Note

A Combinatorial Solution of Two Related Problems in Sequence Enumeration

James W. Reilly
Department of Mathematics, University of Toronto, Toronto, Canada

Communicated by the Managing Editors
Received July 1977

Abstract

This paper gives a combinatorial derivation of the counting series ψ_{m} (alternatively ψ_{π}^{*}) for positive integer sequences by rises, falls and levels (alternately exceedances, deficiencies and constants).

In this paper, we will formulate and solve two problems in sequence enumeration by finding two different generating functions for the same set of sequences. Once one of these generating functions is found, the other will be immediately obtained by using a combinatorially-derived relationship between the two generating functions.

Definition 1. Given a finite sequence $s=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle$ of positive integers. A rise (alternately fall, level) of S is an ordered pair $\left\langle s_{i}, s_{i+1}\right\rangle$, $i \in\{1,2, \ldots, n-1\}$ such that $s_{i}<s_{i+1}$ (alternately $s_{i}>s_{i+1}, s_{i}=s_{i+1}$). Let $\hat{s}=$ $\left\langle\hat{s}_{1}, \hat{s}_{2}, \ldots, \hat{s}_{n}\right\rangle$ be the unique permutation of s such that $\hat{s}_{1} \leqslant \hat{s}_{2} \leqslant \cdots \leqslant \hat{s}_{n}$. An exceedance (alternately deficiency, constant) of s is an ordered pair $\left\langle s_{i}, \hat{i}_{i}\right\rangle$ such that $s_{i}<\hat{s}_{i}$ (alternately $s_{i}>\hat{s}_{i}, s_{i}=\hat{s}_{i}$).

If a sequence $s=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle$ to $\{1,2, \ldots, m\}$ has b_{i} distinct occurrences of the integer i, r rises, f falls and l levels, we define $\omega(s)$ as $x^{\tau} y^{f} z^{l} \prod_{i \in\{1,2, \ldots, m\}}$ $\alpha_{i}^{b_{i} i}$, a term on the set of variables $\left\{x, y, z, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\} ;$ if the same sequence s has e exceedances, d deficiencies and c constants, we define $\omega^{*}(s)$ as $x^{e} y^{d} z^{c} \prod_{i \in\{1,2, \ldots, m\}} \alpha_{i}^{b_{i}}$, a term on the same set of variables. The relative series $\psi(S)$ of a set S of positive integer sequences is defined by $\psi(S)=\sum_{s \in S} \omega(s)$; the fixed series $\psi^{*}(S)$ is defined by $\psi^{*}(S)=\sum_{s \in S} \omega^{*}(s)$. If U_{m} is the set of all finite integer sequences to $\{1,2, \ldots, m\}$, we write ψ_{m} for $\psi\left(U_{m}\right)$ and ψ_{m}^{*} for $\psi^{*}\left(U_{m}\right)$. If B_{m} is the set of all integer sequences to $\{1,2, \ldots, m\}$ beginning with m, we write θ_{m} for $\psi\left(B_{m}\right)$.

The coefficients in ψ_{m} (alternately ψ_{m}^{*}) give the number of sequences to
$\{1,2, \ldots, m\}$ with a given number of rises, falls and levels (alternately exceedances, deficiencies and constants) and a given number of occurrences of each element. We require the series ψ_{m} and ψ_{m}^{*}. In this paper, ψ_{m} will be found explicitly for all m using only the well-known Addition and Multiplication Theorems of enumerative combinatorics, together with purely combinatorial arguments. Then the series ψ_{n}^{*} will be explicitly given for all m. The method of proof uses a construction originally due to Foata [2].

Both series have also been obtained by Jackson [3] using a different method. By substituting $u y_{j}$ for $\alpha_{j}, j \in\{1,2, \ldots, m\}$ in ψ_{m}^{*} (alternately ψ_{m}), we obtain the ψ_{m}^{*} (alternately $\psi_{m} / x y$) of Jackson. The result of our Theorem 1 was originally obtained by Carlitz [1].

Lemma 1. Using the notation of Definition 1:
(a) $\psi_{m}=\theta_{m}+\psi_{m-1}+\psi_{m-1} x \theta_{m}$
and
(b) $\theta_{m}=\frac{\alpha_{m}}{1-\alpha_{m} z}+\frac{\alpha_{m}}{1-\alpha_{m} z} y\left(\psi_{m}-\theta_{m}\right)$.

