Lebesgue measure over Gy implies that
foreachj=0,N — 1
Uz vvig) = Uz oGy ), 2¢ G, (24)

where vy, is the normalized counting measure of Zy;,;, the set of all zeros of Q.
Note by symmetry, that

1 . N-1 ]
V() = W{ﬁo(.) 1> ;“%),j(“’]?v')}'

da(t).

Hence from (24) it follows that if 4 is any limit measure of {z%>, 2o, then

| M=l )
Ul(z;up6y) = U 5y Z Mk-) | for z¢ Gy .
k=0
Writing
1
U(z; koG,) = In— — In|@y(z)],
CN

we obtain (23) for z¢ Gy and py = 4. Since supp(4)<[0,1] Eq.(23) holds by
harmonic continuation for all ze C\ UkN:1 l_"k,N.

Finally, we can use the unicity theorem for logarithmic potentials (cf. [11,
Theorem I1.2.1]) to deduce that (23) uniquely determines the measure uy and so
every limit measure A must equal py. O

We remark that for convex domains G, results concerning the asymptotic behavior
of the balayages (to the boundary of G) of the zeros of the Bergman polynomials
were obtained in [2].

References

[1]1 V. Andrievskii, H.-P. Blatt, Erdés-Turan type theorems on quasiconformal curves and arcs,
J. Approx. Theory 97 (1999) 334-365.

[2] V. Andrievskii, I. Pritsker, R. Varga, On zeros of polynomials orthogonal over a convex domain,
Constr. Approx. 17 (2001) 209-225.

[3] M. Eiermann, H. Stahl, Zeros of orthogonal polynomials on regular N-gons, Lecture Notes in
Mathematics, Vol. 1574, Springer, Heidelberg, 1994, pp. 187-189.

[4] D. Gaier, Lectures on Complex Approximation, Birkhduser, Boston, 1987.

[5] S. Karlin, W.J. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics, Wiley,
New York, 1966.

[6] O.D. Kellog, Orthogonal function sets arising from integral equations, Amer. J. Math. 40 (1918)
145-154.



140 V. Maymeskul, E.B. Saff | Journal of Approximation Theory 122 (2003) 129-140

[71 A.L. Levin, E.B. Saff, N. Stylianopoulos, Zero distribution of Bergman orthogonal polynomials for
certain planar domains, Constr. Approx., to appear.

[8] N. Papamichael, E.B. Saff, J. Gong, Asymptotic behaviour of zeros of Bieberbach polynomials,
J. Comput. Appl. Math. 34 (1991) 325-342.

[9] A. Pinkus, Spectral properties of totally positive kernels and matrices, in: M. Gasca, C.A. Micchelli
(Eds.), Total Positivity and its Applications, Kluwer Academic Publishers, Dordrecht, 1996,
pp. 477-511.

[10] E.B. Saff, Orthogonal polynomials from a complex perspective, in: P. Nevai (Ed.), Orthogonal
Polynomials, Kluwer Academic Publishers, Dordrecht, 1990, pp. 363-393.

[11] E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer, Heidelberg, 1997.

[12] H. Stahl, V. Totik, General Orthogonal Polynomials, in: Encyclopedia of Mathematics and its
Applications, Vol. 43, Cambridge University Press, New York, 1992.



	Zeros of polynomials orthogonal over regular N-gonsDedicated to Herbert Stahl on the occasion of his 60th birthday
	Introduction
	Proof of Conjectures (I) and (II)
	References