Proof. (a) A sequence s to $\{1,2, \ldots, m\}$ either,
(i) begins with m,
(ii) contains no m (and is therefore into $\{1,2, \ldots, m-1\}$), or
(iii) contains at least one $s_{i}=m, i \neq 1$, and $s_{1} \neq m$.

The relative series for the sets of all sequences satisfying (i) and (ii) are by Definition 1 respectively θ_{m} and ψ_{m-1}.
To any sequence $s=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle$ satisfying (iii) there corresponds the two sequences $\left\langle s_{1}, s_{2}, \ldots, s_{i-1}\right\rangle \in U_{m-1}$ and $\left\langle s_{i}, s_{i+1}, \ldots, s_{n}\right\rangle \in B_{m}$. Conversely, the ordered pairing of any sequence in U_{m-1} with any sequence in B_{m} corresponds to a sequence satisfying (iii). Thus by the Multiplication Theorem, the relative series for the set of all sequences satisfying (iii) is $\psi_{m-1} x \theta_{m}$, the extra x corresponding to the rise $\left\langle s_{i-1}, s_{i}\right\rangle$.

Now because the possibilities (i), (ii), (iii) are mutually exclusive, the result follows by the Addition Theorem.
(b) A sequence s to $\{1,2, \ldots, m\}$ beginning with m either contains an $i<m$ or does not (i.e. is onto $\{m\}$). The relative series for all sequences $s=$ $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle$ onto m (i.e. $s_{i}=m$ for all $1 \leqslant i \pi n$) is $\alpha_{m} /\left(1-a_{m} z\right.$).

Any sequence $s=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle$ containing an $i<m$ can be uniquely expressed as the product of a sequence $\left\langle s_{1}, s_{2}, \ldots, s_{i-1}\right\rangle$ of all m 's and $\left\langle s_{i}, \ldots, s_{n}\right\rangle \in U_{m}-B_{m}$, where i is the smallest integer such that $s_{i} \neq m$. Conversely, such a product is a sequence to $\{1,2, \ldots, m\}$ beginning with m
and containing an $i<m$. Then by the Multiplication Theorem, the relative series for the set of all such sequences is $\alpha_{m} /\left(1-\alpha_{m} z\right) y\left(\psi_{m}-\theta_{m}\right)$, the extra y corresponding to the fall $\left\langle s_{i-1}, s_{i}\right\rangle$. By the Addition Theorem, the result follows.

Theorem 1.

$$
\psi_{m}=\frac{\prod_{j=1}^{m}\left\{1+(x-z) \alpha_{j}\right\}-\prod_{j=1}^{m}\left\{1+(y-z) \alpha_{j}\right\}}{x \prod_{j=1}^{m}\left\{1+(y-z) \alpha_{j}\right\}-y \prod_{j=1}^{m}\left\{1+(x-z) \alpha_{j}\right\}} .
$$

Proof. By eliminating θ_{m} from equations (a) and (b) of Lemma 1 , we have:

$$
\psi_{m}=\frac{\alpha_{m}+\psi_{m-1}\left\{1+(x+y-z) \alpha_{m}\right\}}{1-\alpha_{m} z-\alpha_{m} x y \psi_{m-1}} .
$$

The result follows by induction on m.
Now that we have obtained the relative series ψ_{m}, we proceed to the next step-the relationship between ψ_{m} and ψ_{m}^{*}.

Definition 2. Given a $2 \times n$ matrix M of positive integers and $A \subseteq$ $\{1,2, \ldots, n\}$, we write M_{A} as the $2 \times|A|$ matrix of all the i-th columns, $i \in A$, in the order in which they appear in M. We write $\Gamma(s)$ as the matrix $\left[{ }_{s}^{s}\right]$, for all sequences s of positive integers. We define $\omega^{*}(M)$ as $\omega^{*}(t)$, where t is the second row of M, and the first row of M is a rearrangement of t.

Lemma 2. Using the notation of Definition 1:

$$
\psi_{m}^{*}=\psi_{m-1}^{*}+\psi_{m}^{*} \alpha_{m} z+\psi_{m}^{*} x \alpha_{m} y \psi_{m-1}
$$

Proof. A sequence $s=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle$ to $\{1,2, \ldots, m\}$ either:
(i) contains no m,
(ii) ends with m, or
(iii) contains at least one $s_{i}=m, i \neq n$ and $s_{n} \neq m$.

The fixed series for the sets of all sequences satisfying (i) and (ii) are by Definition 1 respectively ψ_{m-1}^{*} and $\psi_{m}^{*} \alpha_{m} z$.

Given a sequence s satisfying (iii), let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subseteq\{1,2, \ldots, n\}$ be such that:
(i) $\hat{s}_{a_{j}}=s_{a_{j+1}} \neq m, j \in\{1,2, \ldots, k-1\}$,
(ii) $\hat{s}_{a_{k}}=s_{a_{1}}=m$, and
(iii) $\hat{s}_{l} \neq \hat{s}_{a_{j}}$ for all $a_{j+1}>l>a_{j}, j \in\{1,2, \ldots, k-1\}$.

Let the second row of $\Gamma(s)_{A}$ be v. Let u be the sequence $\left\langle s_{a_{1}}, s_{a_{2}}, \ldots, s_{a_{k}}\right\rangle$. Then since every rise (alternately fall, level) of the form $\left\langle s_{a_{j}}, s_{a_{j+1}}\right\rangle$ of u, $j \in\{1,2, \ldots, k-1\}$ corresponds to an exceedance (alternately deficiency, constant) of v, and only the exceedance $\left\langle s_{a_{k}}, \hat{s}_{a_{k}}\right\rangle$ of v remains, we have $\omega^{*}(v)=\omega(u) x$. But:

$$
\omega^{*}(\Gamma(s))=\omega^{*}\left(\Gamma(s)_{\{1,2 \ldots, n\}-A}\right) \omega^{*}\left(\Gamma(s)_{A}\right)
$$

or

$$
\omega^{*}(s)=\omega^{*}(t) \omega^{*}(v)
$$

where t is the second row of $\Gamma(s)_{\{1,2, \ldots, n\}-A}$. Thus $\omega^{*}(s)=\omega^{*}(t) x \omega(u)$.
The sequence u has exactly one m, namely u_{1}, and the sequence t is to $\{1,2, \ldots, m\}$. Conversely, given an ordered pair $\left\langle t^{\prime}, u^{\prime}\right\rangle$ of such sequences, form the matrix

$$
M=\left[\begin{array}{lllll}
u_{2}^{\prime} u_{3}^{\prime} & \cdots & u_{k}^{\prime} & \cdots & u_{1}^{\prime} \\
u_{1}^{\prime} u_{2}^{\prime} & \cdots & u_{k-1}^{\prime} & \cdots & u_{k}^{\prime}
\end{array}\right]
$$

Permute the columns of M without changing the order of any columns i, j such that $u_{i}^{\prime}=u_{j}^{\prime}$, to obtain a matrix N of the form $\left[\begin{array}{c}\hat{v}\end{array}\right]$. Let L be the matrix [$\left[t^{i} t^{\prime}\right]$. Lastly, permute the columns of $L N$ as before to obtain a matrix $\Gamma\left(s^{\prime}\right)$ for some s^{\prime}. Then if $t^{\prime}=t$ and $u^{\prime}=u$, we have $s^{\prime}=s$. Now the fixed series for the set of sequences u^{\prime} is $\alpha_{m} y_{m-1}$. So by the Multiplication Theorem, the fixed series for the set of all sequences satisfying (iii) is $\psi_{m}^{*} x \alpha_{m} y_{m-1}$, as required.

Theorem 2.

$$
\psi_{m}^{*}=\frac{x-y}{x \prod_{j=1}^{m}\left\{1+(y-z) \alpha_{j}\right\}-y \prod_{j=1}^{m}\left\{1+(x-z) \alpha_{j}\right\}}
$$

Proof. This result follows by induction on m after substituting the explicit formula of Theorem 1 for ψ_{m-1} into the formula of Lemma 2 to obtain a recursion for ψ_{m}^{*}.

References

1. L. Carkitz, Enumeration of sequences by rises and falls: a refinement of the Simon Newcomb Problem, Duke Math. J. 39 (1972), 267-280.
2. L. Carlitz, Permutations, sequences and special functions, SIAM Rev. 17 (1975), 298-322.
3. D. Foata, Studies in enumeration, Institute of Statistics Mimeo Series No. 974, Dept. of Statistics, U. of North Carolina, Chapel Hill, January 1975.
4. D. M. Jackson, The unification of certain enumeration problems for sequences, J. Combinatorial Theory A 22 (1977), 92-96.
